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Abstract

The neutron excess effect, originating from the vanishing of one part of 7, - 7, operator matrix elements, was appropriately
considered within the Skyrme-type ANN three-body interactions and applied to the deformed SHF model. Analysis of a
broad range of hypernuclei, from light to heavy masses, shows that the neutron excess effect significantly improves the
description of A binding energies. The underlying mechanism involves reducing the ANN three-body repulsive interaction
by subtracting the neutron excess term, thereby improving the binding energy of the hypernucleus. In addition, the impact
of this effect on the A single-particle potential and the hyperon density distribution is discussed.
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1 Introduction

Since the identification of the first A hyperfragment in an
emulsion exposed to cosmic rays in 1952 [1], A hypernuclei
have been intensively studied, both experimentally [2-9] and
theoretically [10—16]. Recent studies have mainly focused on
hyperon—nucleon (YN) interactions [16-25], hypernuclear
structure [15, 24, 26-31], hypernuclear decay [7, 32-38],
and so on. Understanding the internal structure and YN inter-
actions is a challenging goal in nuclear physics.

A single-A hypernucleus, which consists of a normal core
nucleus and a A hyperon, provides a unique environment
for investigating AN interactions. The degree of freedom of
strangeness liberates the A hyperon from the constraints of
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the nuclear Pauli exclusion principle, allowing it to penetrate
deeply into the nucleus and alter the core structure as an
impurity. Therefore, the presence of impurity effects in the
A hypernuclear system is crucial for illuminating nuclear
features that might remain obscure in normal nuclei, includ-
ing both the structure and interactions.

With the emergence of new and improved experimen-
tal facilities, the measurement of A hypernuclear binding
energies spans a broad mass range from light to heavy with
high resolution. These advancements not only enhance our
understanding of A hypernuclear properties compared to
previous studies but also pose challenges to the develop-
ment and refinement of theoretical approaches in hypernu-
clear structures. To comprehensively describe these crucial
nuclear properties, various types of AN interactions have
been introduced and discussed. These include the Skyrme
types [39—47], relativistic types [48-54], Nijmegen soft-core
(NSC) types [55-57], Nijmegen extended-soft-core (ESC)
types [13, 18, 21, 58-60], and chiral effective field theory
(yEFT) types [22, 25, 61-63]. By using effective A—nucleon
interactions, A hypernuclei have been comprehensively char-
acterized within various nuclear models, including the anti-
symmetrized molecular dynamics model [30, 64—67], shell
model [15, 68, 69], and mean field model [12, 31, 51-54,
70-78].

Over the past decades, two types of AN interactions have
been proposed and adopted in the Skyrme—Hartree—Fock
(SHF) model. The first type, derived from Brueckner—Har-
tree—Fock (BHF) calculations of hypernuclear matter, has
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a more microscopic basis. The second type is phenomeno-
logical Skyrme-type interactions, which are determined by
fitting the experimental binding energies of A hypernuclei.
Microscopic interactions originate from deeper physi-
cal principles (e.g., explicit momentum/density depend-
ence). However, owing to the limited experimental data on
A hypernuclei at present, microscopic interactions do not
describe A hypernuclei very well. In contrast, phenomeno-
logical Skyrme-type interactions, which are determined
by fitting the experimental binding energies of A hypernu-
clei, can better predict the ground-state properties of the
hypernuclei.

Although Skyrme interactions provide a good descrip-
tion of hypernuclei, there are still some details that require
improvement. For the Skyrme interaction, the parameter
sets are RAY12 [39, 40], YBZ1 [42], SKSH2 [43], HPA2
[45], and SLL4 [47]. Different interactions were obtained
by fitting different ground-state or excited-state energies
of A hypernuclei. Moreover, different three-body interac-
tions were considered in different Skyrme interactions. The
Skyrme interaction with three-body interaction derived
from the G-matrix can provide a good description of A
hypernuclei ranging from light mass to heavy mass, such
as SLL4 and HPA2. However, the Skyrme interaction with
three-body interaction derived from the ANN contact force,
like RAY12, YBZI1, and SKSH2, cannot provide a global
description. A noticeable feature in the calculated results
with the ANN contact force is that the parameters fitted
to the binding energies of light-mass A hypernuclei, such
as RAY 12, YBZI, and SKSH2, clearly fail to predict the
experimental results for heavy-mass hypernuclei. Moreo-
ver, the calculated binding energies of heavy-mass A hyper-
nuclei are smaller than the experimental values [77]. This
underbinding shows that the AN potential depth is not suffi-
ciently deep in heavy-mass A hypernuclei. This phenomenon
is found not only in Skyrme interactions but also in other
types of hyperon—nucleon interactions. For microscopic
interactions, the calculated binding energies with the NSC89
interaction were smaller than the experimental results for
heavy A hypernuclei [26]. The NSC97f interaction gives
good results for heavy A hypernuclei, but its prediction for
light A hypernuclei is approximately 2 MeV higher [26]. For
the optical potential, the experimental binding energies of
heavy A hypernuclei are larger than those calculated with
the interaction obtained by fitting the 1s and 1p states of
N [14]. Notably, the behavior of light-mass hypernuclei
with symmetric nuclear matter core nuclei differs from that
of heavy-mass hypernuclei with asymmetric nuclear matter
core nuclei. This highlights the significant impact of isospin
of the core nuclei on binding energy calculations.

In previous Skyrme-type interactions, only the sim-
plest form of the contact ANN three-body interaction was
considered [79]. However, an important feature of the
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ANN interaction is its proportionality to the isospin factor
T, - T, for the two nucleons involved [80]. Because of the
isospin factor, ANN interaction between ’core’ nucleons
and ’excess’ neutrons is suppressed when excess neutrons
occupy shell-model orbits higher than those occupied by
protons [14, 81]. By adding excess neutron, the influence of
the isospin factor can be considered in the three-body inter-
action of Skyrme-type interactions. The three-body ANN
interaction usually contributes significantly to the repulsion
of NA forces, although there is no assurance that the three-
body ANN interaction is universally repulsive. Therefore,
the repulsive ANN interaction decreases owing to neutron
excess, which is expected to solve the underbinding in
heavy-mass A hypernuclei.

In the optical potential methodology [14, 81], the effects
of neutron excess, considered using a more phenomeno-
logical approach, are discussed to address the underbinding
issue in heavy-mass A hypernuclei. Deformation is a funda-
mental property of hypernuclei and has a significant impact
on the B, and other properties, especially for A states above
the s state; therefore, it cannot be ignored. Furthermore, the
pairing force is crucial in the calculation of nuclear prop-
erties [82]. In this study, the impact of neutron excess on
deformed A hypernuclei is discussed in the framework of
the SHF method with pairing force, which deals with the
Bardeen—Cooper—Schrieffer (BCS) approximation.

The remainder of this paper is organized as follows: In
Sect. 2, the theoretical method and interaction are briefly
described. In Sect. 3, we discuss the binding energies of A
hypernuclei and present the A single-particle potential along
with the changes in the density distributions due to neutron
excess. Finally, a summary is given in Sect. 4.

2 Theoretical descriptions

In the SHF approach, the total energy of a hypernucleus is
given by [40, 8§3-87]

E= / &r er). (1)

where the energy-density functional is
&= £N[pn’ pp, Tn, Tp’Jn’Jp] + EA[pn’ pp’ pA7 TA;JN?JA] s (2)

with £, and €, as the contributions from NN and AN interac-
tions, respectively. For the nucleonic functional €, we used
the standard Skyrme force SLy4 [88]. The one-body density
Py kinetic density 7, and s.o. current J 4 are

N,

(o e 9] = D [IE2. 19 6" Vs o]
k=1
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where ¢’; k=1,-- ,Nq) are the s.p. wave functions of the
k-th occupied states for the different particles ¢ = n,p, A.
The occupation probabilities n’; were calculated by consider-
ing pairing within a BCS approximation for nucleons only.
The pairing interaction between nucleons is considered as a
density-dependent 6 force [82, 89]:

V(r r)_V, 1_pN((rl+r2)/2)
g\"1°"2) —

a 0.16 fm™> ori=ra), @)

= —410 MeV fm® are
—1146 MeV fm?,

VI =-999 MeV fm® for medium-mass and heavy-mass
nuclei [85]. A smooth energy cutoff was employed in the
BCS calculations [91]. In the case of an odd number of
nucleons, the orbit occupied by the unpaired nucleon is
blocked, as described in Ref. [92].

Through the variation in the total energy, Eq. (1), one
derives the SHF Schodinger equation for both nucleons and
hyperons:

where pairing strengths V; =V
used for light-mass nuclei [90], and Vzla =

v *( Sy ¥+ Ve = W) (7 x o)| ) = ki),
)

where V,(r) is the central part of the mean field depending
on the density and W (r) is the s.o. interaction part [83, 89].

For the Skyrme-type interactions, €, is given as [40, 42,
44, 46, 47]

T
+a (pATN +onta) — ay(padpy + pyBpy) /2 ©
—ay(pAV Iy + 0NV - Jy) .

= +agpppy + azpapy + dipa Py + 2000,)

where the last term is the s.o. part, which was adjusted to
reproduce the observed s.o. splitting of 1/3\C in our approach
[31, 93, 94]. Previous studies [31] have shown that the effect
of this term is small (0.1 MeV), which is ignored in this
work. Two alternative parametrizations of nonlinear effects
are indicated, that is, the first one a; motivated by a G-matrix
[41, 45, 95] and the second one ag derived from a ANN con-
tact force [39, 40]. In symmetric matter, the two choices are
equivalent when a; = %ag and a = 1[46].
Then, one obtains the corresponding SHF mean fields:

Vi =agpy + a1ty — ar)Apy

7
ol +d (7 + 2000, @

V(A) =agpa + a Ty — azApA
! ®)

+ay(1 + a)pppyy +2d5p5(2py — py)s

V]gA) =agpa + a Ty — azApA

a ©
+ay(1+ a)pppfy +2a50,2py = py)-

In the previous Skyrme interactions [79], only the simplest
form of the three-body interaction was considered, which
is given by

tiy3 = 6(r; —1;)8(r3 — 1,183 (10

The three-body interaction is only related to the coordinates
of the hyperons and nucleons. However, an important feature
of the ANN interaction is its proportionality to the isospin
factor 7, - T, for the two nucleons involved [80]. Expanding
the isospin operator in terms of raising and lowering opera-
tors within the matrix elements, we obtain

D (ijklz, - 7 lijky = D (ilz. i)l 1)
ik i € core
J € valence excess

+ D (il

ijeothers

+Z<l

l+Tj— + Tl—Tj+)

li7),
(11

where i and j are the indices of the nucleons and k is the
index of the A hyperon. ‘core’ refers to the isospin 7' = 0 part
of nuclei, while ‘valence excess’ refers to the part of nuclei
where excess neutrons occupy shell-model orbits higher than
those occupied by protons. For each j, Y (i|z;,|i) =0

iEcore
since the isospin of the ‘core’ is zero. Therefore, the first

term in Egs. (11) vanishes: The third term in Eq. (11) is the
exchange partner of such matrix elements that renormalize
the two-body AN interaction [80]. Thus, the ANN interac-
tion between ‘core’ nucleons and ‘excess’ neutrons is
expected to be suppressed when the excess neutrons occupy
shell-model orbits higher than those occupied by protons
[14, 81]. By introducing excess neutrons, the effect of the
isospin factor can be incorporated into the three-body inter-
actions of the Skyrme-type interactions.

When excess neutrons occupy shell-model orbits that
are higher than those occupied by protons, p is separated
as:

pn(r)=p () +p () =p (N +p () +p, (), (12)

where p° refers to the Z protons plus the Z neutrons occu-
pying the same nuclear ‘core’ orbits, and p" refers to the
(N — Z) excess neutrons associated with the nuclear periph-
ery [14, 81]. By deleting the cross term p°p" to account
for the neutron excess [14, 80, 81], Egs.(6) and (7) can be
rewritten as
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TA

en =5 +aopapy +dipa2(6°) + 200 - o) = py]
UON
a
+ay(paty + ovTa) = 5 (Padoy + oxpy )
—ay(PAV - Iy + oy V - Jy),
13)
Va =agpy + a1ty = ayApy
(14)

+ @200 +200") = = ).

We will keep Eqs. (8) and (9) are unchanged for the HF
calculations because there is no cross term p°p” in these
equations.

In the present calculations, the deformed SHF Schrodinger
equation was solved in cylindrical coordinates (r, z), under
the assumption of axial symmetry of the mean fields. When
compared with experimental deformations derived from the
quadrupole moment Q, , we employ the definition

Vo

p :
3 ZR?

s)

with R, = 1.2A'/3 fm [87, 90, 96-98].

3 Results and discussion

In order to study the influence of neutron excess on Skyrme-
type interaction RAY12, YBZ1, and SKSH2, we calculated
the binding energies of A hypernuclei: ‘3B, 12C, 2 C, °N,
90,2881, %28, V. 1Y, VLa, and *%¥Pb.

Figure 1 shows the binding energies for the 1s and 1p
states calculated with and without neutron excess compared
to the experimental data. The red triangles show the results
without neutron excess, blue squares show the results with
neutron excess, and black circles show the experimental
results from Ref. [99]. To better present the results of '*B,
12C, 1N and !0, the results for '2C and 'O are displayed
in the inset plots. It should be noted that not all hypernuclei
in the figure contain excess neutrons. The results show that
the highest neutrons occupy the shell-model orbit, which is
lower than that of the highest protons in IZZ\C, 11?0, 2/%Si and
3/%8, while the highest neutrons occupy the same shell-model
orbit as the highest protons in 1/3\C. Therefore, the results for
12¢, 3¢, 10, 8 Si, and *2S remain unchanged regardless of
the presence of neutron excess.
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Fig.1 (Color online) The binding energies (in MeV) of A 1s and 1p
2R 120 13 160y 160y 28q; 32q S5ly 89y 139 208
states of B, AC, AC, AN, AO, ASI, AS, WV Y, L, and APb
as calculated with and without neutron excess in Skyrme-type inter-
action RAY 12, YBZ1 and SKSH2 compared with experimental data.
The red triangles represent the results without neutron excess, the
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blue squares represent the results with neutron excess, and the black
circles represent the experimental results including uncertainties from
Ref. [99]. To enhance the visualization of the results for '2B, 12C,
1/6\N, and IXO, the results for liC and 1/6\0 are presented in inset plots.
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It is clearly seen that the binding energies calculated
using the Skyrme-type interactions RAY12, YBZI1, and
SKSH?2 failed to predict the experimental results in the
heavy-mass hypernuclei. Moreover, the calculated binding
energies in the heavy-mass A hypernuclei were smaller than
the experimental values. This underbinding shows that the
AN potential depth is not sufficiently deep in heavy-mass
A hypernuclei. The reason for this phenomenon is that the
parameter are fitted to the binding energies of the light-mass
A hypernuclei. Therefore, the calculated results from the
interaction exhibited poor agreement with the experimental
values in the heavy-mass region. It is evident that the behav-
ior of light-mass hypernuclei with symmetric nuclear matter
core nuclei differs from that of heavy-mass hypernuclei with
asymmetric nuclear matter core nuclei. Therefore, the influ-
ence of the isospin of the core nuclei on the binding energy
calculations is significant. The ANN three-body is related to
the isospin factor 7, - 7, for the two nucleons involved [80].
The neutron excess reflects the influence of the isospin of
core nuclei.

In Fig. 1, it is clear that the neutron excess slightly
changes the binding energies of light-mass A hypernuclei
with excess neutrons because excess neutrons are small in
the light mass. Most importantly, neutron excess signifi-
cantly increases the binding energies of heavy-mass A
hypernuclei, because hypernuclei with heavy mass often
have more excess neutrons. For the Skyrme-type interac-
tions RAY 12, YBZ1, and SKSH2, the interactions with
neutron excess lead to better agreement with the experi-
mental results of 2B and 'N. For the Skyrme-type inter-
actions YBZ1 and SKSH2, although the interaction with
neutron excess leads to increased binding energies, the
calculated results do not agree with the experimental

results for heavy hypernuclei. For the interaction YBZ1,

!
3

ing the binding energies of ’C, 1°0, 2¥Si, °Ca, 3'V, and
igY, which yielded good results, thereby confirming that
ag was 500 MeV-fm® [42]. The interaction SKSH2 is fitted
to binding energies of /I\ZHC, }GC }ipC 160, /'\?FO 28 Si,

a’, was determined by assuming 500 MeV-fm® and calculat-

’ A]T ’ Al.v
28 Q; 40 40 40 51 51 51 89 89
AlpSI’ Anca’ Alpca’ Amca’ AnV’ AlpV’ Aldv’ A];-Y’ AJ,;Y’

A, Yo%, Y [43]. The two interactions, YBZ1 and SKSH2,

were fitted to heavy-mass hypernuclei with asymmetric
nuclear matter cores. The influence of asymmetric nuclear
matter on the interaction parameters was relatively large.
Therefore, these two interactions with neutron excess lead
to the overbinding of hypernuclei. Compared to the inter-
actions of YBZ1 and SKSH2, RAY 12 is more suitable for
studying this problem. The interaction of RAY12 was
obtained without fitting heavy-mass hypernuclei with an
asymmetric nuclear matter core. For A in 1s states, the
calculated binding energies using RAY 12 with neutron
excess are in good agreement with the experimental data,

especially for heavy hypernuclei, compared to those with-
out neutron excess. For A in 1p states, it appears to work
well, as shown by the significant improvement in the bind-
ing energies calculated using RAY 12 with neutron excess
for 2B, "N, Y, *?La and 2°*Pb.

To check the overall description using RAY12 for all 11
hypernuclei, we calculate and list in Table 1 the average
deviation y? and the root mean square deviation A,

Table 1 The calculated binding energies (in MeV) of 1s and 1p states
A for 12B, 12C, B3¢, 1N, 160, 2si, 325, 51, 8y, 1391 4 and %P
with RAY 12, RAY12+neutron excess and SLL4 in comparison with
experimental values [99], along with the parameters of the Skyrme-
type AN interactions. The values of 7> and A represent the average
deviation and the root mean square deviation between the calculated
binding energies of A hypernuclei and the experimental values. The
root mean square deviation A is given in MeV

Hypernucleus  Exp RAY12 RAY12+ SLL4
neutron excess
ag —237.40 —237.40 —322.00
a - - 15.75
a, —6.85  —6.85 19.63
as - - 715.00
d, 250.00  250.00 -
a - - 1.00
N B 1152+ 002 11.04  11.90 10.98
hc 1136 £02 1096  10.96 10.94
he 120+£02 1207 12,07 11.83
N 13.76 £0.16 13.09  13.77 13.63
0 130£02 1305  13.05 13.61
2 si 17202 1716  17.16 17.68
2 17505 1872 1872 18.74
AV 215406 2033 2099 21.39
®Y 236+£05 2250 2356 23.89
ULa 25112 2349 2569 25.19
UPb 269+08 2441  27.00 26.24
2B 0.54+0.04 —048  —0.09 0.07
I{C 036+02 —051  —0.51 0.79
liﬂc L1£02 000 0.00 0.49
‘f\pN 284+0.18 195 234 2.61
'g:o 25+£02 193 1.93 2.61
= si 76+ 02 836 8.36 8.73
3{5 82+ 05  9.08 9.08 9.48
SA'”v 134+ 06 1385 1459 14.44
S/{Y 177+ 06 1689  18.07 17.93
ligLa 21+ 06 1945 2148 20.78
ZX;Pb 225+£06 2095 2359 2247
7 63.09 3186 42.83
A 1.06 0.66 0.61
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(16)

1 N B
— B &P 1.
A_\N§:< BACf;),

with N = 22. From Table 1, it can be seen that the average
deviation 72 and root mean square deviation A of the binding
energies for A 1s and 1p states in the selected hypernuclei
are shown for different Skyrme-type interactions. SLL4 is a
recently developed AN Skyrme-type interaction that effec-
tively describes hypernuclei across the entire periodic table
using a single set of four parameters [46, 47]. By analyz-
ing the 7% and A, it is evident that the inclusion of neutron
excess improves the ability of RAY 12 to describe the bind-
ing energies of hypernuclei. The key point to emphasize is
that all the calculations were conducted without adjusting
any parameters. Compared with SLL4, RAY 12, which incor-
porates neutron excess, shows a smaller )22 and a similar A,
while requiring fewer parameters. Therefore, with RAY 12
plus neutron excess, the calculated binding energies of A 1s
and 1p states are very close to the experimental values, indi-
cating reasonably good agreement. This demonstrates the
importance of neutron excess when excess neutrons occupy
shell-model orbits that are higher than those occupied by
protons.

Table 2 lists the quadrupole deformation parameters f
and the binding energies of the A 1s and 1p states for vari-
ous hypernuclei, comparing deformed results with their
spherical counterparts (values in brackets). The data reveal
that deformation has a significant impact on the binding
energy, particularly for hypernuclei in the 1p, state. For
instance, for X;N and /l\iO, the binding energies differ

noticeably between deformed and spherical calculations,
with the deformed values being closer to experimental
data. Conversely, the 1s, state shows minimal differences,
as the wave function of hyperon tends to be spherical in
this state. These results show the necessity of considering
deformation effects.

Figure 2 shows the A single-particle potential as a function
of the radial distance r (fm) in the z = 0 plane for hypernuclei
f\] Vv, igY, 1391 a4 and iong. The red curves represent calcula-
tions without neutron excess (NE), whereas the blue curves
represent neutron excess. Solid lines denote the total AN inter-
actions, dashed lines indicate the two-body AN interactions,
and dot-dashed lines indicate three-body ANN interactions.
The neutron excess has almost no effect on the two-body AN
interaction, but it effectively reduces the repulsive three-body
AN interaction, thereby increasing the total AN interaction.
Therefore, the hyperons are bound more deeply. The A-nuclear
potential depth at zero momentum, V,(0), is —=29.7 MeV,

@ Springer

Table2 The calculated binding energies (in MeV) and the quadru-
pole deformation parameters f of A 1s and 1p states for IIZ\B, IKC, 1/3\C,
16 16() 28q; 32q Sly 89y 139 208 o :

AN, AO, ASl, AS, AV,. AY, ALa and APb us.mg RAY12.w1th neu-
tron excess. The values in brackets are for spherical calculations

Hypernucleus p Binding energy
N B -0.09 11.90 (11.95)
aC -0.09 10.96 (10.97)
'i‘c 0.00 12.07 (12.07)
"N 0.00 13.77 (13.77)
" 0 0.00 13.05 (13.05)
%A si -0.22 17.16 (17.21)
33 S 0.00 18.72 (18.72)
AV 0.14 20.99 (20.95)
89 Y -0.02 23.56 (23.56)
'ZgLa 0.06 25.69 (25.90)
WPb 0.00 27.00 (27.00)
'ﬁ B -0.21 —0.09 (—1.28)
'{c -0.207 =0.51 (=1.71)
'gpc -0.15 0.00 (—0.42)
‘XPN 0.07 234 (1.73)
‘Xpo 0.09 1.93 (1.06)
22" Si -0.26 8.36 (7.30)
3{5 0.12 9.08 (8.62)
S}\ZV 0.17 14.59 (13.69)
2y -0.04 18.07 (17.95)
'X;La 0.06 21.48 (21.36)
ZR%Pb 0.00 23.59 (23.59)

closely matching the —28 MeV depth derived from the simple
Woods—Saxon (WS) attractive potential in Ref. [41].

Figure 3 shows the rate of change in the hyperon density
in the r-z plane due to neutron excess for four hypernuclei
1V, 8Y, 1¥La, and 2%¥Pb. The rate of change in the hyperon
density 6, is given as

pA(RAY 12 + neutron excess) — p, (RAY12)
P (RAY12) - an

oA

The color scale represents the percentage change, with red
and yellow indicating positive changes and green and blue
showing negative changes. Neutron excess significantly
affects the hyperon density distribution but has a minor
impact on the core nucleus density distribution. Neutron
excess leads to an increase in the central density of the
hyperon and a decrease in the outer density, resulting in a
decrease in the radius of the hyperon. Figure 4 illustrates
the difference between neutron density and proton density,
P = Pps in the (r,z) plane for the hypernuclei 5 /'\V, 8/9\Y, 132 La,
and 20;; Pb, respectively, calculated by the RAY 12 interaction.
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Fig.2 (Color online) Two-body,

tions as functions of the radial distance r in the z = 0 plane in 5/1\\/,
ng, 13/‘\)La and Z(be calculated using RAY 12 with and without neu-
tron excess. The red curves correspond to calculations without neu-

r (fm)

three-body, and total AN interac-

r(fm)

tron excess (NE), while the blue curves account for neutron excess.
Solid lines represent the total AN interactions, dashed lines illustrate
the two-body AN interactions, and dot-dashed lines depict the three-
body ANN interactions
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Fig.3 (Color online) The changing rate of hyperon density 6,, Eq. (17), in the (r, z) plane, for S/I\V, 8/9\Y, 13[3 La and 228Pb, obtained with the

RAY 12 interaction
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Fig.4 (Color online) The difference between neutron density and proton density p, — Py In the (r, z) plane, for AV, AY, ALa and APb,

obtained with the RAY 12 interaction

From Figs. 3 and 4, we find very similar shapes of 6, and
P — py for 1V, 8Y, ¥La, and 2%°Pb. This indicates that the
effect of neutron excess is more significant in regions where
the neutron density differs greatly from the proton density.

4 Summary

The effects of neutron excess on the A hypernuclei were
studied by using the deformed SHF model in this work. Sup-
pressing the ANN interaction between ‘core’ nucleons and
‘excess’ neutrons addresses underbinding in heavy-mass A
hypernuclei. The microscopic mechanism can be explained
as follows: the neutron excess decreases the repulsive ANN
interaction, which can prevent this issue and be directly
observed from the depth variation of the hyperon potential.

In addition, to quantitatively assess the impact of neu-
tron excess, the binding energies of 1s and 1p A states for
2B, 12C,13C, "N, 1?0, 81, 1S, 2V, 1Y, 1PLa and *%¥Pb
were compared with those without the effect. Neutron
excess significantly increases the B, for heavy hypernuclei
but has a less pronounced impact on light hypernuclei. In
particular, for RAY 12, good agreement was reached in this
model between the calculated values and their corresponding
experimental values considering the neutron excess effect.

By incorporating the isospin for the two nucleons into the
three-body ANN interaction, a better prediction of the hyper-
nuclear structure can be achieved. In the future, corrections
for neutron excess will be introduced into the calculations of
multi-A hypernuclei and E hypernuclei (S=2).
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