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Abstract

Solving the Dirac equation has played an important role in many areas of fundamental physics. In this work, we present the
Dirac equation solver DiracSVT, which solves the Dirac equation with scalar, vector, and tensor nuclear potentials in spherical
coordinate space. The shooting method was used with a Runge—Kutta 4 integration scheme. The potentials are parameterized
in a Woods—Saxon form, which reproduce well the known single-particle states around all doubly magic nuclei and can be
applied to study the shell evolution of exotic nuclei. The code can be easily extended to the study of other systems, including

atomic, hadron, and molecular physics.
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1 Introduction

The Dirac equation is a fundamental relativistic wave equa-
tion in quantum mechanics that describes the behavior
of spin-1/2 massive particles. It is a generalization of the
Schrodinger equation to account for relativistic effects. Solv-
ing Dirac equations with various potentials has played an
important role in many areas of fundamental physics, includ-
ing atomic, nuclear, hadron, and molecular systems. The
Dirac equation has been studied in the context of nuclear
physics, especially within the framework of relativistic
mean-field theories [1, 2] and in explaining various single-
particle effects [3—5]. One of the most important aspects of
contemporary nuclear physics is the study of the shell evolu-
tion of exotic nuclei, which refers to the potentially dramatic
changes in the shell structure as one approaches driplines
with excessive protons or neutrons [6]. The evolution of the
shell structure, which is crucial for our understanding of
nuclear stability as well as the origin of heavy elements, can
be induced by the isospin dependence of the spin and ten-
sor potentials in various mean-field model approaches. The
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Dirac equation is unique for such studies because it provides
not only insight into the origin of spin—orbital potentials as
the competition between scalar and vector potentials [1] but
also the possibility of adding a tensor potential at the mean-
field level. This study focuses on numerically solving the
Dirac equation with scalar, vector, and tensor potentials. We
hope that it can be a useful tool for studying the structure
of exotic nuclei, as well as other quantum systems where
spin—orbit and tensor effects can be important.

Dirac equation solvers are not available in the nuclear phys-
ics community, except for the Fortran subroutine embedded
in relativistic mean-field codes [7, 8]. Previous works in other
areas on solving the Dirac equation focused particularly on
the vector potential and utilized various schemes. In Ref. [9]
the finite element method is applied to solve the Dirac equa-
tion, which is validated to converge to within floating point
solutions. The problems inherent in the numerical solutions of
the Dirac equation owing to spurious solutions are discussed
in Ref. [10], where a stabilized version of the finite element
method is also applied. The mapped Fourier method was used
to numerically address the Dirac equation in. [11]. In Ref.
[12] evolutionary algorithms are used and demonstrated in a
case study of a muon orbiting the 2°Pb nucleus. The work of
Ref. [13] also focuses on studying muonic atoms and applies
the shooting method to integrate the Dirac equation. Moreo-
ver, a power series expansion method was employed in Ref.
[14]. The numerical aspects of solving the Dirac equation are
discussed in Ref. [15]. Other important methods include the
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Woods—Saxon basis [16], complex momentum representation
[17], analytic continuation in the coupling constant (ACCC)
[18], and Green’s function methods [19, 20].

Our work solves the Dirac equation in spherical coordinate
space by utilizing the shooting method with a Runge—Kutta
4 integration scheme. We have prepared the code, named
DiracSVT, in three different popular programming languages:
Python, MATLAB, and C++. These are gradually becoming
the staple in physics, replacing Fortran as a more modern,
versatile, and modular alternative. We include scalar, vector,
and tensor potentials of an isospin-dependent Wood—Saxon
form in the Dirac equation [21]. The code is used to solve the
available single-particle states around doubly magic nuclei,
including '°0, 4°Ca, “8Ca, “°Ni, 1°0Sn, 132Sn, and 2°Pb. The
same potential can also reproduce the shell structures of many
open nuclei well over the entire nuclear chart.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the formulation of the Dirac equation with
corresponding potentials and boundary conditions. Section 3
describes our method and the algorithm for solving the equa-
tion. Section 4 presents our results, and Sect. 5 discusses these
results and presents an outlook on the possibilities for future
extensions to this work.

2 Theory

We limit ourselves to spherical symmetry. The Dirac Hamil-
tonian H with a scalar potential S, a vector potential V, and a
tensor potential U can be given by (see, e.g., [22, 23])

H=a-p+pm+S)+V—ipa-rU. D

The corresponding Dirac equation for the radial wave func-
tion can be expressed as

(% + 5o U(r)> 2.(r) = (E +m— AWM., 2
(i kg U(r)>f (r) = —(E — m = £(r)g,(r) 3)
dr r * o

where f and g are the two components of the radial wave
function and x = —((+ 1) for j=1+ % and x =1 for

. 1 . . .
j=1- 7 For convenience, we define our potentials as

Y=V +Sand A =V — S as the sum of the vector and sca-
lar potentials. The above equations can also be rewritten as

gp=Cm+B-AY, +(U=5)g. @

fl=CB+Dg + (= -V, )
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where the binding energy B was obtained from the total
energy E = B+ m.

The potentials can be parameterized in a standard
Woods—Saxon shape (see, e.g., [21, 24])

Z0 n

.n(p)

z= T R, + VCoulomb’ (6)
I+ew

A0 n(

:n(p)

A= T Ry + Veoutomb: @)
l+eas

where R, ; =r, ;A" and a are radius and diffuseness
parameters, respectively. Naturally, the Coulomb potential
term exists only for protons.

Quantities %), and A, are defined for the three
possible scenarios. In Scenario 1, A, is assumed to be
directly proportional to X, with a scaling factor. Scenario
2 does not explicitly consider the dependence of the poten-
tial on the neutron excess. Scenario 3, on the other hand,
describes dependence via a spin—orbit-dependent term J,.
For further details, please refer to Ref. [21]). For each of
the three different scenarios, where n and p stand for neu-
tron and proton states, respectively,

Top = Vo(146°22), (®)
To = Vo(1- 51%2) ©)
and Ay, is defined for Scenario 1 as

Ay = =1, (10
for Scenario 2 as

Ay ==V, (11

which assumes no isospin dependence, and for Scenario 3 as

12)

AOsp = _AV0<1 - 5s0N_Z)’

A
N—Z)

Bog = =AVo(1+8,°55).

1 13)

The parameters V), 8, 8, 4, a, = a;, ry, and ry  are fitted to

data for the three scenarios separately. In the simplest case,

the diffuseness parameters a, and a; are assumed identical.
The Coulomb potential is defined as

c% r>r,
Veoutomb = c ) (14)

2r3 rs To>
-

where
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= = a ~ 0.007297.
¢ 4reyhc ’ as)

In addition, we have a tensor potential defined similarly in a
Woods—Saxon shape:

U =—7%g (16)

l+e

The boundary condition for the bound states is defined sepa-
rately for limiting cases of small (r — 0) and large (r — o0)
radii. For small », we have

_ —B+X 1+2 k<0

f= a0< k >€ : 17
aye' k>0
aget! k<0

8= ao(%)e’“ k>0 ° (18)

where ¢ denotes the radial variable in the small radius
regime. For the boundary conditions in the case where
r — oo, it is assumed that both wave functions approach
zero in this limit.

To handle unbound neutron resonance states with positive
energy, we implement for large r similar boundary condi-
tions to Eq. (26), as in [25]:

B [Cji(r) + Dy, (N1Y;,.
YT\ G () 4 Dy, (1Y )

where j and y indicate the spherical Bessel functions
I'=j+ % and j, = —j,—j +1,...j. Here, Y, ;. are the spinor
spherical harmonics, as detailed in [26]. In the 1D case, one
of the two components of the spinor spherical harmonics
vanishes, and the solution is reduced to two components f

and g. As such the boundary conditions for r — oo become

f = Cjz(”) + Dyl(r), (19)
B2 + 2B

g= —”B+’"[ij<r) + Dy, ("), 20)
+2m

The low-lying proton resonance states can be well approxi-
mated as bound states, as most of these states are pretty
long-lived with negligibly small imaginary parts. The
boundary condition should be refined as a Coulomb Hankel
function for higher-lying proton resonance states.

{Guess initial values}

Y

Solve VP, shooting in
and out

v

Solve IVP with small
change in initial
values

2

Develop change of
solution vs change of
values into linearized

system

v

Solve with Newton-
Rhapson

2

Change values to
reflect new solution

Return solution

Fig. 1 Flowchart of the DiracSVT solver scheme. IVP stands for ini-
tial value problem

3 Method

We attempt to combine an inner solution and an outer solu-
tion in what is known as the shooting method. The shooting
method is a numerical scheme suitable for boundary-value
problems. More specifically, the shooting method is a tech-
nique for solving a boundary-value problem by transforming
it into an initial value problem (IVP). The method guesses
the values of the boundary conditions at one end of the inter-
val and then integrates the differential equation from that end
using an ordinary differential equation solver. The estimated
boundary values were adjusted until the solution satisfied
the boundary conditions at the other end of the interval. No
verification was performed for the number of nodes.

@ Springer



234 Page4of7

A.W. Kiessling et al.

Table 1 Parameters used in the
code for Scenario 1 (yielding

Scenario Vo MeV)

A Fy MeV~h a,ags MeV~)) Ts MeV~

the values in Tables 2 and 3) 1 —61.44

13.36 0.006515 0.003638 0.004867

In our case, we employed shooting in two directions: out-
ward and inward. We used the Runge—Kutta 4 integration
scheme as the ordinary differential equation solver. This is
akin to the methods employed in earlier studies, such as [27].

The outward shooting solution originated from the origin.
However, setting » = 0 causes a singularity in the model. To
circumvent this, we set the inner point at a small distance
r = € from the origin. As for initial values, the boundary
conditions from Egs. (17-20) are used. It should be noted
that an initial guess for the binding energy is required. For
simplicity, we used the experimental values with some vari-
ations for the example cases studied below.

Inward shooting originates from an asymptotic distance
from the origin » = co0. As an approximation, we consider
a point that we set to a relatively large distance from the
origin. We used the boundary conditions for a large r in this
shooting case.

Both the outward and inward solutions can be used inde-
pendently, as is. However, there is a major tendency for the
calculated solutions of f{r) and g(r) to blow up and become
numerically unstable. Thus, the matching concept of the
shooting method is presented. We only solve from each
direction up to a certain "middle" point which we denote as
r,, (note, this point does not have to be halfway in distance)
where the two solutions are then matched.

To define the difference A(B,, a,)) between the two solu-
tions at the matching point, there are a few options [15].
These include simple direct differences

Af(By, ap) = fou(rm) = fin(rm)s (1)

Ag(BO7 aO) = gout(rm) - gin(rm)’ (22)
as well as relative average value-based differences

z(fout(rm) _ﬁn(rm))
Jour(Tm) + fin(r)

Af(By, ag) = (23)

2(8out(rm) = &in(rm))

Ag(By,ay) = .
0>70 gout(rm) + gin(rm)

(24)

Here, B and q, are the shooting parameters that must be
adjusted such that the inside and outside Dirac spinor solu-
tions match at the chosen matching radius r,,, that is, the
direct differences in the equations above yield zero. After
the trial, simple direct differences were found to converge
most consistently and were used in the solver.

@ Springer

To drive the differences to zero, we must define the
change in the difference in terms of the parameters. We do
this by linearizing through a first order Taylor expansion

OAS OAf

Af + E(Bnew - Bold) + a_ao(ao,new - aO,old) = O’ (25)
0Ag 0Ag

Ag + a_B(Bnew - Bold) + a_ao(ao,new - aO,old) =0. (26)

This defines a linear system, which we solve iteratively using
Newton’s root-finding method. The resultant solution is con-
sidered to be the correct solution after satisfactory conver-
gence, that is, the change in the solution becomes insignifi-
cant with further iterations. The overall solution method is
shown in Fig. 1.

The implementation of the numerical solver is written in
three different languages: Python, MATLAB, and C++. It
was developed and tested mainly for Linux, and the experi-
ments were run on both Intel i7-2600 @3.40 GHz and AMD
Ryzen 5 3600 @3.60 GHz. It is worth noting that the sensi-
tivity of the solution to the precision of the system solution
is very high in some cases. Changing the float precision can
induce convergence to very different solutions. Similarly,
merely varying the underlying linear algebra routine version
(e.g., BLAS/LAPACK) also resulted in similar problems. As
such, while the solver has been tested on different architec-
tures, discrepancies remain regarding convergence that the
reader should be aware of, resulting from different back-end
libraries being utilized.

4 Numerical results

For example, we calculated the single-particle energies of
all known single-particle states and single-hole states around
the doubly magic nuclei for all three scenarios and all three
language frameworks in which the solver is written. The
binding energies against which the parameters were fitted
were extracted from the experimental nuclear data. The
parameters were fitted to minimize the RMS error between
the numerical solutions and the experimental single-particle
energies, as specified in Tables 2 and 3, so that they replicate
the energies of the spin—orbit partners. The tensor poten-
tial is not included in the fitting of the parameters given
below because of the scarcity of experimental data that can
fully constrain its strength. Its effect is expected to be more
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Table 2 Experimental and calculated single-particle energies for neu-
trons around doubly magic nuclei. These energies were retrieved after
a single run for the same input and scenario, using the three codes.
Outliers and discrepancies are kept for illustrative purposes, and the
details are discussed in the text

Nucleus State Experimen- MATLAB B PythonB C+4++ B
tal B

160 Ip;,, ~15.66 —15.8374 —15.8374 —15.8374
160 lds,, —4.14 —6.3839 —6.3839 —6.38387
160 28y, 327 —3.8203 —3.8203 —3.82027
40Ca lds, 2239 —21.6375 —21.6375 —21.6375
40Ca 28y, ~18.19 —15.0881 —15.0881 —15.0881
40Ca 1d;, —15.64 —15.8337 —15.8337 —15.8337
40Ca 1f;, —8.36 —9.4823 —9.4823 —9.48232
40Ca 2p;,, —5.84 —4.4926 —4.4926 —4.49257
40Ca 2pyp, 42 —2.7787 —2.7787  —2.77869
40Ca Ifs, —1.56 —3.9294 —3.9294 —3.92936
BCa lds,, —15.61 —19.6859 —19.6859 —19.6859
8Ca 28y, ~I12.55 —14.1267 —14.1267 —14.1267
BCa ldy,, —12.53 —15.1527 —15.1527 —15.1527
“Ca 1f;,, -10 —8.7770 =8.7770  —8.77702
BCa 2p;,, 4.6 —4.2724 —4.2724 —4.27242
8Ca 2p,,, —2.86 —2.9638 —2.9638 —2.96378
BCa Ifs,, —1.2 —4.2483 —4.2483 —4.2483
SNi 1f;,, —l6.64 —16.0488 —16.0488 —16.0488
SNi 2p;;, 1025 —9.1691 —9.1691 —9.16906
SNi Ifs, —9.48 —10.0171 —10.0171 —10.0171
S6Ni 2py, 7913 —7.2951 —7.2951 —7.29513
1005 2p;, ~18.38 —16.9797 —16.9797 —16.9797
1005 lgg,, —17.93 —17.4011 —17.4011 —17.4011
1005 2ds, —11.13 —9.2034 —9.2034 —9.20345
1005 lg;, —10.93 —11.1915 —11.1915 —11.1915
100§ 38y, 793 —6.3580 —6.3580 —6.3580
100§ lhy;,, 8.6 =7.6706 =7.6706 —7.6706
1005 2d;, 92 —6.7376 —6.7376  —6.7376
1328n 1g7,, —9.75 —10.9534 —10.9534 —10.9534
1329n 2ds,, —8.97 —8.6191 —8.6191 —8.6191

1329n 38, TT7.64 —6.4832 —6.4832 —6.4832
1328n lhy,,, —7.54 —7.1366 —7.1366 —7.136

1328n 2d;, —7.31 —7.0763 =7.0763 —7.0763
1328 26, 247 - —1.3848 -

1328 3ps, ~L57 —0.2211 —16.8335 —16.8335
1328n lhy,, —0.86 —2.8903 —2.8903 —2.8903
1328n 265, 042 0.2823 —19.1602 —19.1602
208pp lhy,, —11.4 —12.4667 —12.4667 —12.4667
208ph 2f;,, —9.81 —9.3144 —9.3144 93144
208pp lij3,, —9.24 —9.7762 —9.7762  —9.7762
208ph 3p;p 8.26 —6.3349 —6.3349 —6.3349
208pp 265, 7194 —7.3793 —7.3793 —7.3793
208pp 3pipp 737 —8.0489 —23.3705 —6.0271

Table 2 (continued)

Nucleus State Experimen- MATLAB B PythonB C++ B
tal B

208pp 289, 73.94 —2.5108 —2.5108 —2.5108
208ph li,, —3.16 —5.2959 —5.2959 —5.2959
208pp s, 7251 —2.2689 —2.2689 -

208ph 3ds, 237 —0.2044 —16.6099 —16.6099
08py 45, 19 —0.1299 —14.2321 —14.2321
208pp 2g;, 144 —0.2843 —19.6005 —19.6005

significant as it approaches the neutron-rich nuclei around
the neutron dripline.

In Table 1, the fitted parameters are given for Scenario
1, which were used to obtain the values in Tables 2 and 3.
The difference between the scenarios relies on the value of
04 Scenario 2 is identical to Scenario 1 but takes 6., = 0
and Scenario 3 takes 6, = —o. The position was scaled by
1/hc, acquiring units of MeV~!, yielding a Coulomb barrier
in MeV as per Eq. 15.

Some of the results are listed in Tables 2 and 3 for com-
parison purposes. The solutions from the three different
code frameworks were identical within the numerical errors
and were in reasonable agreement with the experimentally
determined energies from Ref. [21]. The results for the three
codes with the same inputs are listed. In some rare cases,
one of the solvers can display a solution, while another
diverges (marked as in the tables). This seems likely to be
the result of different languages using various routines to
invert matrices. Moreover, the solver can sometimes con-
verge to the energy levels of different states (e.g., the proton
2d;, and 2f; , states in 2°®Pb). This artifact can be easily
spotted and is sensitive to the initial conditions and area of
integration. We did not correct for comparison purposes.
The convergence can be improved by slightly modifying the
initial value, matching radius, and maximal radius. The val-
ues in Tables 2 and 3 are given for initial guesses equal to
the experimental value for standardization. However, it may
not always be the most suitable choice. In the case of unsuc-
cessful convergence, this can be tweaked until the converged
value improves. For some outliers, the code converges to a
state with different nodes, which is easy to identify because
the calculated energy differs significantly from the desired
value.

The solver also captured the waveform solution of the
Dirac equation for the considered particle and state, as
shown in Fig. 2. In the present work, we focus on bound
states and very low-lying unbound states, as all quantities are
assumed to be real. The bound and unbound states appear
quite similar, except for the boundary conditions. This also
implies that the code is not yet suitable for handling wide
resonances.

@ Springer
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Table 3 Experimental and calculated single-particle energies for pro-
tons

Nucleus State Experimen- MATLAB B PythonB C+4++ B
tal B

160 lp,,, ~12.13 —11.9334 —11.9334 —11.9334
160 lds,, —0.6 —2.9170 —2.9170 —2.9170
160 28y, —0.11 —0.8547 —0.8547 —0.8547
160 ld;, 4.688 4.7575 4.7575 4.7575
40Ca lds;, —15.07 —14.1180 —14.1180 —14.1180
40Ca 28y, ~10.92 —7.7847 —7.7847 —7.7847
40Ca ld;, —8.33 —8.5334 —8.5334 —8.5334
40Ca 1f;, —1.09 —2.5333 —2.5333  —2.5333
40Ca 2p;,  0.69 1.5992 1.5992 1.5992
BCa lds;, —21.47 —22.4904 —22.4904 —22.4904
“Ca ld;, —16.18 —15.4556 —15.4556 —15.4556
BCa 28y, ~l6.1 —14.2643 —14.2643 —14.2643
8Ca 1f;,, =9.35 —10.5523 —10.5523 —10.5523
BCa 2p;, 6.44 —3.2336 —3.2336  —3.2336
8Ca 2p,,, —4.64 11.7435 —0.9598 11.7435
SNi If;, —7.17 —6.9046 —6.9046 —6.9046
SNi 2p;;, —0.69 —0.5831 —0.5831 —0.5831
SNi Ifs, 033 8.5469 8.5469 8.5469
SNi 2p,;, 041 1.0938 1.0938 1.0938
1005 Ifs,, =871 —7.0267 =7.0267 —7.0267
1005 2p3, 6.38 —4.5904 —4.5904 —4.5904
1008 2p,, —3.53 —3.0105 —3.0105 —3.0105
1005 lgg,, 292 —3.7950 —3.7950 —3.7950
100§ lgyp 39 1.9453 12.8860  12.8860
1328n 2p;, 1601 —14.1064 —14.1064 —14.1064
1328 lgy,, 1571 —18.0759 —18.0759 —18.0759
1325 1g;, 79.68 —10.0481 —10.0481 —10.0481
1325n 2ds;, —8.72 —6.9269 —6.9269 —6.9269
1328 2d;,, —6.97 —3.5858 - —28.5546
1328n 1hy, —6.89 —8.9825 —8.9825 —8.9825
208pp lgs, —12 —13.3095 —13.3095 —13.3095
208ph 2ds;, —9.82 —9.3826 —9.3826 —9.3826
208pp lhy;,, —9.36 —13.2378 —13.2378 —13.2378
208pp 2d;, —8.36 —6.7044 —6.7044  —28.4605
208pp 381, 8.01 —5.3560 —25.9307 —25.9307
208pp lhy,, —3.8 —5.7976 =5.7976  —5.7976
208pp 2f;,, 729 —1.6873 —1.6873  —27.3765
208pp lij3, 2.1 —5.5308 —5.5308 -

208pp 25, —0.97 2.0965 —20.8512 —20.8512
208ph 3ps;, —0.68 3.5255 —17.4631 —17.4631

5 Summary

We presented the Dirac equation solver DiracSVT, which
solves the Dirac equation in coordinate space with scalar,

@ Springer
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Fig.2 (Color online) Radial wave function for 160, with neutron hole
in state 1p; /,. The results from the three codes were indistinguishable.
The position was scaled by 1/%c, acquiring units of MeV ™!

vector, and tensor nuclear potentials. The code is written in
three different languages and uses the shooting method with
the Runge—Kutta 4 integration scheme. The above potentials
were parameterized in the Saxon form. We show that the
potential can reproduce the known single-particle states very
well around all the doubly magic nuclei. This code is freely
available in Ref. [28].
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