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Abstract

This study addresses a challenge of parametrizing a resolution function of a neutron beam from the neutron time of flight
facility n_TOF at CERN. A difficulty stems from a fact that a resolution function exhibits rather strong variations in shape,
over approximately ten orders of magnitude in neutron energy. To avoid a need for a manual identification of the appropri-
ate analytical forms—hindering past attempts at its parametrization—we take advantage of the versatile machine learning
techniques. Specifically, we parametrized it by training a multilayer feedforward neural network, relying on a key idea
that such network acts as a universal approximator. The proof-of-concept is presented for a resolution function for the first
experimental area of the n_TOF facility from the third phase of its operation. We propose an optimal network structure for
a resolution function in question, which is also expected to be optimal or near-optimal for other experimental areas and for
different phases of n_TOF operation. To reconstruct several resolution function forms in common use from a single para-
metrized form, we provide a practical tool in the form of a specialized C++ class encapsulating the computationally efficient
procedures suited to the task.
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1 Introduction

This work was supported by the Croatian Science Foundation
under the project number HRZZ-1P-2022-10-3878. This project
has received funding from the European Union’s Horizon Europe
Research and Innovation programme under Grant Agreement No
101057511.

Neutron time of flight facility n_TOF at CERN is a neutron
production facility specializing in high-resolution measure-
ments of the neutron-induced reactions [1, 2]. In use since
2001, it is currently in the fourth major phase of its opera-
tion [3, 4]. Currently, it features three distinct experimental
areas. The first and the second experimental area—EARI [2]
and EAR2 [5-7]—are well established and have long since
been in use. A new NEAR [8-10] experimental area is the
most recent feature, characterizing the latest n_TOF phase.

The facility relies on a 20 GeV proton beam from the
CERN Proton Synchrotron, which irradiates a massive Pb
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spallation target as a primary source of a neutron beam. The
pulsed proton beam—7 ns wide (RMS), with a minimum
repetition period of 1.2 s—delivers an average of 8.5 x 102
protons per pulse. All experimental areas connect to the
same spallation target. EAR1 is at a horizontal distance of
approximately 185 m from the target, EAR2 is 20 m above
the target, while NEAR is at the short horizontal distance
of only 1.5 m from the target. The primary spallation prod-
ucts consist of an intense burst of y-rays, highly energetic
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neutrons and the other neutral and charged particles. On
their way toward EAR1 and EAR?2 the charged particles are
swept away by the strong electromagnets. No such magnet
is used for NEAR because of its proximity to the target.
Remaining ultrarelativistic spallation products reach the
experimental areas as an intense burst known as the y-flash.

Initially, fast spallation neutrons are moderated by passing
through a spallation target itself, through a layer of demin-
eralized water from a cooling system, and through an addi-
tional layer of borated water from a separate moderation sys-
tem around the target. This yields a white neutron spectrum
spanning more than 10 orders of magnitude in energy, from
thermal (~10 meV) up to ~1 GeV (up to the order of mag-
nitude, depending on the experimental area [11, 12]). The
beam production, moderation, and transport mechanisms are
well understood [13, 14].

An inevitable by-product of the neutron production and
moderation is a finite spread of neutron arrival times at the
measuring station from a given experimental area, even for
the neutrons of the same kinetic energy. These arrival times
are measured and treated as the neutron times of flight, rela-
tive to the single initial moment of the primary proton beam
hitting the spallation target. There are three major effects
causing the variations in times of flight: (1) a time width
(7 ns RMS) of the primary proton beam; (2) a distribution of
neutron moderation times inside the target-moderator assem-
bly; (3) a geometry of neutron transport along the beamline
of finite length and breadth. This spread in neutron arrival
times gives rise to a distribution known as the resolution
function of the neutron beam. It causes the smearing of the
experimental spectra in the cross section measurements
based on the time of flight technique. As such, it must be
accounted for during the analysis of the experimental time
of flight data. At n_TOF the resolution function considera-
tions have been pursued ever since the initial conception of
the facility [1] and continue to be followed since the start
of its operation [15, 16] to the present day [2, 4, 5, 13, 14].

The only practical means of obtaining a detailed evalu-
ation of the resolution function are the dedicated simula-
tions of the neutron production and moderation. Because of
the complexity of the target-moderator assembly at n_TOF,
these simulations are so computationally intensive that their
output needs additional post-processing by the so-called
optical transport code [13, 14, 17]. The purpose of this code
is to propagate the outgoing neutrons toward the measur-
ing station and to refine the raw statistics from the primary
simulations in a meaningful and computationally efficient
way. However, the final output of this code is still subject
to statistical fluctuations, which are detrimental to the qual-
ity of the experimental data analysis. Furthermore, the raw
numerical format of the resolution function is rather cumber-
some to deal with, requiring users to implement their own
interpolation and smoothing procedures. For this reason, a
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smooth parametrization of the resolution function is highly
desirable. A difficulty arises from the fact that the shape
of the resolution function varies significantly over a wide
energy range of the n_TOF beam, covering more than 10
orders of magnitude in neutron energy. Attempts have been
made in the past to identify the appropriate analytical form,
as in Ref. [2]. But this form is a rather complicated function
of two variables: the neutron energy and the time of flight.
As such, it is exceedingly difficult to identify, only to be
invalidated after each modification of the neutron production
system at n_TOF, for example, after the occasional upgrades
of the spallation target, moderator assembly, beam collima-
tion system, etc.

In this work, we present an efficient and streamlined
method for a parametrization of the n_TOF resolution func-
tion by means of the machine learning techniques, together
with a user-friendly interface for its evaluation. The interface
consists of a dedicated C++ class centered around the neural
network implementation from a widely used programming
package ROOT [18]. As a proof-of-concept, we apply the
methodology to the resolution function of the first experi-
mental area (EAR1) from the third phase (Phase-3) of the
n_TOF operation (2014-2018 [19, 20]; Phase-4 is in effect
since 2021 [3, 19], after a long shutdown in 2019-2021).
We disclose an optimal network structure for this particular
resolution function, which should also serve as the optimal
or near-optimal structure for its reparametrization after any
alteration of the resolution function, or even for the para-
metrization of a resolution function for a different experi-
mental area. As such, a repeated neural network training
procedure requires very little user input regarding a selection
of the appropriate parametrization form (realized through
a selection of hyperparameters defining a neural network
structure).

Section 2 establishes a basic formalism behind the reso-
lution function. Section 3 presents its parametrization by
means of a trained neural network, together with a proce-
dure for a numerical reconstruction of the various resolu-
tion function forms from a single parametrization. Section 4
summarizes the main conclusions of this work. The appen-
dix addresses an apparent norm violation in applying the
resolution function.

2 Resolution function formalism

A detailed resolution function formalism may be found in
Ref. [21]. In this section, we summarize the most important
points. For readability of expressions, we will use compact
notations E and £ for two different types of kinetic energy
parameters. The first is a true neutron energy E. The second
is a reconstructed neutron energy &, calculated from a rela-
tivistic kinetic energy relation:
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) 12712
E=mc [1—<C—T)] -1, (1)
with m as the neutron mass, c as the speed of light in vac-
uum, L as a nominal neutron flight path (a length of an evac-
uated beamline) and, crucially, T as a neutron time of flight.
Let us parameterize the neutrons irradiating the sample by
some kinematic parameter X. For the moment, X may be
a neutron time of flight 7 or a reconstructed energy £. Let
dPy(E,X’) be the probability for a neutron of true kinetic
energy E to arrive at the sample with the specific value X’
of a selected parameter X, that is, with a value within an
interval dX’. By definition, the resolution function Ry (E, X")
is a differential quantity:
dPy(E,X")

RX(E,X,) = T (2)

It is normalized such that:

/ Ry(E,X")dX' =1 forevery E. 3)

o

The time of flight T is the most natural variable for a resolu-
tion function, due to it being directly measured in the time
of flight experiments. However, both 7 and £ are somewhat
inconvenient for a comprehensive representation of a resolu-
tion function for two reasons. One is that £ closely follows
a true neutron energy E, thus also affecting T via Eq. (1).
As a consequence, the mean values of resolution functions
R: and Ry, at given E, are closely dependent on E. This is
inconvenient for the neutron beams spanning multiple orders
of magnitude in energy, as the relevant portion of a resolu-
tion function is “stretched out” in both directions throughout
the parameter space. This is clearly shown in Fig. 1, which
shows both forms R,(E, T") and R(E, £') of the same resolu-
tion function.

The other reason for a cumbersome nature of R; and R,
is the fact that the neutron time of flight directly depends on
a neutron flight path L, that is, on a sample distance from a
neutron source, which often changes between experiments.
Thus, with every change of L, both R; and R, should be
recalculated from the start. Therefore, it would be highly
desirable to introduce an alternative kinematic parameter
satisfying the following requirements: (1) its span of values
over the entire range of neutron energies is weakly depend-
ent on E, being localized around some meaningful value;
(2) aresolution function in this parameter is independent of
a trivial scaling! with L, making it representative only of a
neutron production process and of the nontrivial, physically
meaningful effects of L; (3) preferably, a new parameter
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Fig.1 (Color online) Resolution function for the first experimental
area (EAR1) of the n_TOF facility from the third phase (Phase-3)
of its operation. Top (a): a form R;(E,T’) dependent on the neutron
time of flight 7. Bottom (b): a form R.(E, &) dependent on the recon-
structed neutron energy £

should have at least approximate physical interpretation,
rather than just being an artificial mathematical transfor-
mation. This parameter has long since been identified as
an effective moderation length A. The idea is to separate
the time of flight of monoenergetic neutrons—that fluctu-
ates owing to the statistical nature of a neutron production
and transport process—into a contribution from a nominal
flight path L and a “corrective” contribution 4, encoding the
effects of fluctuations:

vl =L+ 4, 4

' A dependence on L always has a trivial component owing to the
scaling of T with L. However, a change in L may also affect a resolu-
tion function in nontrivial ways owing to the physical effects, such as
the beam diffraction along the neutron flight path (see, for example, a
short discussion around Eq. (5) from Ref. [21]). While the resolution
function for EAR1 shows only the trivial scaling with L, the one for
EAR? is strongly dependent on L in a nontrivial way [17]. This fully-
trivial dependence for EARI is only approximate, as the resolution
function is in principle always affected by a nontrivial component.
However, a very long flight path toward EAR1 (185 m) suppresses
the nontrivial effects of the sample position, which was experimen-
tally confirmed by dedicated resonance measurements.
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with v; as a true neutron speed upon leaving a neutron
source (a spallation target). At this point, we introduce the
following expression:

\/72
5 = £(£+21121c )’ )
€+ mc

because it is relevant here and will be useful in subsequent
calculations. It represents a standard relativistic factor
p. = v, /c for neutrons of kinetic energy €. Thus, a true neu-
tron speed from Eq. (4) is given by a true neutron energy as
Vg = cPp.

It should be noted that the effective moderation length 4
is not the real path length of a neutron inside a spallation
target, for multiple reasons: (1) a neutron inside a spallation
target does not propagate the entire time with speed vg; (2)
production of separate neutrons is initiated at different initial
moments owing to a finite time spread of the proton beam
irradiating a spallation target, while the time of flight 7 for all
neutrons corresponding to the same proton pulse is measured
relative to a unique, fixed moment; (3) even after leaving the
spallation target, a contribution to the total 7 from a neutron
propagation inside an evacuated beamline is not necessarily
L/v. This may be because a neutron is emitted at some slight
angle 0 relative to the beamline axis, making a real flight path
L/ cos 6. It may also scatter off the beamline walls, which
increases its flight path and alters its speed.

Figure 2 shows a resolution function R, (E, A") dependent on
the effective moderation length. The top form (¢, = 0) does
not take into account the time width o of the primary proton
beam (explained later), and perfectly corresponds to the earlier
forms from Fig. 1. For convenience, we immediately show
a resolution function smeared by the proton beam RMS of
oy = 7ns, which will soon be elaborated.

We now have a set of three kinematic parameters to be
found in common use: X € {T, &, A}. The transformation of a
resolution function between these parameters follows from a
conservation of probability:

Ry (E,T') |dT'| = Ry(E, &) |d€'| = R,(E, ) |dX].  (6)

It is shown in Ref. [21] that the resolution function trans-
forms a differential spectrum of counts N(E") dependent on
a true neutron energy into a differential spectrum of counts
Ny (X’) dependent on a selected kinematic parameter as:

dN (X)) /°° AN (E")
0

x’ g Rx(EX)dE )
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Fig.2 (Color online) A resolution function R,(E,A’) depend-
ent on the effective neutron moderation length 4. The top form (a)
corresponds to those from Fig. 1, coming directly from the
FLUKA+MNCP simulations of the neutron production and transport.
In the subsequent sections—starting with Eq. (10)—denoted by R ;.
The bottom form (b), smeared by the proton beam width o, = 7 ns,
corresponds to the real experimental situation and is later denoted
as R,

3 Resolution function parametrization
by means of machine learning

3.1 Resolution function fitting

It was shown in Ref. [17] that the raw resolution function
(obtained by the optical code) can not be used for a reli-
able resonance analysis. The reason is that the residual
statistical fluctuations from the computationally intensive
FLUKA+MNCP simulations of the neutron production and
transport through the spallation target are not negligible rela-
tive to the fluctuations in the experimental data. Thus, using
the raw resolution function in the analysis of the experimen-
tal data artificially and unnecessarily increases the involved
statistical uncertainties. (Examples of smearing the initially
smooth spectra by the raw resolution function may be found
in later Figs. 5 and 6.) Clearly, a smoothed form of the res-
olution function is necessary, so as to avoid this adverse
effect. It is also highly desirable that the smoothed form be
efficiently parameterized, that is, that it is more compact
than just a densely interpolated resolution function matrix
filled with the values of a smoothed function (a matrix such
as those from Figs. 1 and 2).
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One way of proceeding would be to identify an analyti-
cal parametrization of the entire resolution function matrix.
An example of such parametrization for a resolution func-
tion of EARI from Phase-1 of the n_TOF operation can
be found in Ref. [2]. However, such an analytical form is
difficult to identify and may no longer be appropriate when
the alterations are introduced to the neutron production pro-
cess. For example, the replacement of a spallation target
between Phase-1 and Phase-2 of the n_TOF operation [4]
notably affected the shape of a resolution function, render-
ing previous parametrization invalid. Furthermore, a resolu-
tion function for EAR2 differs from the one for EAR1 and
requires its own dedicated parametrization. To avoid a tedi-
ous manual identification of new analytical forms, we take
advantage of the machine learning techniques, in particular
of the deep feedforward neural networks. The idea stems
from a fact that the multilayer feedforward neural networks
act as the universal approximators, capable of approximating
any sufficiently well behaved function to any desired degree
of accuracy [22, 23]. In other words, such networks can be
thought of as “black box” fitting functions capable of mod-
eling any function of practical importance. The application
of neural networks to this task is a part of ongoing efforts to
introduce the machine learning techniques into a widespread
practice at n_TOF [24-26]. The possibility of applying the
convolutional neural networks in unfolding the effects of
the resolution function is also being investigated, with very
promising results on the horizon [27].

We demonstrate the proof-of-concept by fitting a resolu-
tion function of EAR1, from Phase-3 of the n_TOF opera-
tion. To this end, we used the neural network training capa-
bilities of the TMultilLayerPerceptron class [28]
from rooT. Using rooT allows for a seamless integration of
the end result (a trained neural network) within a vast major-
ity of the data analysis codes from n_TOF. We provide a
basic example of the code usage among the openly available
data files [29].

Our goal is to fit a single form of a resolution function
(either Ry, R¢ or R;) and reconstruct all other forms from
this single fit by applying the appropriate transformations.
This will ensure a perfect consistency between all forms of
a resolution function, which would not necessarily be satis-
fied by fitting each form separately. Because of the described
advantages of the R, representation (a uniformity of relevant
A values and insensitivity to a nominal flight path L), it is an
obvious choice for fitting.

There is another consideration to be taken into account,
that will allow for a greater flexibility in reconstructing par-
ticular forms of a resolution function. The resolution func-
tions of the n_TOF facility (for different experimental areas)
are affected by two separable contributions: (1) a neutron
production and transport process inside a spallation target,
as well as a neutron transport outside of it; and (2) a time

distribution (a finite time width) of the primary proton beam
from the CERN Proton Synchrotron irradiating the spalla-
tion target. The proton beam time distribution is Gaussian
in shape with a standard deviation of 6;; = 7 ns. Let R des-
ignate a resolution function in time of flight, without the
effects of the proton beam width (as if 6, = 0). R is easily
extracted from the raw results of the FLUKA+MNCP simu-
lations processed by an optical transport code. A resolu-
tion function R, affected by the proton beam width is then
obtained by a simple convolution with a temporal proton
beam profile (a normalized Gaussian):

Gﬂl@ /_ ) 'RT(E,T)exp[ @ m]dT )

On account of a linear relationship between T and A from
Eq. (4), arepresentation R, of a resolution function affected
by a proton beam width may still be expressed as a convolu-
tion of a resolution function R ; with an instantaneous proton
beam, and a A-equivalent of a temporal beam profile. From
Eq. (4), it follows that the A-width of this profile is dependent
on a true neutron energy, as o,(E) = vgoy. Using Eq. (5) this
dependence can be expressed as:

VE(E + 2mc?) ©)

CO7p.
T
E + mc?

Ry(E,T') =

0,(E) = cpyor =

Thus, the required convolution takes the following form:

R,(E, V)= U(E)\/_/ R, (E, A)exp[ @ 2(/\E>)]dA. (10)

Equations (6) and (10) constitute all the transformation rules
required for reconstructing any desired form of a resolution
function from a proton-beam-width-free form R ;. Therefore,
we apply a neural network fitting precisely to this, which is
the most convenient representation R ;. The arguments £ and
A’ of a two-dimensional resolution function R ,(E, A’) play
a role of the network inputs. A single scalar-function value
for each pair of arguments plays a role of a single network
output. However, since the true neutron energies E and the
resolution function values R ; span multiple orders of mag-
nitude, for reasons of numerical stability we take the loga-
rithms of these quantities for the input and output neutrons.

Here, we describe a neural network training and optimi-
zation procedure. First, the 450x60 numerical resolution
function matrix was constructed, spanning 450 uniformly
distributed A values between —2 m and 7 m (2 cm steps),
together with 60 isolethargically distributed log,, E val-
ues between 1073 eV and 10° eV (five points per decade),
creating a dataset of 27 000 points. It should be noted
that the trained neural network is not be used for any kind
of extrapolation outside of the range. It serves only as
a smooth and compact parametrization throughout the
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physically meaningful range, to be used only for the reso-
lution function reconstruction within a range entirely cov-
ered by the numerical matrix being fitted. Therefore, no
cross-validation was required during a training procedure.
In other words, all 27 000 entries could be used as training
counts, without needing to reserve any of them for sepa-
rate testing. Thus the quality of the trained network could
be entirely assessed against the training data. We used a
few simple and effective steps: we observed the saturation
rate of a loss function during the training, and visually
compared the agreement between the final fit and the raw
data (see Fig. 4, soon to be discussed). We also closely
monitored a distribution of fitting residuals.

We tested several training methods available in the
TMultilLayerPerceptron class, using a few prelimi-
nary network structures. We did not observe any signifi-
cant improvement— either in the computational efficiency
or in the quality of the final results—over the default
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method with
the default hyperparameter values [28]. Hence, we opted
for the default training parameters, employing the sigmoid
activation function. In TMultilLayerPerceptron, the
binary cross-entropy is the only loss function associated
with the sigmoid activation function. By testing a range of
network structures, we identified an optimal structure con-
sisting of three hidden layers, each composed of 15 neu-
rons. The optimal structure was easily identified. Less than
three hidden layers do not seem to have enough flexibility
to recover the quick variations in the resolution function,
even with highly increased number of neurons. Aside from
the visually obvious overfitting, more than three hidden
layers do not bring any further improvement in the resolu-
tion function reconstruction. Once the optimal three-layer
structure was identified, the number of neurons was varied
in steps of five, in different combinations throughout the
layers (e.g., 15-10-20). By searching for the simplest struc-
ture providing a satisfactory resolution function recon-
struction—without further improvement with an increas-
ing number of neutrons—we quickly converged upon the
optimal 15-15-15 structure, which is shown in Fig. 3. The
network inputs are x = 2'/(1 cm) and y = log,,[E/(1 eV)],
with a single output z = log,,[R,/(1 cm™")]. In general,
the final state of a trained neural network depends on a
particular training run owing to a random initialization of
its weights and biases. With the optimal network structure
and after a sufficient number of training epoch, these vari-
ations are essentially negligible. For the final training we
used 10* training epochs. A single-threaded training on
AMD Ryzen 7 7735HS (3.2 GHz) CPU under Linux Mint
21.2 Cinnamon takes 1 min per 100 epochs, making a total
of 100 min for 10* epochs.

Figure 4 compares a raw resolution function with a fitted
one, for several values of a true neutron energy E. The effect
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Fig.3 Neural network structure used for modeling a resolution
function of EARI from Phase-3 of n_TOF operation. Each fully
connected hidden layer consists of 15 neurons. The inputs corre-
spond to x = A’ /(1 cm) and y = log,y[E/(1 eV)]. A single output is
z=1log;o[R;/(L cm™")]
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Fig.4 (Color online) Raw resolution function fitted by a single
neural network, at neutron energies of (a) 40 meV, (b) 10 keV and
(c) 2 MeV. A raw and fitted function correspond to an instantaneous
proton beam irradiating a spallation target. A beam width of 7 ns does
not have a notable effect below 10 keV
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of a proton beam width is negligible below ¢, = 1 cm. As
per Eq. (9), a time width of 6, = 7 ns implies an equivalent
energy limit of £ = 10 keV (corresponding, for EARI1 flight
path of L = 180 m, to the times of flight below 0.13 ms).
Hence, at lower neutron energies the proton beam width of
7 ns does not have any significant effect upon the resolution
function. For this reason a resolution function smeared by
means of a numerical convolution from Eq. (10) is shown
only at energies higher than 10 keV.

3.2 Numerical resolution function reconstruction

To reconstruct the resolution function forms R; and R,
smeared by a proton beam width, one relies on the trans-
formation rules from Eq. (6). In the general case, a smeared
resolution function R, should first be obtained from an
unsmeared fit R ,—by means of Eq. (10)—and only then
should a required transformation from Eq. (6) be applied.
The reason is this. Combining Eqgs. (1) and (4) yields a non-
linear relation between £ and A:

1-1/2
5=mcz{[l—<vfﬁ)] —1}. (11

Because of this nonlinearity, the transformation between an
unsmeared resolution function R, and a smeared R, can no
longer be expressed as a formal convolution, which bears
upon the questions of computational complexity in apply-
ing a smearing transformation. We address these questions
in Sect. 3.3.

Because of a simple relation between A and T from
Eq. (4), a transformation rule for R, from Eq. (6) involves a
very simple derivative dA/dT = v, yielding:

Ry (E,T') = cBp X R,(E, cp,T' — L), (12)

with f; being defined by Eq. (5). A transformation for R,
is slightly more complex. By first obtaining A(§) and d4/d€
from Eq. (11), we obtain:

Lm*c* B p
(5’+mc2>3;TfXR*[E’L<tT§_1>]’ (13
5/

Re(E,E) =
where A(§) = L(fg /e — 1). By construction, these transfor-
mations preserve a norm of a resolution function.

We use a transformed resolution function from Eq. (13)
to demonstrate the effect upon and an agreement with the
n_TOF experimental data. Figure 5 shows two selected reso-
nances from a recent measurement of the >°Cr(n,y) reaction
in EAR1 [30]. Although the measurement was performed
during n_TOF Phase-4, for presentation purposes, we use
here a resolution function from Phase-3 as a first approxi-
mation of the resolution function from Phase-4. The plot
shows a resolution function-free reaction yield—manually
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Fig.5 (Color online) Selected resonances from n_TOF measurement
of the *3Cr(n,y) reaction, compared to the reaction yields based on
ENDEF/B-VIIL.O data, with of without the resolution function having
been applied

constructed by appropriately scaling a neutron capture cross
section from ENDF/B-VIIL.O database [31]—together with
two resolution resolution function-smeared yields, compared
with the experimental data. (The preliminary experimental
data are shown, as their analysis is not yet complete. The
region between the resonances is still affected by the residual
background contributions, not all of which have yet been
subtracted. The relative background contribution inside the
resonances is negligible for visual purposes, so that a mean-
ingful visual comparison with the ENDF resonances can
still be made.) Smeared yields have been obtained either
by applying the raw, unparameterized resolution function
or the one fitted by the neural network. Reaction yields (Y)
transform precisely as the differential spectra from Eq. (7)
and have been obtained by a transformation:

Ye(€) = / Y(ER(E', EAE', (14)
0

wherein Yz is a yield constructed from ENDF/B-VIIL.0
data. Resolution function R, was calculated according to
Eq. (13), starting either from the raw or the fitted resolu-
tion function R ;. The difference between two smeared yields
illustrates our initial claim that the raw resolution function
should not be used in the accurate data analysis, as it unnec-
essarily introduces artificial fluctuations into otherwise
smooth data, or enhances the existing ones.

A simple and comprehensive insight into effects of
applying either the raw or the smoothed resolution func-
tion may be obtained by applying them to a constant spec-
trum of unit height. Figure 6 shows these results for the
E-spectrum spanning 10 orders of magnitude in neutron
energy, completely analogously to a resonant yield from
Fig. 5. A detrimental effect of applying the raw resolution
function is immediately evident, as opposed to a smooth
end result from the fitted resolution function. In that,
Fig. 6 shows the result of applying a resolution function
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Fig.6 (Color online) Effect of applying either the raw or the fitted
resolution function to a unit spectrum spanning 10 orders of magni-
tude in neutron energy. The data are shown in 100 bins per decade.
A level of fluctuations introduced by the raw resolution function
increases with denser binning

unsmeared by a proton beam width (as if o, = 0). The
reason is that smearing the raw resolution function
smooths a high energy part, thus obscuring the statis-
tical fluctuations inherent in the simulated data, while
these fluctuations are precisely what we are trying to
exhibit here. Other than smoothing a high energy part of
the spectrum obtained with the raw resolution function, a
realistic value of o, = 7 ns does not affect the shape of the
folded spectra in a visible way (as they are displayed in
Fig. 6). It should be taken into account that the data from
Fig. 6 are displayed in 100 bins per decade. With finer
binning, the fluctuations from the raw resolution func-
tion become even more pronounced. We note in passing
that the n_TOF data are often analyzed in thousands of
bins per decade (see, for example, Refs.[32, 33] for 5000
bins per decade applied to the neutron capture data or
Ref. [34] for 2000 bins per decade applied to the fission
data). While the resonance plots like those from Fig. 5
show how the underlying data are locally deformed by a
resolution function, a plot from Fig. 6 clearly shows that
the global data trend may also be affected.

The resolution function affected spectra from Fig. 6
seem to be systematically higher than unity. This might
suggest that the application of a resolution function vio-
lates a norm preservation, that is, it violates a conserva-
tion of the total number of underlying counts. This viola-
tion is only apparent and is addressed in the Appendix.

3.3 Resolution function class
To facilitate the use of a newly fitted resolution function
at n_TOF, we have written a self-contained C++ class [35],

serving as a simple interface for the evaluation of any
desired resolution function form (R,, Ry or R¢), starting
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from a fitted proton-beam-width-free form R’} (not neces-
sarily normalized, as denoted by asterisk). The class serves
the following functions:

(1) initialization of a trained neural network (— R s

(2) numerical normalization (— R ));

(3) smearing due to a proton beam width (= R));

(4) transformation to alternative forms (— Ry or Ry);

(5) computationally efficient implementation of the above
operations.

The class houses the parameters of a trained neural network
and initializes a TMultiLayerPerceptron object,
allowing for a direct evaluation of a fitted, proton-beam-
width-free (unnormalized) resolution function R.

In evaluating any form of a resolution function, the first
operation to be performed is a numerical normalization such
that f_°:o R,(E, A)dA’ = 1, for any required value of E. The
reason for performing a normalization at all is the fact that
a fitting function without a priori imposed norm does not
necessarily preserve a norm of the fitted data. Therefore,
even if already-normalized data were fitted, the end result
needs to be a posteriori normalized. This also allows for
the unnormalized raw data to be fitted, which may improve
the quality of the fit, since the raw data may be unnormal-
ized not only by a constant factor, but by an arbitrary E
-dependent function, affecting a global two-dimensional
trend that the trained neural network needs to reproduce.
The reason for a numerical normalization to be performed
first is a computational efficiency, owing to the fact that both
the convolutional smearing from Eq. (10) and the kinematic
parameter transformations from Eqs. (12) and (13) preserve
the norm. To clarify the point, let Ty denote a total transfor-
mation (a composition of smearing and kinematic parameter
transformation operations) acting on unnormalized R so
as to produce an unnormalized, smeared and transformed
resolution function R}, in a sense: Ry = Ty{R}}. Owing
to a norm preserving property of all operations from Ty, a
normalized resolution function can be obtained in two ways:

REAN(XN] }_ Ty {(RIIEA (XN}

Ry(E,X") = {ZA'R*(E/\)AA = S nariEaonse (19

where the sum from either denominator represents a discrete
numerical integration. When the normalization is performed
first, as in the first expression, the computationally expensive
operations from Ty need to be performed only once in order
to obtain a single point from Ry. If, on the other hand, the
normalization was performed last (the second expression),
then the same computationally expensive operations need
to be performed unnecessarily many times during the norm
calculation by means of a discrete summation. Furthermore,
evaluating a trained network with many neural links (Fig. 3)
is also moderately expensive. For this reason, we trigger a
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fresh normalization only when a new value of E is regis-
tered, which is different from a previous one requested by
the user. This avoids the unnecessary repetitions of the same
summation from Eq. (15).

For a user-supplied value of a temporal proton beam
width o4, a normalized resolution function R, is smeared by
performing a discrete version of a convolution from Eq. (10).
This is the most significant bottle-neck of the numerical cal-
culations, since a naive convolution algorithm is computa-
tionally expensive. When users request single points of a
resolution function (one point at a time), little can be done
to speed up a convolution algorithm itself. In this case, our
class offers a possibility of a bilinear interpolation, which
will soon be described. However, significant algorithmic
improvements are available when a convolution needs to
be calculated (i.e. smearing needs to be performed) over a
grid of uniformly spaced A-points. While a naive convolution
algorithm is of excessive O(N?) computational complexity—
N being a number of required points—the famous fast Fou-
rier transform algorithm manages a job in only O(N log, N)
steps [36]. In this case, we employ an efficient Fast Fourier
Transform implementation from Ref. [37], keeping the over-
all computational workload at a manageable level.

Having thus obtained a smeared R,, only a kinematic
parameter transformation from Egs. (12) or (13) remains
to be performed whenever the resolution function forms
Ry or R is requested. If the evaluation of Ry over a grid
of uniformly spaced T-points is needed, the computational
advantages of the fast Fourier transform may again be relied
on. This is because the smeared R, may still be expressed as
a formal convolution. In fact, it is the original convolution
from Eq. (8). At the same time, due to a linearity between A
and T from Eq. (4), a uniform grid of T-points corresponds
to a uniform grid of A-points, allowing for the fast Fourier
transform to be applied. However, due to the n_TOF beam
spanning more than 10 orders of magnitude in neutron
energy, the measured time of flight spectra are spread over
the multiple orders of magnitude. Therefore, the isolethargic
spacing of T-points is commonly used, corresponding to an
isolethargic spacing of A-points (at a given E), for which a
regular Fast Fourier Transform algorithm can no longer be
used. On the other hand, whether a uniform of isolethargic
spacing of £-points is used (as is common practice), neither
corresponds to a uniform spacing of A-points, owing to a
nonlinear relationship from Eq. (11). To extend a computa-
tional efficiency to all cases, our class allows users to activate
the interpolation mode, allowing any form of the resolution
function to be evaluated by means of a bilinear interpolation
between pre-calculated resolution function points. Thus, a
smeared and normalized resolution function R, is evaluated
on a dense (E, 4) grid, allowing all the normalization and
smearing operations to be performed in a single go, without
later repetitions. This grid is isolethargically spaced over E

and, more importantly, uniformly spaced over A, so that the
Fast Fourier Transform can be taken full advantage of during
a smearing stage. The user-requested values of a resolution
function are calculated by first obtaining a required R, (E, 1')
point by a bilinear interpolation between four closest points
from a pre-calculated grid (a simple bilinear interpolation
algorithm may also be found in Ref. [37]). If necessary, a
kinematic parameter transformation from Egs. (12) or (13)
is then performed. For a sufficiently dense grid of pre-eval-
uated points it makes little numerical difference whether the
kinematic parameter transformation is performed before or
after the interpolation. However, prior to interpolation it has
to be executed at four grid-points; after the interpolation it
needs to be applied only once. We have selected a computa-
tionally efficient procedure.

4 Conclusion

We have provided an efficient way of parametrizing a reso-
lution function of a neutron beam from the n_TOF facility,
thus solving a long-standing problem of facilitating its use
among the users requiring a resolution function in their data
analyses. The method takes advantage of the machine learn-
ing techniques. Specifically, the resolution function is fitted
by training a multilayer feedforward neural network, due to
the fact that such networks act as the universal approxima-
tors. We have applied the method to the resolution function
for the first experimental area of the n_TOF facility, from the
third phase of its operation. In order to re-parametrize the
resolution function after any alteration—or to parametrize
a resolution function for a different experimental area—one
only needs to retrain a neural network by using the readily
available streamlined procedures. In this work, we have used
the neural network training capabilities of the TMulti-
LayerPerceptron class from a C++ based program-
ming package ROOT.

We have parametrized a single most appropriate form
of the resolution function—one dependent on the so-called
effective neutron moderation length, and unaffected by the
temporal spread of the primary proton beam from a neutron
production process at n_TOF. To efficiently reconstruct sev-
eral other resolution function forms in common use—those
dependent on the neutron time of flight or the so-called
reconstructed neutron energy—and to apply the effects of
the proton beam width, we have supplied a specialized C++
class. The class is immediately applicable to any reparam-
eterization of the resolution function, as the involved recon-
struction procedures are independent of the underlying net-
work structure. We have applied a reconstructed resolution
function to the pre-established neutron capture resonances
in the 3*Cr(n,y) reaction. We found an excellent agreement
with the preliminary experimental data from n_TOF, thus
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providing a proof-of-concept that the resolution function
parametrization proposed here is indeed feasible.

Unlike the resolution function for the first experimen-
tal area (EAR1) of the n_TOF facility, the one for the sec-
ond experimental area (EAR2) features a strong nontrivial
dependence on the sample position, that is, the distance
from a neutron source (a Pb spallation target). Therefore,
one could parametrize several separate EAR2 resolution
functions at different sample positions of interest. On the
other hand, a parametrization procedure proposed here could
be easily extended so as to include a sample position as an
additional input parameter, alongside a true neutron energy
and an effective neutron moderation length. By extending
(reoptimizing) the network structure, a comprehensive para-
metrization of the EAR2 resolution function—particularly
its variation along the neutron beam—could be achieved in
a single go, for a wide range of sample positions.

Appendix

Here, we address a visual appearance of norm violation in
applying a resolution function to a unit spectrum from Fig. 6.
Both transformed spectra—obtained by applying either the
raw or the fitted resolution function—seem to be systemati-
cally raised above unity, implying that the total number of
underlying counts might not be conserved. This is only a
visual artifact caused by using a nonuniform (in particular
isolethargic) binning, in combination with a logarithmic
scale used for the display.

We illustrate in broad stokes how the effect comes about.
We denote the differential spectra of counts from Eq. (7) as:

dN (&)
g

!
Ye(E') = w and Y€)= (16)
Although these spectra do not strictly correspond to a reac-
tion yield Y, using this notation will serve as a constant
reminder that a reaction yield transforms in the same way,
as in Eq. (14).

Let us consider a contribution to a single bin of a trans-
formed spectrum Y, (bin centered at £ and of width AE)
from a single bin of an original spectrum Y (bin centered
at E and of width AE). Let ¥, denote a discretized (histo-
grammed, bin-averaged) content of an original spectrum.
The total number of counts within a single bin at E equals
Yz(E)AE. Of all these counts, a resolution function transfers
to a target bin at & a relative amount of Ro(E, E)AE, with
R.(E, ) as a representative (appropriately averaged) value
of a resolution function around a point (E, E). Therefore, a
partial contribution to the counts ending in a target bin at £
equals Yo (E)R(E, )AEAE. A partial contribution Ve(E, £)
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to a discretized differential spectrum Y, needs to be normal-
ized by A&, hence:

Yp(E)R:(E, ) AE

E,&) = — )
V(. 6) > Re(E.&)Ae

a7

The numerator represents the transfered counts normalized
over a target bin width AE, while the denominator repre-
sents (in a simplified notation) a normalization of a discre-
tized resolution function. It may at first seem superfluous,
since its discretization must be such that Y, R¢(E, £)Ae = 1.
However, it will be a precise source of an apparent norm-
violating effect from Fig. 6, due to a nonuniform binning
resulting in a transfer of counts between the bins of unequal
widths AE and AE.

To demonstrate this in a simplified manner, we now
assume an isolethargic binning from Fig. 6, as it is regu-
larly used in displaying the data over the multiple orders of
magnitude. It consists of bin widths uniformly distributed
over the logarithmic scale, such that> A(In €) =const. For
sufficiently dense binning we may approximate a differential
identity d(Ine) = de/e by applying it to finite bin widths:
A(lng) = Ag/E. In that, we use the same binning for both
types of energy, so that:

AE A€

A? = E - (18)
with AZ = A(InE) = A(In€) as a constant value character-
izing a density of isolethargic binning. For further simplicity
we consider a resolution function that behaves as a Dirac 6
-function: Re(E, &) = 5[€ — E(E)). The effect of such reso-
lution function is a complete transfer of all counts from E
to a single target value of E'(E). In a context of binned data
from Eq. (16) a discretized version of such function may be
obtained from a normalization condition R¢(E, £)AEE = 1,
with & and A&z as a position and width of a single bin
that contains a target value &E), thus exhausting an entire
normalization sum. Using Eq. (17), an isolethargically
binned differential spectrum Y.(£) of counts transferred
between bins of generally different widths AE = EAZ and
A&z = EAZ receives a following contribution from a bin
at E:

ReB o)X EA 5 By = o). (1)

Ve(E, &) = ——=——
5 ¢e) Re(E,Ep) X EpAL &

2 Formally, a dimensionless argument should appear under a loga-
rithm, so we should use In(e/¢g,), with g, as an arbitrary carrier of
appropriate physical units (e.g. €, =1 eV). However, g, does not
affect a difference A In(e/¢,), so we use A(In ) for simplicity.
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Thus, a contribution to a differential isolethargic spectrum
of transferred counts is amplified by a factor E/Ez due to a
difference in bin widths.

Roughly speaking—for locally flat original spectrum ¥y
and a resolution function slowly varying with E—one can
expect a total spectrum Y, of transferred counts to be ampli-
fied by an average ratio (E/£), averaged over all neutron
energies E contributing to a transferred content at £. In
turn—with all these assumptions satisfied—this ratio may
be estimated by observing an average value (&) for a single
value of E (i.e. by observing a resolution function slice at a
given value of E). This allows us to approximate:

<E/g>at Eover E ~ E/<5>at E, over £* (20)

As a verification of this procedure, Fig. 7 shows a resolution
function slice at E = 1eV, obtained by a transformation from
Eq. (13). An average value of reconstructed neutron energies
is (€) = 0.998 eV. Hence, around 1 eV one might expect an
amplification of a transformed spectrum by a factor of 1.002,
which is perfectly consistent with Fig. 6.

We have justified a seemingly-systematic amplification of
a transformed differential spectrum due to a use of isolethar-
gic binning. This does not yet resolve the issue of a seeming
norm violation, i.e. of an apparent nonconservation of counts
from Fig. 6. The norm is indeed preserved. However, it does
not appear so due to a use of a logarithmic scale in display-
ing the data. An amplification from Eq. (18) for those bins
whose content is amplified may be summarized like this. As
illustrated in Fig. 7, a resolution function transfers the counts
from a higher value of E to the lower values of £ (at least on
average). Assuming approximately flat and isolethargically
binned original spectrum Y, this means that the counts from
wider AFE bins are, on average, transfered to narrower AE
bins. Renormalizing the transferred counts due to an average
decrease in bin width leads to an amplification of a differen-
tial spectrum. In that, most energy-bins lose some counts by
their transfer to lower £ vales, while obtaining some counts
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Fig.7 Slice through a fitted resolution function R¢(E, &) at E = 1eV,
obtained by a transformation from Eq. (13)

from higher E values, balancing a final amplification. How-
ever, this balanced loss-gain interplay no longer applies to
the high end of the spectrum, where the counts are mostly
lost due to no counts existing at higher energies. Therefore,
one should expect a slight increase in the greater part of the
spectrum to be compensated by a disproportionate decrease
at the high end of it. This is indeed the case. It is not appar-
ent in Fig. 6 because the high end of the spectrum is visu-
ally suppressed in logarithmic scale, while the fine binning
constrains the effect to the last few bins. To prove this claim,
Fig. 8 shows the same (appropriately renormalized) spec-
trum in a coarse binning of 1 bin per decade. A single spec-
trum is shown due to two spectra from Fig 6 (obtained from
the raw or the fitted resolution function) being indistinguish-
able in such coarse binning. An expected decrease in the
highest energy bin is clearly visible. It is perfectly sufficient
to compensate an increase in the rest of the spectrum, since
the last bin (from 10 MeV to 100 MeV) is 9 times wider than
an entire preceding part of the spectrum (below 10 MeV).
As the source of this decrease is hardly visible in Fig 6, an
inset shows a very densely binned closeup at the extreme
end of the spectrum, between 99 MeV and 100 MeV. A
decrease from approximate unity starts around 99.3 MeV
and at 99.6 MeV reaches approximate zero. This drastic
but narrow drop is altogether sufficient to compensate for a
slight systematic increase across the entire lower part of the
spectrum. We remind the reader that such narrow decrease is
obtained by using a proton-beam-width-free form of a reso-
lution function, as in Fig. 6. When using a realistic value of
or = 7ns, a decrease region is smeared from approximately
97 MeV to 102 MeV.

In conclusion, a visual estimation of an area below a
spectrum displayed in logarithmic scale may be mislead-
ing in appraising the true area (i.e. its norm), because
such visual area is given by the integral of the form
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S
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>+1.002
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Fig.8 Resolution function transformed spectrum from Fig. 6 in a
coarse binning of one bin per decade (the two spectra from Fig. 6 are
now indistinguishable). Inset shows, in very fine binning, a closeup of
a high end spectrum between 99 MeV and 100 MeV, perfectly com-
pensating for a slight systematic increase throughout the lower part of
the spectrum, thus justifying a norm preservation
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[ Y.(e"hd(log,y€') « [[€'Y,(¢')]de’. Evidently, the inte-
grand €'Y, (&) is very much affected relative to Y, (¢’) from a
true area expression / Y,(¢')de’, thus necessitating extreme
care in drawing certain types of conclusions from a loga-
rithmic plot.
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