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Abstract
This study addresses a challenge of parametrizing a resolution function of a neutron beam from the neutron time of flight 
facility n_TOF at CERN. A difficulty stems from a fact that a resolution function exhibits rather strong variations in shape, 
over approximately ten orders of magnitude in neutron energy. To avoid a need for a manual identification of the appropri-
ate analytical forms—hindering past attempts at its parametrization—we take advantage of the versatile machine learning 
techniques. Specifically, we parametrized it by training a multilayer feedforward neural network, relying on a key idea 
that such network acts as a universal approximator. The proof-of-concept is presented for a resolution function for the first 
experimental area of the n_TOF facility from the third phase of its operation. We propose an optimal network structure for 
a resolution function in question, which is also expected to be optimal or near-optimal for other experimental areas and for 
different phases of n_TOF operation. To reconstruct several resolution function forms in common use from a single para-
metrized form, we provide a practical tool in the form of a specialized C++ class encapsulating the computationally efficient 
procedures suited to the task.
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1  Introduction

Neutron time of flight facility n_TOF at CERN is a neutron 
production facility specializing in high-resolution measure-
ments of the neutron-induced reactions [1, 2]. In use since 
2001, it is currently in the fourth major phase of its opera-
tion [3, 4]. Currently, it features three distinct experimental 
areas. The first and the second experimental area—EAR1 [2] 
and EAR2 [5–7]—are well established and have long since 
been in use. A new NEAR [8–10] experimental area is the 
most recent feature, characterizing the latest n_TOF phase.

The facility relies on a 20 GeV proton beam from the 
CERN Proton Synchrotron, which irradiates a massive Pb 
spallation target as a primary source of a neutron beam. The 
pulsed proton beam—7 ns wide (RMS), with a minimum 
repetition period of 1.2 s—delivers an average of 8.5 × 1012 
protons per pulse. All experimental areas connect to the 
same spallation target. EAR1 is at a horizontal distance of 
approximately 185 m from the target, EAR2 is 20 m above 
the target, while NEAR is at the short horizontal distance 
of only 1.5 m from the target. The primary spallation prod-
ucts consist of an intense burst of �-rays, highly energetic 
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neutrons and the other neutral and charged particles. On 
their way toward EAR1 and EAR2 the charged particles are 
swept away by the strong electromagnets. No such magnet 
is used for NEAR because of its proximity to the target. 
Remaining ultrarelativistic spallation products reach the 
experimental areas as an intense burst known as the �-flash.

Initially, fast spallation neutrons are moderated by passing 
through a spallation target itself, through a layer of demin-
eralized water from a cooling system, and through an addi-
tional layer of borated water from a separate moderation sys-
tem around the target. This yields a white neutron spectrum 
spanning more than 10 orders of magnitude in energy, from 
thermal ( ∼10 meV) up to ∼1 GeV (up to the order of mag-
nitude, depending on the experimental area [11, 12]). The 
beam production, moderation, and transport mechanisms are 
well understood [13, 14].

An inevitable by-product of the neutron production and 
moderation is a finite spread of neutron arrival times at the 
measuring station from a given experimental area, even for 
the neutrons of the same kinetic energy. These arrival times 
are measured and treated as the neutron times of flight, rela-
tive to the single initial moment of the primary proton beam 
hitting the spallation target. There are three major effects 
causing the variations in times of flight: (1) a time width 
(7 ns RMS) of the primary proton beam; (2) a distribution of 
neutron moderation times inside the target-moderator assem-
bly; (3) a geometry of neutron transport along the beamline 
of finite length and breadth. This spread in neutron arrival 
times gives rise to a distribution known as the resolution 
function of the neutron beam. It causes the smearing of the 
experimental spectra in the cross section measurements 
based on the time of flight technique. As such, it must be 
accounted for during the analysis of the experimental time 
of flight data. At n_TOF the resolution function considera-
tions have been pursued ever since the initial conception of 
the facility [1] and continue to be followed since the start 
of its operation [15, 16] to the present day [2, 4, 5, 13, 14].

The only practical means of obtaining a detailed evalu-
ation of the resolution function are the dedicated simula-
tions of the neutron production and moderation. Because of 
the complexity of the target-moderator assembly at n_TOF, 
these simulations are so computationally intensive that their 
output needs additional post-processing by the so-called 
optical transport code [13, 14, 17]. The purpose of this code 
is to propagate the outgoing neutrons toward the measur-
ing station and to refine the raw statistics from the primary 
simulations in a meaningful and computationally efficient 
way. However, the final output of this code is still subject 
to statistical fluctuations, which are detrimental to the qual-
ity of the experimental data analysis. Furthermore, the raw 
numerical format of the resolution function is rather cumber-
some to deal with, requiring users to implement their own 
interpolation and smoothing procedures. For this reason, a 

smooth parametrization of the resolution function is highly 
desirable. A difficulty arises from the fact that the shape 
of the resolution function varies significantly over a wide 
energy range of the n_TOF beam, covering more than 10 
orders of magnitude in neutron energy. Attempts have been 
made in the past to identify the appropriate analytical form, 
as in Ref. [2]. But this form is a rather complicated function 
of two variables: the neutron energy and the time of flight. 
As such, it is exceedingly difficult to identify, only to be 
invalidated after each modification of the neutron production 
system at n_TOF, for example, after the occasional upgrades 
of the spallation target, moderator assembly, beam collima-
tion system, etc.

In this work, we present an efficient and streamlined 
method for a parametrization of the n_TOF resolution func-
tion by means of the machine learning techniques, together 
with a user-friendly interface for its evaluation. The interface 
consists of a dedicated C++ class centered around the neural 
network implementation from a widely used programming 
package ROOT [18]. As a proof-of-concept, we apply the 
methodology to the resolution function of the first experi-
mental area (EAR1) from the third phase (Phase-3) of the 
n_TOF operation (2014–2018 [19, 20]; Phase-4 is in effect 
since 2021 [3, 19], after a long shutdown in 2019–2021). 
We disclose an optimal network structure for this particular 
resolution function, which should also serve as the optimal 
or near-optimal structure for its reparametrization after any 
alteration of the resolution function, or even for the para-
metrization of a resolution function for a different experi-
mental area. As such, a repeated neural network training 
procedure requires very little user input regarding a selection 
of the appropriate parametrization form (realized through 
a selection of hyperparameters defining a neural network 
structure).

Section 2 establishes a basic formalism behind the reso-
lution function. Section 3 presents its parametrization by 
means of a trained neural network, together with a proce-
dure for a numerical reconstruction of the various resolu-
tion function forms from a single parametrization. Section 4 
summarizes the main conclusions of this work. The appen-
dix addresses an apparent norm violation in applying the 
resolution function.

2 � Resolution function formalism

A detailed resolution function formalism may be found in 
Ref. [21]. In this section, we summarize the most important 
points. For readability of expressions, we will use compact 
notations E and E for two different types of kinetic energy 
parameters. The first is a true neutron energy E . The second 
is a reconstructed neutron energy E , calculated from a rela-
tivistic kinetic energy relation:
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with m as the neutron mass, c as the speed of light in vac-
uum, L as a nominal neutron flight path (a length of an evac-
uated beamline) and, crucially, T as a neutron time of flight. 
Let us parameterize the neutrons irradiating the sample by 
some kinematic parameter X . For the moment, X may be 
a neutron time of flight T or a reconstructed energy E . Let 
dPX(E,X

�) be the probability for a neutron of true kinetic 
energy E to arrive at the sample with the specific value X′ 
of a selected parameter X , that is, with a value within an 
interval dX′ . By definition, the resolution function RX(E,X

�) 
is a differential quantity:

It is normalized such that:

The time of flight T is the most natural variable for a resolu-
tion function, due to it being directly measured in the time 
of flight experiments. However, both T and E are somewhat 
inconvenient for a comprehensive representation of a resolu-
tion function for two reasons. One is that E closely follows 
a true neutron energy E, thus also affecting T via Eq. (1). 
As a consequence, the mean values of resolution functions 
RE and RT , at given E , are closely dependent on E. This is 
inconvenient for the neutron beams spanning multiple orders 
of magnitude in energy, as the relevant portion of a resolu-
tion function is “stretched out” in both directions throughout 
the parameter space. This is clearly shown in Fig. 1, which 
shows both forms RT (E,T

�) and RE(E, E
�) of the same resolu-

tion function.
The other reason for a cumbersome nature of RT and RE 

is the fact that the neutron time of flight directly depends on 
a neutron flight path L, that is, on a sample distance from a 
neutron source, which often changes between experiments. 
Thus, with every change of L, both RT and RE should be 
recalculated from the start. Therefore, it would be highly 
desirable to introduce an alternative kinematic parameter 
satisfying the following requirements: (1) its span of values 
over the entire range of neutron energies is weakly depend-
ent on E, being localized around some meaningful value; 
(2) a resolution function in this parameter is independent of 
a trivial scaling1 with L, making it representative only of a 
neutron production process and of the nontrivial, physically 
meaningful effects of L; (3) preferably, a new parameter 

(1)E = mc2

{[
1 −

(
L

cT

)2
]−1∕2

− 1

}
,

(2)RX(E,X
�) ≡ dPX(E,X

�)

dX�
.

(3)∫
∞

−∞

RX(E,X
�)dX� = 1 for every E.

should have at least approximate physical interpretation, 
rather than just being an artificial mathematical transfor-
mation. This parameter has long since been identified as 
an effective moderation length � . The idea is to separate 
the time of flight of monoenergetic neutrons—that fluctu-
ates owing to the statistical nature of a neutron production 
and transport process—into a contribution from a nominal 
flight path L and a “corrective” contribution � , encoding the 
effects of fluctuations:

(4)vET = L + �,
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Fig. 1   (Color online) Resolution function for the first experimental 
area (EAR1) of the n_TOF facility from the third phase (Phase-3) 
of its operation. Top (a): a form RT (E,T

�) dependent on the neutron 
time of flight T. Bottom (b): a form RE(E, E

�) dependent on the recon-
structed neutron energy E

1  A dependence on L always has a trivial component owing to the 
scaling of T with L. However, a change in L may also affect a resolu-
tion function in nontrivial ways owing to the physical effects, such as 
the beam diffraction along the neutron flight path (see, for example, a 
short discussion around Eq. (5) from Ref. [21]). While the resolution 
function for EAR1 shows only the trivial scaling with L, the one for 
EAR2 is strongly dependent on L in a nontrivial way [17]. This fully-
trivial dependence for EAR1 is only approximate, as the resolution 
function is in principle always affected by a nontrivial component. 
However, a very long flight path toward EAR1 (185  m) suppresses 
the nontrivial effects of the sample position, which was experimen-
tally confirmed by dedicated resonance measurements.
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with vE as a true neutron speed upon leaving a neutron 
source (a spallation target). At this point, we introduce the 
following expression:

because it is relevant here and will be useful in subsequent 
calculations. It represents a standard relativistic factor 
�� = v�∕c for neutrons of kinetic energy � . Thus, a true neu-
tron speed from Eq. (4) is given by a true neutron energy as 
vE = c�E.

It should be noted that the effective moderation length � 
is not the real path length of a neutron inside a spallation 
target, for multiple reasons: (1) a neutron inside a spallation 
target does not propagate the entire time with speed vE ; (2) 
production of separate neutrons is initiated at different initial 
moments owing to a finite time spread of the proton beam 
irradiating a spallation target, while the time of flight T for all 
neutrons corresponding to the same proton pulse is measured 
relative to a unique, fixed moment; (3) even after leaving the 
spallation target, a contribution to the total T from a neutron 
propagation inside an evacuated beamline is not necessarily 
L∕vE . This may be because a neutron is emitted at some slight 
angle � relative to the beamline axis, making a real flight path 
L∕ cos � . It may also scatter off the beamline walls, which 
increases its flight path and alters its speed.

Figure 2 shows a resolution function R�(E, �
�) dependent on 

the effective moderation length. The top form ( �T = 0 ) does 
not take into account the time width �T of the primary proton 
beam (explained later), and perfectly corresponds to the earlier 
forms from Fig. 1. For convenience, we immediately show 
a resolution function smeared by the proton beam RMS of 
�T = 7 ns, which will soon be elaborated.

We now have a set of three kinematic parameters to be 
found in common use: X ∈ {T , E, �} . The transformation of a 
resolution function between these parameters follows from a 
conservation of probability:

It is shown in Ref. [21] that the resolution function trans-
forms a differential spectrum of counts NE(E

�) dependent on 
a true neutron energy into a differential spectrum of counts 
NX(X

�) dependent on a selected kinematic parameter as:

(5)�� =

√
�(� + 2mc2)

� + mc2
,

(6)RT (E, T
�) |dT �| = RE(E, E

�) |dE�| = R�(E, �
�) |d��|.

(7)
dNX(X

�)

dX�
= ∫

∞

0

dNE(E
�)

dE�
RX(E

�,X�)dE�.

3 � Resolution function parametrization 
by means of machine learning

3.1 � Resolution function fitting

It was shown in Ref. [17] that the raw resolution function 
(obtained by the optical code) can not be used for a reli-
able resonance analysis. The reason is that the residual 
statistical fluctuations from the computationally intensive 
FLUKA+MNCP simulations of the neutron production and 
transport through the spallation target are not negligible rela-
tive to the fluctuations in the experimental data. Thus, using 
the raw resolution function in the analysis of the experimen-
tal data artificially and unnecessarily increases the involved 
statistical uncertainties. (Examples of smearing the initially 
smooth spectra by the raw resolution function may be found 
in later Figs. 5 and 6.) Clearly, a smoothed form of the res-
olution function is necessary, so as to avoid this adverse 
effect. It is also highly desirable that the smoothed form be 
efficiently parameterized, that is, that it is more compact 
than just a densely interpolated resolution function matrix 
filled with the values of a smoothed function (a matrix such 
as those from Figs. 1 and 2).
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Fig. 2   (Color online) A resolution function R�(E, �
�) depend-

ent on the effective neutron moderation length � . The top form  (a) 
corresponds to those from Fig.  1, coming directly from the 
FLUKA+MNCP simulations of the neutron production and transport. 
In the subsequent sections—starting with Eq.  (10)—denoted by R� . 
The bottom form (b), smeared by the proton beam width �T = 7 ns, 
corresponds to the real experimental situation and is later denoted 
as R�
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One way of proceeding would be to identify an analyti-
cal parametrization of the entire resolution function matrix. 
An example of such parametrization for a resolution func-
tion of EAR1 from Phase-1 of the n_TOF operation can 
be found in Ref. [2]. However, such an analytical form is 
difficult to identify and may no longer be appropriate when 
the alterations are introduced to the neutron production pro-
cess. For example, the replacement of a spallation target 
between Phase-1 and Phase-2 of the n_TOF operation [4] 
notably affected the shape of a resolution function, render-
ing previous parametrization invalid. Furthermore, a resolu-
tion function for EAR2 differs from the one for EAR1 and 
requires its own dedicated parametrization. To avoid a tedi-
ous manual identification of new analytical forms, we take 
advantage of the machine learning techniques, in particular 
of the deep feedforward neural networks. The idea stems 
from a fact that the multilayer feedforward neural networks 
act as the universal approximators, capable of approximating 
any sufficiently well behaved function to any desired degree 
of accuracy [22, 23]. In other words, such networks can be 
thought of as “black box” fitting functions capable of mod-
eling any function of practical importance. The application 
of neural networks to this task is a part of ongoing efforts to 
introduce the machine learning techniques into a widespread 
practice at n_TOF [24–26]. The possibility of applying the 
convolutional neural networks in unfolding the effects of 
the resolution function is also being investigated, with very 
promising results on the horizon [27].

We demonstrate the proof-of-concept by fitting a resolu-
tion function of EAR1, from Phase-3 of the n_TOF opera-
tion. To this end, we used the neural network training capa-
bilities of the TMultiLayerPerceptron class [28] 
from root. Using root allows for a seamless integration of 
the end result (a trained neural network) within a vast major-
ity of the data analysis codes from n_TOF. We provide a 
basic example of the code usage among the openly available 
data files [29].

Our goal is to fit a single form of a resolution function 
(either RT , RE or R� ) and reconstruct all other forms from 
this single fit by applying the appropriate transformations. 
This will ensure a perfect consistency between all forms of 
a resolution function, which would not necessarily be satis-
fied by fitting each form separately. Because of the described 
advantages of the R� representation (a uniformity of relevant 
� values and insensitivity to a nominal flight path L), it is an 
obvious choice for fitting.

There is another consideration to be taken into account, 
that will allow for a greater flexibility in reconstructing par-
ticular forms of a resolution function. The resolution func-
tions of the n_TOF facility (for different experimental areas) 
are affected by two separable contributions: (1) a neutron 
production and transport process inside a spallation target, 
as well as a neutron transport outside of it; and (2) a time 

distribution (a finite time width) of the primary proton beam 
from the CERN Proton Synchrotron irradiating the spalla-
tion target. The proton beam time distribution is Gaussian 
in shape with a standard deviation of �T = 7 ns. Let RT des-
ignate a resolution function in time of flight, without the 
effects of the proton beam width (as if �T = 0 ). RT is easily 
extracted from the raw results of the FLUKA+MNCP simu-
lations processed by an optical transport code. A resolu-
tion function RT affected by the proton beam width is then 
obtained by a simple convolution with a temporal proton 
beam profile (a normalized Gaussian):

On account of a linear relationship between T and � from 
Eq. (4), a representation R� of a resolution function affected 
by a proton beam width may still be expressed as a convolu-
tion of a resolution function R� with an instantaneous proton 
beam, and a �-equivalent of a temporal beam profile. From 
Eq. (4), it follows that the �-width of this profile is dependent 
on a true neutron energy, as ��(E) = vE�T . Using Eq. (5) this 
dependence can be expressed as:

Thus, the required convolution takes the following form:

Equations (6) and (10) constitute all the transformation rules 
required for reconstructing any desired form of a resolution 
function from a proton-beam-width-free form R� . Therefore, 
we apply a neural network fitting precisely to this, which is 
the most convenient representation R� . The arguments E and 
�′ of a two-dimensional resolution function R�(E, �

�) play 
a role of the network inputs. A single scalar-function value 
for each pair of arguments plays a role of a single network 
output. However, since the true neutron energies E and the 
resolution function values R� span multiple orders of mag-
nitude, for reasons of numerical stability we take the loga-
rithms of these quantities for the input and output neutrons.

Here, we describe a neural network training and optimi-
zation procedure. First, the 450× 60 numerical resolution 
function matrix was constructed, spanning 450 uniformly 
distributed � values between −2 m and 7 m (2 cm steps), 
together with 60 isolethargically distributed log10 E val-
ues between 10−3 eV and 109 eV (five points per decade), 
creating a dataset of 27 000 points. It should be noted 
that the trained neural network is not be used for any kind 
of extrapolation outside of the range. It serves only as 
a smooth and compact parametrization throughout the 

(8)RT (E, T
�) =

1

�T

√
2� ∫

∞

−∞

RT (E, �) exp
�
−

(T �−�)2

2�2
T

�
d�.

(9)��(E) = c�E�T =

√
E(E + 2mc2)

E + mc2
c�T .

(10)R�(E, �
�) =

1

��(E)
√
2� ∫

∞

−∞

R�(E,Λ) exp
�
−

(��−Λ)2

2�2
�
(E)

�
dΛ.
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physically meaningful range, to be used only for the reso-
lution function reconstruction within a range entirely cov-
ered by the numerical matrix being fitted. Therefore, no 
cross-validation was required during a training procedure. 
In other words, all 27 000 entries could be used as training 
counts, without needing to reserve any of them for sepa-
rate testing. Thus the quality of the trained network could 
be entirely assessed against the training data. We used a 
few simple and effective steps: we observed the saturation 
rate of a loss function during the training, and visually 
compared the agreement between the final fit and the raw 
data (see Fig. 4, soon to be discussed). We also closely 
monitored a distribution of fitting residuals.

We tested several training methods available in the 
TMultiLayerPerceptron class, using a few prelimi-
nary network structures. We did not observe any signifi-
cant improvement– either in the computational efficiency 
or in the quality of the final results—over the default 
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method with 
the default hyperparameter values [28]. Hence, we opted 
for the default training parameters, employing the sigmoid 
activation function. In TMultiLayerPerceptron, the 
binary cross-entropy is the only loss function associated 
with the sigmoid activation function. By testing a range of 
network structures, we identified an optimal structure con-
sisting of three hidden layers, each composed of 15 neu-
rons. The optimal structure was easily identified. Less than 
three hidden layers do not seem to have enough flexibility 
to recover the quick variations in the resolution function, 
even with highly increased number of neurons. Aside from 
the visually obvious overfitting, more than three hidden 
layers do not bring any further improvement in the resolu-
tion function reconstruction. Once the optimal three-layer 
structure was identified, the number of neurons was varied 
in steps of five, in different combinations throughout the 
layers (e.g., 15-10-20). By searching for the simplest struc-
ture providing a satisfactory resolution function recon-
struction—without further improvement with an increas-
ing number of neutrons—we quickly converged upon the 
optimal 15-15-15 structure, which is shown in Fig. 3. The 
network inputs are x = ��∕(1 cm) and y = log10[E∕(1 eV)] , 
with a single output z = log10[R�∕(1 cm

−1)] . In general, 
the final state of a trained neural network depends on a 
particular training run owing to a random initialization of 
its weights and biases. With the optimal network structure 
and after a sufficient number of training epoch, these vari-
ations are essentially negligible. For the final training we 
used 104 training epochs. A single-threaded training on 
AMD Ryzen 7 7735HS (3.2 GHz) CPU under Linux Mint 
21.2 Cinnamon takes 1 min per 100 epochs, making a total 
of 100 min for 104 epochs.

Figure 4 compares a raw resolution function with a fitted 
one, for several values of a true neutron energy E . The effect 

Fig. 3   Neural network structure used for modeling a resolution 
function of EAR1 from Phase-3 of n_TOF operation. Each fully 
connected hidden layer consists of 15 neurons. The inputs corre-
spond to x = ��∕(1 cm) and y = log10[E∕(1 eV)] . A single output is 
z = log10[R�∕(1 cm
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Fig. 4   (Color online) Raw resolution function fitted by a single 
neural network, at neutron energies of (a)  40  meV, (b)  10  keV and 
(c) 2 MeV. A raw and fitted function correspond to an instantaneous 
proton beam irradiating a spallation target. A beam width of 7 ns does 
not have a notable effect below 10 keV
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of a proton beam width is negligible below �� = 1 cm. As 
per Eq. (9), a time width of �T = 7 ns implies an equivalent 
energy limit of E = 10 keV (corresponding, for EAR1 flight 
path of L = 180 m, to the times of flight below 0.13 ms). 
Hence, at lower neutron energies the proton beam width of 
7 ns does not have any significant effect upon the resolution 
function. For this reason a resolution function smeared by 
means of a numerical convolution from Eq. (10) is shown 
only at energies higher than 10 keV.

3.2 � Numerical resolution function reconstruction

To reconstruct the resolution function forms RT  and RE 
smeared by a proton beam width, one relies on the trans-
formation rules from Eq. (6). In the general case, a smeared 
resolution function R� should first be obtained from an 
unsmeared fit R�—by means of Eq. (10)—and only then 
should a required transformation from Eq. (6) be applied. 
The reason is this. Combining Eqs. (1) and (4) yields a non-
linear relation between E and �:

Because of this nonlinearity, the transformation between an 
unsmeared resolution function RE and a smeared RE can no 
longer be expressed as a formal convolution, which bears 
upon the questions of computational complexity in apply-
ing a smearing transformation. We address these questions 
in Sect. 3.3.

Because of a simple relation between � and T from 
Eq. (4), a transformation rule for RT from Eq. (6) involves a 
very simple derivative d�∕dT = vE , yielding:

with �E being defined by Eq. (5). A transformation for RE 
is slightly more complex. By first obtaining �(E) and d�∕dE 
from Eq. (11), we obtain:

where �(E) = L(�E∕�E − 1) . By construction, these transfor-
mations preserve a norm of a resolution function.

We use a transformed resolution function from Eq. (13) 
to demonstrate the effect upon and an agreement with the 
n_TOF experimental data. Figure 5 shows two selected reso-
nances from a recent measurement of the 53Cr(n,� ) reaction 
in EAR1 [30]. Although the measurement was performed 
during n_TOF Phase-4, for presentation purposes, we use 
here a resolution function from Phase-3 as a first approxi-
mation of the resolution function from Phase-4. The plot 
shows a resolution function-free reaction yield—manually 

(11)E = mc2

{[
1 −

(vE
c

L

L + �

)2
]−1∕2

− 1

}
.

(12)RT (E, T
�) = c�E × R�(E, c�ET

� − L),

(13)RE(E, E
�) =

Lm2c4

(E� + mc2)3

�E

�3
E�

× R�

[
E, L

(
�E

�E�
− 1

)]
,

constructed by appropriately scaling a neutron capture cross 
section from ENDF/B-VIII.0 database [31]—together with 
two resolution resolution function-smeared yields, compared 
with the experimental data. (The preliminary experimental 
data are shown, as their analysis is not yet complete. The 
region between the resonances is still affected by the residual 
background contributions, not all of which have yet been 
subtracted. The relative background contribution inside the 
resonances is negligible for visual purposes, so that a mean-
ingful visual comparison with the ENDF resonances can 
still be made.) Smeared yields have been obtained either 
by applying the raw, unparameterized resolution function 
or the one fitted by the neural network. Reaction yields (Y) 
transform precisely as the differential spectra from Eq. (7) 
and have been obtained by a transformation:

wherein YE is a yield constructed from ENDF/B-VIII.0 
data. Resolution function RE was calculated according to 
Eq. (13), starting either from the raw or the fitted resolu-
tion function R� . The difference between two smeared yields 
illustrates our initial claim that the raw resolution function 
should not be used in the accurate data analysis, as it unnec-
essarily introduces artificial fluctuations into otherwise 
smooth data, or enhances the existing ones.

A simple and comprehensive insight into effects of 
applying either the raw or the smoothed resolution func-
tion may be obtained by applying them to a constant spec-
trum of unit height. Figure 6 shows these results for the 
E-spectrum spanning 10 orders of magnitude in neutron 
energy, completely analogously to a resonant yield from 
Fig. 5. A detrimental effect of applying the raw resolution 
function is immediately evident, as opposed to a smooth 
end result from the fitted resolution function. In that, 
Fig. 6 shows the result of applying a resolution function 

(14)YE(E
�) = ∫

∞

0

YE(E
�)RE(E

�, E�)dE�,

  [keV]�
11.6 11.8 12 12.2 12.4 12.6 12.8 13 13.2

Yi
el

d

4�10

3�10

2�10
Experiment
No RF
Raw RF
Fitted RF

Fig. 5   (Color online) Selected resonances from n_TOF measurement 
of the 53Cr(n,� ) reaction, compared to the reaction yields based on 
ENDF/B-VIII.0 data, with of without the resolution function having 
been applied
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unsmeared by a proton beam width (as if �T = 0 ). The 
reason is that smearing the raw resolution function 
smooths a high energy part, thus obscuring the statis-
tical fluctuations inherent in the simulated data, while 
these fluctuations are precisely what we are trying to 
exhibit here. Other than smoothing a high energy part of 
the spectrum obtained with the raw resolution function, a 
realistic value of �T = 7 ns does not affect the shape of the 
folded spectra in a visible way (as they are displayed in 
Fig. 6). It should be taken into account that the data from 
Fig. 6 are displayed in 100 bins per decade. With finer 
binning, the fluctuations from the raw resolution func-
tion become even more pronounced. We note in passing 
that the n_TOF data are often analyzed in thousands of 
bins per decade (see, for example, Refs.[32, 33] for 5000 
bins per decade applied to the neutron capture data or 
Ref. [34] for 2000 bins per decade applied to the fission 
data). While the resonance plots like those from Fig. 5 
show how the underlying data are locally deformed by a 
resolution function, a plot from Fig. 6 clearly shows that 
the global data trend may also be affected.

The resolution function affected spectra from Fig. 6 
seem to be systematically higher than unity. This might 
suggest that the application of a resolution function vio-
lates a norm preservation, that is, it violates a conserva-
tion of the total number of underlying counts. This viola-
tion is only apparent and is addressed in the Appendix.

3.3 � Resolution function class

To facilitate the use of a newly fitted resolution function 
at n_TOF, we have written a self-contained C++ class [35], 
serving as a simple interface for the evaluation of any 
desired resolution function form ( R� , RT or RE ), starting 

from a fitted proton-beam-width-free form R∗
�
 (not neces-

sarily normalized, as denoted by asterisk). The class serves 
the following functions: 

(1)	 initialization of a trained neural network ( → R
∗
�
);

(2)	 numerical normalization ( → R�);
(3)	 smearing due to a proton beam width ( → R�);
(4)	 transformation to alternative forms ( → RT or RE);
(5)	 computationally efficient implementation of the above 

operations.

The class houses the parameters of a trained neural network 
and initializes a TMultiLayerPerceptron object, 
allowing for a direct evaluation of a fitted, proton-beam-
width-free (unnormalized) resolution function R∗

�
.

In evaluating any form of a resolution function, the first 
operation to be performed is a numerical normalization such 
that ∫ ∞

−∞
R�(E, �

�)d�� = 1 , for any required value of E . The 
reason for performing a normalization at all is the fact that 
a fitting function without a priori imposed norm does not 
necessarily preserve a norm of the fitted data. Therefore, 
even if already-normalized data were fitted, the end result 
needs to be a posteriori normalized. This also allows for 
the unnormalized raw data to be fitted, which may improve 
the quality of the fit, since the raw data may be unnormal-
ized not only by a constant factor, but by an arbitrary E
-dependent function, affecting a global two-dimensional 
trend that the trained neural network needs to reproduce. 
The reason for a numerical normalization to be performed 
first is a computational efficiency, owing to the fact that both 
the convolutional smearing from Eq. (10) and the kinematic 
parameter transformations from Eqs. (12) and (13) preserve 
the norm. To clarify the point, let �X denote a total transfor-
mation (a composition of smearing and kinematic parameter 
transformation operations) acting on unnormalized R∗

�
 so 

as to produce an unnormalized, smeared and transformed 
resolution function R∗

X
 , in a sense: R∗

X
= �X{R

∗
�
} . Owing 

to a norm preserving property of all operations from �X , a 
normalized resolution function can be obtained in two ways:

where the sum from either denominator represents a discrete 
numerical integration. When the normalization is performed 
first, as in the first expression, the computationally expensive 
operations from �X need to be performed only once in order 
to obtain a single point from RX . If, on the other hand, the 
normalization was performed last (the second expression), 
then the same computationally expensive operations need 
to be performed unnecessarily many times during the norm 
calculation by means of a discrete summation. Furthermore, 
evaluating a trained network with many neural links (Fig. 3) 
is also moderately expensive. For this reason, we trigger a 

(15)RX(E,X
�) = �X

�
R∗

�
[E,��(X�)]

∑
Λ R∗

�
(E,Λ)ΔΛ

�
=

�X{R
∗
�
[E,��(X�)]}

∑
x �X{R
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[E,�(x)]}Δx
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Fig. 6   (Color online) Effect of applying either the raw or the fitted 
resolution function to a unit spectrum spanning 10 orders of magni-
tude in neutron energy. The data are shown in 100 bins per decade. 
A level of fluctuations introduced by the raw resolution function 
increases with denser binning
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fresh normalization only when a new value of E is regis-
tered, which is different from a previous one requested by 
the user. This avoids the unnecessary repetitions of the same 
summation from Eq. (15).

For a user-supplied value of a temporal proton beam 
width �T , a normalized resolution function R� is smeared by 
performing a discrete version of a convolution from Eq. (10). 
This is the most significant bottle-neck of the numerical cal-
culations, since a naive convolution algorithm is computa-
tionally expensive. When users request single points of a 
resolution function (one point at a time), little can be done 
to speed up a convolution algorithm itself. In this case, our 
class offers a possibility of a bilinear interpolation, which 
will soon be described. However, significant algorithmic 
improvements are available when a convolution needs to 
be calculated (i.e. smearing needs to be performed) over a 
grid of uniformly spaced �-points. While a naive convolution 
algorithm is of excessive O(N2) computational complexity—
N being a number of required points—the famous fast Fou-
rier transform algorithm manages a job in only O(N log2 N) 
steps [36]. In this case, we employ an efficient Fast Fourier 
Transform implementation from Ref. [37], keeping the over-
all computational workload at a manageable level.

Having thus obtained a smeared R� , only a kinematic 
parameter transformation from Eqs. (12) or (13) remains 
to be performed whenever the resolution function forms 
RT or RE is requested. If the evaluation of RT over a grid 
of uniformly spaced T-points is needed, the computational 
advantages of the fast Fourier transform may again be relied 
on. This is because the smeared RT may still be expressed as 
a formal convolution. In fact, it is the original convolution 
from Eq. (8). At the same time, due to a linearity between � 
and T from Eq. (4), a uniform grid of T-points corresponds 
to a uniform grid of �-points, allowing for the fast Fourier 
transform to be applied. However, due to the n_TOF beam 
spanning more than 10 orders of magnitude in neutron 
energy, the measured time of flight spectra are spread over 
the multiple orders of magnitude. Therefore, the isolethargic 
spacing of T-points is commonly used, corresponding to an 
isolethargic spacing of �-points (at a given E), for which a 
regular Fast Fourier Transform algorithm can no longer be 
used. On the other hand, whether a uniform of isolethargic 
spacing of E-points is used (as is common practice), neither 
corresponds to a uniform spacing of �-points, owing to a 
nonlinear relationship from Eq. (11). To extend a computa-
tional efficiency to all cases, our class allows users to activate 
the interpolation mode, allowing any form of the resolution 
function to be evaluated by means of a bilinear interpolation 
between pre-calculated resolution function points. Thus, a 
smeared and normalized resolution function R� is evaluated 
on a dense (E, �) grid, allowing all the normalization and 
smearing operations to be performed in a single go, without 
later repetitions. This grid is isolethargically spaced over E 

and, more importantly, uniformly spaced over � , so that the 
Fast Fourier Transform can be taken full advantage of during 
a smearing stage. The user-requested values of a resolution 
function are calculated by first obtaining a required R�(E, �

�) 
point by a bilinear interpolation between four closest points 
from a pre-calculated grid (a simple bilinear interpolation 
algorithm may also be found in Ref. [37]). If necessary, a 
kinematic parameter transformation from Eqs. (12) or (13) 
is then performed. For a sufficiently dense grid of pre-eval-
uated points it makes little numerical difference whether the 
kinematic parameter transformation is performed before or 
after the interpolation. However, prior to interpolation it has 
to be executed at four grid-points; after the interpolation it 
needs to be applied only once. We have selected a computa-
tionally efficient procedure.

4 � Conclusion

We have provided an efficient way of parametrizing a reso-
lution function of a neutron beam from the n_TOF facility, 
thus solving a long-standing problem of facilitating its use 
among the users requiring a resolution function in their data 
analyses. The method takes advantage of the machine learn-
ing techniques. Specifically, the resolution function is fitted 
by training a multilayer feedforward neural network, due to 
the fact that such networks act as the universal approxima-
tors. We have applied the method to the resolution function 
for the first experimental area of the n_TOF facility, from the 
third phase of its operation. In order to re-parametrize the 
resolution function after any alteration—or to parametrize 
a resolution function for a different experimental area—one 
only needs to retrain a neural network by using the readily 
available streamlined procedures. In this work, we have used 
the neural network training capabilities of the TMulti-
LayerPerceptron class from a C++ based program-
ming package root.

We have parametrized a single most appropriate form 
of the resolution function—one dependent on the so-called 
effective neutron moderation length, and unaffected by the 
temporal spread of the primary proton beam from a neutron 
production process at n_TOF. To efficiently reconstruct sev-
eral other resolution function forms in common use—those 
dependent on the neutron time of flight or the so-called 
reconstructed neutron energy—and to apply the effects of 
the proton beam width, we have supplied a specialized C++ 
class. The class is immediately applicable to any reparam-
eterization of the resolution function, as the involved recon-
struction procedures are independent of the underlying net-
work structure. We have applied a reconstructed resolution 
function to the pre-established neutron capture resonances 
in the 53Cr(n,� ) reaction. We found an excellent agreement 
with the preliminary experimental data from n_TOF, thus 
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providing a proof-of-concept that the resolution function 
parametrization proposed here is indeed feasible.

Unlike the resolution function for the first experimen-
tal area (EAR1) of the n_TOF facility, the one for the sec-
ond experimental area (EAR2) features a strong nontrivial 
dependence on the sample position, that is, the distance 
from a neutron source (a Pb spallation target). Therefore, 
one could parametrize several separate EAR2 resolution 
functions at different sample positions of interest. On the 
other hand, a parametrization procedure proposed here could 
be easily extended so as to include a sample position as an 
additional input parameter, alongside a true neutron energy 
and an effective neutron moderation length. By extending 
(reoptimizing) the network structure, a comprehensive para-
metrization of the EAR2 resolution function—particularly 
its variation along the neutron beam—could be achieved in 
a single go, for a wide range of sample positions.

Appendix

Here, we address a visual appearance of norm violation in 
applying a resolution function to a unit spectrum from Fig. 6. 
Both transformed spectra—obtained by applying either the 
raw or the fitted resolution function—seem to be systemati-
cally raised above unity, implying that the total number of 
underlying counts might not be conserved. This is only a 
visual artifact caused by using a nonuniform (in particular 
isolethargic) binning, in combination with a logarithmic 
scale used for the display.

We illustrate in broad stokes how the effect comes about. 
We denote the differential spectra of counts from Eq. (7) as:

Although these spectra do not strictly correspond to a reac-
tion yield Y, using this notation will serve as a constant 
reminder that a reaction yield transforms in the same way, 
as in Eq. (14).

Let us consider a contribution to a single bin of a trans-
formed spectrum YE (bin centered at Ē and of width ΔE ) 
from a single bin of an original spectrum YE (bin centered 
at Ē and of width ΔE ). Let ȲE denote a discretized (histo-
grammed, bin-averaged) content of an original spectrum. 
The total number of counts within a single bin at Ē equals 
ȲE(Ē)ΔE . Of all these counts, a resolution function transfers 
to a target bin at Ē a relative amount of R̄E(Ē, Ē)ΔE , with 
R̄E(Ē, Ē) as a representative (appropriately averaged) value 
of a resolution function around a point (Ē, Ē) . Therefore, a 
partial contribution to the counts ending in a target bin at Ē 
equals ȲE(Ē)R̄E(Ē, Ē)ΔEΔE . A partial contribution YE(Ē, Ē) 

(16)YE(E
�) ≡ dNE(E

�)

dE�
and YE(E

�) ≡ dNE(E
�)

dE
�

.

to a discretized differential spectrum ȲE needs to be normal-
ized by ΔE , hence:

The numerator represents the transfered counts normalized 
over a target bin width ΔE , while the denominator repre-
sents (in a simplified notation) a normalization of a discre-
tized resolution function. It may at first seem superfluous, 
since its discretization must be such that 

∑
𝜀 R̄E(Ē, 𝜀̄)Δ𝜀 = 1 . 

However, it will be a precise source of an apparent norm-
violating effect from Fig. 6, due to a nonuniform binning 
resulting in a transfer of counts between the bins of unequal 
widths ΔE and ΔE.

To demonstrate this in a simplified manner, we now 
assume an isolethargic binning from Fig. 6, as it is regu-
larly used in displaying the data over the multiple orders of 
magnitude. It consists of bin widths uniformly distributed 
over the logarithmic scale, such that2 Δ(ln �) =const. For 
sufficiently dense binning we may approximate a differential 
identity d(ln �) = d�∕� by applying it to finite bin widths: 
Δ(ln 𝜀) = Δ𝜀∕𝜀̄ . In that, we use the same binning for both 
types of energy, so that:

with Δ� = Δ(lnE) = Δ(ln E) as a constant value character-
izing a density of isolethargic binning. For further simplicity 
we consider a resolution function that behaves as a Dirac �
-function: RE(E, E

�) = �[E� − Ẽ(E)] . The effect of such reso-
lution function is a complete transfer of all counts from E 
to a single target value of Ẽ(E) . In a context of binned data 
from Eq. (16) a discretized version of such function may be 
obtained from a normalization condition R̄E(Ē, ĒĒ)ΔEĒ = 1 , 
with ĒĒ and ΔEĒ as a position and width of a single bin 
that contains a target value �E(Ē) , thus exhausting an entire 
normalization sum. Using Eq.  (17), an isolethargically 
binned differential spectrum ȲE(Ē) of counts transferred 
between bins of generally different widths ΔE = ĒΔ� and 
ΔEĒ = ĒĒΔ� receives a following contribution from a bin 
at Ē:

(17)YE(Ē, Ē) =
ȲE(Ē)R̄E(Ē, Ē)ΔE∑

𝜀 R̄E(Ē, 𝜀̄)Δ𝜀
.

(18)Δ� =
ΔE

Ē
=

ΔE

Ē
,

(19)YE(Ē, ĒĒ) =
R̄E(Ē, ĒĒ) × ĒΔ�

R̄E(Ē, ĒĒ) × ĒĒΔ�
ȲE(Ē) =

Ē

ĒĒ

ȲE(Ē).

2  Formally, a dimensionless argument should appear under a loga-
rithm, so we should use ln(�∕�0) , with �0 as an arbitrary carrier of 
appropriate physical units (e.g. �0 = 1 eV). However, �0 does not 
affect a difference Δ ln(�∕�0) , so we use Δ(ln �) for simplicity.
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Thus, a contribution to a differential isolethargic spectrum 
of transferred counts is amplified by a factor Ē∕ĒĒ due to a 
difference in bin widths.

Roughly speaking—for locally flat original spectrum ȲE 
and a resolution function slowly varying with E—one can 
expect a total spectrum ȲE of transferred counts to be ampli-
fied by an average ratio ⟨E∕E⟩ , averaged over all neutron 
energies E contributing to a transferred content at E . In 
turn—with all these assumptions satisfied—this ratio may 
be estimated by observing an average value ⟨E⟩ for a single 
value of E (i.e. by observing a resolution function slice at a 
given value of E). This allows us to approximate:

As a verification of this procedure, Fig. 7 shows a resolution 
function slice at E = 1 eV, obtained by a transformation from 
Eq. (13). An average value of reconstructed neutron energies 
is ⟨E⟩ ≈ 0.998 eV. Hence, around 1 eV one might expect an 
amplification of a transformed spectrum by a factor of 1.002, 
which is perfectly consistent with Fig. 6.

We have justified a seemingly-systematic amplification of 
a transformed differential spectrum due to a use of isolethar-
gic binning. This does not yet resolve the issue of a seeming 
norm violation, i.e. of an apparent nonconservation of counts 
from Fig. 6. The norm is indeed preserved. However, it does 
not appear so due to a use of a logarithmic scale in display-
ing the data. An amplification from Eq. (18) for those bins 
whose content is amplified may be summarized like this. As 
illustrated in Fig. 7, a resolution function transfers the counts 
from a higher value of E to the lower values of E (at least on 
average). Assuming approximately flat and isolethargically 
binned original spectrum YE , this means that the counts from 
wider ΔE bins are, on average, transfered to narrower ΔE 
bins. Renormalizing the transferred counts due to an average 
decrease in bin width leads to an amplification of a differen-
tial spectrum. In that, most energy-bins lose some counts by 
their transfer to lower E vales, while obtaining some counts 

(20)⟨E∕E⟩at E,over E ≈ E∕⟨E⟩at E, over E.

from higher E values, balancing a final amplification. How-
ever, this balanced loss-gain interplay no longer applies to 
the high end of the spectrum, where the counts are mostly 
lost due to no counts existing at higher energies. Therefore, 
one should expect a slight increase in the greater part of the 
spectrum to be compensated by a disproportionate decrease 
at the high end of it. This is indeed the case. It is not appar-
ent in Fig. 6 because the high end of the spectrum is visu-
ally suppressed in logarithmic scale, while the fine binning 
constrains the effect to the last few bins. To prove this claim, 
Fig. 8 shows the same (appropriately renormalized) spec-
trum in a coarse binning of 1 bin per decade. A single spec-
trum is shown due to two spectra from Fig 6 (obtained from 
the raw or the fitted resolution function) being indistinguish-
able in such coarse binning. An expected decrease in the 
highest energy bin is clearly visible. It is perfectly sufficient 
to compensate an increase in the rest of the spectrum, since 
the last bin (from 10 MeV to 100 MeV) is 9 times wider than 
an entire preceding part of the spectrum (below 10 MeV). 
As the source of this decrease is hardly visible in Fig 6, an 
inset shows a very densely binned closeup at the extreme 
end of the spectrum, between 99 MeV and 100 MeV. A 
decrease from approximate unity starts around 99.3 MeV 
and at 99.6 MeV reaches approximate zero. This drastic 
but narrow drop is altogether sufficient to compensate for a 
slight systematic increase across the entire lower part of the 
spectrum. We remind the reader that such narrow decrease is 
obtained by using a proton-beam-width-free form of a reso-
lution function, as in Fig. 6. When using a realistic value of 
�T = 7 ns, a decrease region is smeared from approximately 
97 MeV to 102 MeV.

In conclusion, a visual estimation of an area below a 
spectrum displayed in logarithmic scale may be mislead-
ing in appraising the true area (i.e. its norm), because 
such visual area is given by the integral of the form 
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Fig. 7   Slice through a fitted resolution function RE(E, E
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Fig. 8   Resolution function transformed spectrum from Fig.  6 in a 
coarse binning of one bin per decade (the two spectra from Fig. 6 are 
now indistinguishable). Inset shows, in very fine binning, a closeup of 
a high end spectrum between 99 MeV and 100 MeV, perfectly com-
pensating for a slight systematic increase throughout the lower part of 
the spectrum, thus justifying a norm preservation
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∫ Y�(�
�)d(log10 �

�) ∝ ∫ [��Y�(��)]d�� . Evidently, the inte-
grand ��Y�(��) is very much affected relative to Y�(��) from a 
true area expression ∫ Y�(�

�)d�� , thus necessitating extreme 
care in drawing certain types of conclusions from a loga-
rithmic plot.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s41365-​025-​01820-2.

Funding  Open access funding provided by CERN (European Organiza-
tion for Nuclear Research).

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 C. Rubbia, S. Andriamonje, D. Bouvet-Bensimon et al., A high 
resolution spallation driven facility at the CERN-PS to measure 
neutron cross sections in the interval from 1 eV to 250 MeV. 
(CERN/LHC/98-02 and CERN/LHC/98-02-Add.1, 1998), https://​
cds.​cern.​ch/​record/​363828. Accessed 14 March 2025

	 2.	 C. Guerrero, A. Tsinganis, E. Berthoumieux et al., Performance 
of the neutron time-of-flight facility n_TOF at CERN. Eur. Phys. 
J. A 49, 27 (2013). https://​doi.​org/​10.​1140/​epja/​i2013-​13027-6

	 3.	 N. Patronis, A. Mengoni, S. Goula et al., Status report of the 
n_TOF facility after the 2nd CERN long shutdown period. EPJ 
Tech. Instrum. 10, 13 (2023). https://​doi.​org/​10.​1140/​epjti/​
s40485-​023-​00100-w

	 4.	 R. Esposito, M. Calviani, O. Aberle et al., Design of the third-gen-
eration lead-based neutron spallation target for the neutron time-
of-flight facility at CERN. Phys. Rev. Accel. Beams 24, 093001 
(2021). https://​doi.​org/​10.​1103/​PhysR​evAcc​elBea​ms.​24.​093001

	 5.	 C. Weiß, E. Chiaveri, S. Girod et al., The new vertical neutron 
beam line at the CERN n_TOF facility design and outlook on the 
performance. Nucl. Instrum. Methods Phys. Res. A 799, 90–98 
(2015). https://​doi.​org/​10.​1016/j.​nima.​2015.​07.​027

	 6.	 N. Colonna, E. Chiaveri, F. Gunsing, The Second Beam-Line and 
Experimental Area at n_TOF: A New Opportunity for Challeng-
ing Neutron Measurements at CERN. Nucl. Phys. News 25(4), 
19–23 (2015). https://​doi.​org/​10.​1080/​10619​127.​2015.​10359​30

	 7.	 S. Barros, I. Bergström, V. Vlachoudis, C. Weiß, Optimization 
of n_TOF-EAR2 using FLUKA. J. Instrum. 10, P09003 (2015). 
https://​doi.​org/​10.​1088/​1748-​0221/​10/​09/​P09003

	 8.	 M. Ferrari, D. Senajova, O. Aberle et al., Design development 
and implementation of an irradiation station at the neutron time-
of-flight facility at CERN. Phys. Rev. Accel. Beams 25, 103001 
(2022). https://​doi.​org/​10.​1103/​PhysR​evAcc​elBea​ms.​25.​103001

	 9.	 N. Patronis, A. Mengoni, N. Colonna et al., The CERN n_TOF 
NEAR station for astrophysics- and application-related neutron 

activation measurements. (https://​arxiv.​org/​abs/​2209.​04443 [phys-
ics.ins-det], 2022), . Accessed 14 March 2025

	10.	 M.E. Stamati, P. Torres-Sánchez, P. Pérez-Maroto et al., The 
n_TOF NEAR station commissioning and first physics case. EPJ 
Web Conf. 284, 06009 (2023). https://​doi.​org/​10.​1051/​epjco​nf/​
20232​84060​09

	11.	 M. Barbagallo, C. Guerrero, A. Tsinganis et al., High-accuracy 
determination of the neutron flux at n_TOF. Eur. Phys. J. A 49, 
156 (2013). https://​doi.​org/​10.​1140/​epja/​i2013-​13156-x

	12.	 M. Sabaté-Gilarte, M. Barbagallo, N. Colonna et al., High-accu-
racy determination of the neutron flux in the new experimental 
area n_TOF-EAR2 at CERN. Eur. Phys. J. A 53, 210 (2017). 
https://​doi.​org/​10.​1140/​epja/​i2017-​12392-4

	13.	 S. Lo Meo, M.A. Cortés-Giraldo, C. Massimi et al., GEANT4 
simulations of the n_TOF spallation source and their benchmark-
ing. Eur. Phys. J. A 51, 160 (2015). https://​doi.​org/​10.​1140/​epja/​
i2015-​15160-6

	14.	 J. Lerendegui-Marco, S. Lo Meo, C. Guerrero et al., Geant4 sim-
ulation of the n_TOF-EAR2 neutron beam: Characteristics and 
prospects. Eur. Phys. J. A 52, 100 (2016). https://​doi.​org/​10.​1140/​
epja/​i2016-​16100-8

	15.	 C. Coceva, M. Frisoni, M. Magnani, A. Mengoni, On the figure 
of merit in neutron time-of-flight measurements. Nucl. Instrum. 
Methods Phys. Res. A 489, 346–356 (2002). https://​doi.​org/​10.​
1016/​S0168-​9002(02)​00903-8

	16.	 C. Borcea, P. Cennini, M. Dahlfors et al., Results from the com-
missioning of the n_TOF spallation neutron source at CERN. 
Nucl. Instrum. Methods Phys. Res. A 513, 524–537 (2003). 
https://​doi.​org/​10.​1016/​S0168-​9002(03)​02072-2

	17.	 V. Vlachoudis, M. Sabate-Gilarte, V. Alcayne et al., On the resolu-
tion function of the n_TOF facility: a comprehensive study and 
user guide. (n_TOF-PUB-2021-001, 2021), https://​cds.​cern.​ch/​
record/​27644​34. Accessed 14 March 2025

	18.	 R. Brun, F. Rademakers, ROOT - An object oriented data analy-
sis framework. Nucl. Instrum. Methods Phys. Res. A 389, 81–86 
(1997). https://​doi.​org/​10.​1016/​S0168-​9002(97)​00048-X

	19.	 C. Domingo-Pardo, O. Aberle, V. Alcayne et al., The neutron 
time-of-flight facility n_TOF at CERN recent facility upgrades 
and detector developments. J. Phys: Conf. Ser. 2586, 012150 
(2023). https://​doi.​org/​10.​1088/​1742-​6596/​2586/1/​012150

	20.	 E. Dupont, N. Otuka, D. Rochman et al., Overview of the dissemi-
nation of n_TOF experimental data and resonance parameters. 
EPJ Web Conf. 284, 18001 (2023). https://​doi.​org/​10.​1051/​epjco​
nf/​20232​84180​01

	21.	 P. Žugec, N. Colonna, M. Sabate-Gilarte et al., A direct method 
for unfolding the resolution function from measurements of neu-
tron induced reactions. Nucl. Instrum. Methods Phys. Res. A 875, 
41–50 (2017). https://​doi.​org/​10.​1016/j.​nima.​2017.​09.​004

	22.	 K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward 
networks are universal approximators. Neural Netw. 2, 359–366 
(1989). https://​doi.​org/​10.​1016/​0893-​6080(89)​90020-8

	23.	 M. Leshno, V.Y. Lin, A. Pinkus, S. Schocken, Multilayer feed-
forward networks with a nonpolynomial activation function can 
approximate any function. Neural Netw. 6, 861–867 (1993). 
https://​doi.​org/​10.​1016/​S0893-​6080(05)​80131-5

	24.	 V. Babiano-Suárez, J. Lerendegui-Marco, J. Balibrea-Correa 
et al., Imaging neutron capture cross sections: i-TED proof-of-
concept and future prospects based on Machine-Learning tech-
niques. Eur. Phys. J. A 57, 197 (2021). https://​doi.​org/​10.​1140/​
epja/​s10050-​021-​00507-7

	25.	 P. Žugec, M. Barbagallo, J. Andrzejewski et al., Machine learning 
based event classification for the energy-differential measurement 
of the natC(n, p) and natC(n, d) reactions. Nucl. Instrum. Methods 
Phys. Res. A 1033, 166686 (2022). https://​doi.​org/​10.​1016/j.​nima.​
2022.​166686

https://doi.org/10.1007/s41365-025-01820-2
http://creativecommons.org/licenses/by/4.0/
https://cds.cern.ch/record/363828
https://cds.cern.ch/record/363828
https://doi.org/10.1140/epja/i2013-13027-6
https://doi.org/10.1140/epjti/s40485-023-00100-w
https://doi.org/10.1140/epjti/s40485-023-00100-w
https://doi.org/10.1103/PhysRevAccelBeams.24.093001
https://doi.org/10.1016/j.nima.2015.07.027
https://doi.org/10.1080/10619127.2015.1035930
https://doi.org/10.1088/1748-0221/10/09/P09003
https://doi.org/10.1103/PhysRevAccelBeams.25.103001
https://arxiv.org/abs/2209.04443
https://doi.org/10.1051/epjconf/202328406009
https://doi.org/10.1051/epjconf/202328406009
https://doi.org/10.1140/epja/i2013-13156-x
https://doi.org/10.1140/epja/i2017-12392-4
https://doi.org/10.1140/epja/i2015-15160-6
https://doi.org/10.1140/epja/i2015-15160-6
https://doi.org/10.1140/epja/i2016-16100-8
https://doi.org/10.1140/epja/i2016-16100-8
https://doi.org/10.1016/S0168-9002(02)00903-8
https://doi.org/10.1016/S0168-9002(02)00903-8
https://doi.org/10.1016/S0168-9002(03)02072-2
https://cds.cern.ch/record/2764434
https://cds.cern.ch/record/2764434
https://doi.org/10.1016/S0168-9002(97)00048-X
https://doi.org/10.1088/1742-6596/2586/1/012150
https://doi.org/10.1051/epjconf/202328418001
https://doi.org/10.1051/epjconf/202328418001
https://doi.org/10.1016/j.nima.2017.09.004
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/S0893-6080(05)80131-5
https://doi.org/10.1140/epja/s10050-021-00507-7
https://doi.org/10.1140/epja/s10050-021-00507-7
https://doi.org/10.1016/j.nima.2022.166686
https://doi.org/10.1016/j.nima.2022.166686


Machine learning based parametrization of the resolution function for the first experimental… Page 13 of 13  235

	26.	 A. Sanchez-Caballero, V. Alcayne, D. Cano-Ott et al., A case 
study on deep learning applied to capture cross section data analy-
sis. EPJ Web Conf. 284, 16001 (2023). https://​doi.​org/​10.​1051/​
epjco​nf/​20232​84160​01

	27.	 T. Cavagna, n_TOF Transport Code Update and RF Deconvolu-
tion. (CERN-STUDENTS-Note-2023-101, 2023), https://​cds.​cern.​
ch/​record/​28690​67. Accessed 14 March 2025

	28.	 CERN ROOT: TMultiLayerPerceptron Class Reference, https://​
root.​cern/​doc/​master/​class​TMult​iLaye​rPerc​eptron.​html. Accessed 
14 March 2025

	29.	 P. Žugec, M. Sabate Gilarte, M. Bacak et al., Resolution function 
data for n_TOF EAR1 Phase-3. V2. (Science Data Bank, 2025), 
https://​doi.​org/​10.​57760/​scien​cedb.​j00186.​00697. Accessed 23 
May 2025

	30.	 P. Pérez-Maroto, C. Guerrero, A. Casanovas et al., Description and 
outlook of the 50,53Cr(n, γ ) cross section measurement at n_TOF 
and HiSPANoS. EPJ Web Conf. 294, 01004 (2024). https://​doi.​
org/​10.​1051/​epjco​nf/​20242​94010​04

	31.	 D.A. Brown, M.B. Chadwick, R. Capote et al., ENDF/B-VIII.0: 
The 8 th major release of the nuclear reaction data library with 
CIELO-project cross sections, new standards and thermal scat-
tering data. Nucl. Data Sheets 148, 1–142 (2018). https://​doi.​org/​
10.​1016/j.​nds.​2018.​02.​001

	32.	 K. Fraval, F. Gunsing, S. Altstadt et al., Measurement and analysis 
of the 241Am(n, γ ) cross section with liquid scintillator detectors 

using time-of-flight spectroscopy at the n_TOF facility at CERN. 
Phys. Rev. C 89, 044609 (2014). https://​doi.​org/​10.​1103/​PhysR​
evC.​89.​044609

	33.	 F. Mingrone, C. Massimi, G. Vannini et al., Neutron capture cross 
section measurement of 238 U at the CERN n_TOF facility in the 
energy region from 1 eV to 700 keV. Phys. Rev. C 95, 034604 
(2017). https://​doi.​org/​10.​1103/​PhysR​evC.​95.​034604

	34.	 V. Michalopoulou, A. Stamatopoulos, M. Diakaki et al., Measure-
ment of the neutron-induced fission cross section of 230 Th at the 
CERN n_TOF facility. Phys. Rev. C 108, 014616 (2023). https://​
doi.​org/​10.​1103/​PhysR​evC.​108.​014616

	35.	 P. Žugec, User guide through Resolution Function class. (n_
TOF-PUB-2025-001, 2025), http://​cds.​cern.​ch/​record/​29267​18. 
Accessed 14 March 2025

	36.	 J.W. Cooley, J.W. Tukey, An algorithm for the machine calculation 
of complex Fourier series. Math. Comput. 19, 297–301 (1965). 
https://​doi.​org/​10.​1090/​S0025-​5718-​1965-​01785​86-1

	37.	 W.H. Press, S.A. Teukolsky, W.T. Vetterling et al., Numerical 
recipes in C: the art of scientific computing, 3rd edn. (Cambridge 
University Press, Cambridge New York Melbourne Madrid Cape 
Town Singapore São Paulo, 2007), pp. 132–133, 608–620

https://doi.org/10.1051/epjconf/202328416001
https://doi.org/10.1051/epjconf/202328416001
https://cds.cern.ch/record/2869067
https://cds.cern.ch/record/2869067
https://root.cern/doc/master/classTMultiLayerPerceptron.html
https://root.cern/doc/master/classTMultiLayerPerceptron.html
https://doi.org/10.57760/sciencedb.j00186.00697
https://doi.org/10.1051/epjconf/202429401004
https://doi.org/10.1051/epjconf/202429401004
https://doi.org/10.1016/j.nds.2018.02.001
https://doi.org/10.1016/j.nds.2018.02.001
https://doi.org/10.1103/PhysRevC.89.044609
https://doi.org/10.1103/PhysRevC.89.044609
https://doi.org/10.1103/PhysRevC.95.034604
https://doi.org/10.1103/PhysRevC.108.014616
https://doi.org/10.1103/PhysRevC.108.014616
http://cds.cern.ch/record/2926718
https://doi.org/10.1090/S0025-5718-1965-0178586-1

	Machine learning based parametrization of the resolution function for the first experimental area of the n_TOF facility at CERN
	Abstract
	1 Introduction
	2 Resolution function formalism
	3 Resolution function parametrization by means of machine learning
	3.1 Resolution function fitting
	3.2 Numerical resolution function reconstruction
	3.3 Resolution function class

	4 Conclusion
	Appendix
	References




