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Introduction—Nuclei near and beyond the proton drip line
represent a fascinating frontier in the nuclear landscape.
Proton-rich nuclei exhibit intriguing phenomena, such as
the Thomas-Ehrman shift and proton-halo structure. Beyond
the proton dripline, nuclei become unbound, allowing pro-
tons to be emitted and giving rise to novel radioactive decay
modes. Single-proton radioactivity, a process in which some
nuclei with an odd number of protons (Z) decay by ejecting
a proton, was discovered several decades ago and has been
extensively studied [1, 2]. In comparison, two-proton (2p)
radioactivity, which involves the simultaneous emission of
two protons from some even-Z nuclei, was discovered in
2002 [3, 4]. This most recently identified decay mode, along
with related phenomena, remains an active topic of research
in nuclear physics [5-18]. More recently, multiproton emis-
sion processes—such as three-, four-, and five-proton emis-
sion—have been observed in the decays of some extremely
neutron-deficient nuclei. These exotic decay modes provide
powerful spectroscopic tools for probing the structure and
decay properties of proton-rich nuclei far from the valley
of stability, serving as ideal laboratories to explore exotic
nuclear phenomena and test open quantum system theories
under extreme conditions.

One of these exotic features that often emerges near and
beyond the dripline is mirror and isospin symmetry break-
ing [19], driven by the large proton—neutron imbalance of
dripline nuclei. Isospin symmetry is a fundamental concept
in nuclear physics, positing that mirror nuclei—those with
exchanged numbers of protons and neutrons—should exhibit
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nearly identical structures, that is, states with the same spins
and parities and closely similar excitation energies. Under
this symmetry, the ground states (g.s.) of the mirror nuclei
are expected to have the same spins and parities. While
isospin symmetry holds to a good approximation in most
nuclei, striking deviations from this rule are of great interest,
as they reveal subtle aspects of the nuclear structure and the
underlying interactions.

Discovery of the three-proton emitter *°Al—In a recent
article published in Physical Review Letters [20], Xu,
Mukha, Li et al. reported the first observation and spectros-
copy of the previously unknown isotope 2’Al. This study
revealed that 2°Al is unbound with respect to the emission
of three protons, as shown in Fig. 1. The determined decay
energy of 2°Al g.s., combined with a thorough analysis of
its g.s. spin-parity, provided evidence for isospin symmetry
breaking in the mirror pair of 2°Al and 2°N.

The experiment was performed at the Fragment Separa-
tor of the GSI Helmholtz Centre for Heavy Ion Research
in Darmstadt, Germany. The very neutron-deficient nucleus
20A1 was produced in a charge—exchange reaction and
decayed promptly by emission of protons. By tracking the
trajectories of all its decay products with silicon microstrip
detectors, 2°Al was observed for the first time. 2°Al has seven
fewer neutrons than the stable aluminium isotope and lies
beyond the proton drip line. It is the lightest aluminium iso-
tope that has been discovered so far.

The authors performed a detailed analysis of angular cor-
relations of 2°Al’s decay products and found that the °Al g.s.
decays by sequential 1p—2p emission via intermediate g.s.
of "Mg. Specifically, the 2°Al g.s. first decays by ejecting
one proton to the g.s. of ?Mg, followed by the subsequent
decay of Mg g.s. via simultaneous 2p emission. Mg is a
known case of g.s. 2p radioactivity [21]. Consequently, 2°Al
is the first observed 3p emitter, where its 1p decay daughter
nucleus is a 2p radioactive nucleus.

The decay energy of the 2’Al g.s. was determined to be

1.93f8z}3 MeV. It is significantly smaller than the predictions
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Fig. 1 (Color online) Schematics illustrating isospin symmetry break-
ing between the three-proton emitter 2°Al and its mirror partner 2°N
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Fig.2 Proposed decay scheme of the states observed in 2°Al with
decay channels via '"Mg and '®Na states, whose decay energies are
given relative to the 3p, 2p and 1p thresholds, respectively. On the
right, the two lowest levels of 2°N are depicted, with their energies
shifted by the mirror energy difference expected for the 22N—2°Al pair.
Adapted from Ref. [20]

inferred from the isospin symmetry by employing the neu-
tron separation energy of 2°Al’s mirror partner °N, which
leads to an enhanced energy shift of the 2°Al g.s. relative
to the 2°N g.s., as shown in Fig. 2. The unexpectedly low
decay energy of 2°Al indicates a possible isospin symmetry
breaking in 2°Al and %N,

Theoretical developments and challenges—Observation
of the three-proton emitter 2°Al provides an ideal testing
ground for modern theoretical frameworks of open quan-
tum systems. To properly describe these exotic multi-parti-
cle emitters, the structural and decaying aspects need to be
considered simultaneously. Although there is currently no
comprehensive theory on the market, many frameworks are
developing towards this direction [5, 7, 8, 22]. Particularly,
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in recent years, the Gamow shell model (GSM) [23, 24] and
Gamow coupled-channel (GCC) approaches [25-27] have
been developed to describe weakly bound and unbound
nuclei by employing the Berggren basis, which consist-
ently incorporates bound, resonant, and scattering states. In
details, the former emphasizes the role of the continuum in
shaping many-body correlations, whereas the latter focuses
on the decay dynamics of nuclear states, highlighting the
interplay between intrinsic structure and low-lying contin-
uum couplings.

Both state-of-the-art frameworks have been applied to
study 2°Al. In particular, the GSM calculations predict a
dominant s, /, configuration for the valence protons in 2041,
leading to a J* = 17 ground state, whereas its mirror partner
20N exhibits a J” = 2~ ground state. This spin-parity differ-
ence highlights the breaking of the isospin symmetry beyond
the proton drip line (Fig. 1). GCC calculations, treating 2°Al
as a deformed '®Mg core plus valence nucleons, further sup-
port this interpretation and underline the importance of core
deformation and continuum coupling in shaping the low-
lying spectrum of multiproton emitters [25, 28-31].

Despite these advances, theoretical descriptions of mul-
tiproton emissions remain highly challenging. First, accu-
rate predictions require a delicate balance between effec-
tive nucleon—nucleon interactions, continuum treatment,
and few-body asymptotic behaviour. In addition, a fully
microscopic framework is anticipated to describe the exotic
structures and decaying dynamics on the same footing. How-
ever, this requires complicated frameworks and large com-
putational resources. Finally, the scarcity of high-statistic
experimental data on higher-order proton emitters limits the
benchmarks available to validate theoretical predictions.

Outlook for multi-particle emissions—The discovery of
20A1 as a sequential 1p—2p emitter opens the door for sys-
tematic studies of even more exotic multiproton emission
phenomena. Known cases of 3p emission, such as 3K [32]
and '"Na [33], suggest that sequential emission modes domi-
nate, whereas democratic decay mechanisms may emerge
at higher excitation energies. Looking further ahead, '*Mg
has been claimed to be a candidate for four-proton emission,
most likely proceeding via a sequential 2p—2p mechanism
[34]. Similar processes are also expected in 8C and in the
neutron-rich system 280. Even more exotic modes, such as
the reported five-proton emission from °N [35], push the
limits of nuclear stability. Further theoretical and experimen-
tal work will be required to determine whether the ground
state of °N is a genuine resonance or merely a scattering
feature [7].

In addition to g.s. decays, multi-particle emissions from
the nuclear excited states have also been observed [36]. For
example, the excited states of >?Mg [10, 11] provide a new
dimension for exploring these exotic processes and gaining
deeper insights into the dynamics of extreme open quantum
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systems. However, the very short lifetimes and non-localized
nature of such excited states make their structures and decay
mechanisms particularly challenging to unravel.

Future developments in both theory and experiment are
crucial. On the theoretical side, the integration of chiral
effective field theory interactions [37] with continuum-
embedded models and the inclusion of three-nucleon forces
will be essential for quantitative predictions. On the experi-
mental side, next-generation radioactive beam facilities (e.g.
FRIB, RIKEN, FAIR, and HIAF) with advanced detection
systems will enable measurements of angular correlations,
energy spectra, and lifetimes with unprecedented precision.
Such coordinated efforts will not only test the robustness of
isospin symmetry at the limits of stability, but also extend
our knowledge of nuclear structure into the regime of chaotic
multi-particle decays, potentially reshaping our understand-
ing of the nuclear landscape far beyond the drip lines.
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