
Vol.:(0123456789)

Nuclear Science and Techniques (2025) 36:234 
https://doi.org/10.1007/s41365-025-01810-4

Numerical solution of the Dirac equation with scalar, vector, 
and tensor potentials

Alexander Wallén Kiessling1 · Daniel Karlsson1 · Yuxin Zhao2   · Mário Bettencourt Amaro1 · Chong Qi1 

Received: 18 November 2024 / Revised: 11 March 2025 / Accepted: 17 March 2025 / Published online: 9 October 2025 
© The Author(s) 2025

Abstract
Solving the Dirac equation has played an important role in many areas of fundamental physics. In this work, we present the 
Dirac equation solver DiracSVT, which solves the Dirac equation with scalar, vector, and tensor nuclear potentials in spherical 
coordinate space. The shooting method was used with a Runge–Kutta 4 integration scheme. The potentials are parameterized 
in a Woods–Saxon form, which reproduce well the known single-particle states around all doubly magic nuclei and can be 
applied to study the shell evolution of exotic nuclei. The code can be easily extended to the study of other systems, including 
atomic, hadron, and molecular physics.

Keywords  Dirac equation · Nuclear physics · Scalar · Vector and tensor potentials · Shell evolution

1  Introduction

The Dirac equation is a fundamental relativistic wave equa-
tion in quantum mechanics that describes the behavior 
of spin-1/2 massive particles. It is a generalization of the 
Schrödinger equation to account for relativistic effects. Solv-
ing Dirac equations with various potentials has played an 
important role in many areas of fundamental physics, includ-
ing atomic, nuclear, hadron, and molecular systems. The 
Dirac equation has been studied in the context of nuclear 
physics, especially within the framework of relativistic 
mean-field theories [1, 2] and in explaining various single-
particle effects [3–5]. One of the most important aspects of 
contemporary nuclear physics is the study of the shell evolu-
tion of exotic nuclei, which refers to the potentially dramatic 
changes in the shell structure as one approaches driplines 
with excessive protons or neutrons [6]. The evolution of the 
shell structure, which is crucial for our understanding of 
nuclear stability as well as the origin of heavy elements, can 
be induced by the isospin dependence of the spin and ten-
sor potentials in various mean-field model approaches. The 

Dirac equation is unique for such studies because it provides 
not only insight into the origin of spin–orbital potentials as 
the competition between scalar and vector potentials [1] but 
also the possibility of adding a tensor potential at the mean-
field level. This study focuses on numerically solving the 
Dirac equation with scalar, vector, and tensor potentials. We 
hope that it can be a useful tool for studying the structure 
of exotic nuclei, as well as other quantum systems where 
spin–orbit and tensor effects can be important.

Dirac equation solvers are not available in the nuclear phys-
ics community, except for the Fortran subroutine embedded 
in relativistic mean-field codes [7, 8]. Previous works in other 
areas on solving the Dirac equation focused particularly on 
the vector potential and utilized various schemes. In Ref. [9] 
the finite element method is applied to solve the Dirac equa-
tion, which is validated to converge to within floating point 
solutions. The problems inherent in the numerical solutions of 
the Dirac equation owing to spurious solutions are discussed 
in Ref. [10], where a stabilized version of the finite element 
method is also applied. The mapped Fourier method was used 
to numerically address the Dirac equation in. [11]. In Ref. 
[12] evolutionary algorithms are used and demonstrated in a 
case study of a muon orbiting the 208Pb nucleus. The work of 
Ref. [13] also focuses on studying muonic atoms and applies 
the shooting method to integrate the Dirac equation. Moreo-
ver, a power series expansion method was employed in Ref.
[14]. The numerical aspects of solving the Dirac equation are 
discussed in Ref. [15]. Other important methods include the 

 *	 Chong Qi 
	 chongq@kth.se

1	 Department of Physics, KTH Royal Institute of Technology, 
Albanova University Center, 10691 Stockholm, Sweden

2	 Department of Physics, University of Florida, Gainesville, 
FL 32611, USA

http://orcid.org/0009-0001-5434-8585
http://orcid.org/0000-0002-1406-5695
http://crossmark.crossref.org/dialog/?doi=10.1007/s41365-025-01810-4&domain=pdf


	 A. W. Kiessling et al.234  Page 2 of 7

Woods–Saxon basis [16], complex momentum representation 
[17], analytic continuation in the coupling constant (ACCC) 
[18], and Green’s function methods [19, 20].

Our work solves the Dirac equation in spherical coordinate 
space by utilizing the shooting method with a Runge–Kutta 
4 integration scheme. We have prepared the code, named 
DiracSVT, in three different popular programming languages: 
Python, MATLAB, and C++. These are gradually becoming 
the staple in physics, replacing Fortran as a more modern, 
versatile, and modular alternative. We include scalar, vector, 
and tensor potentials of an isospin-dependent Wood–Saxon 
form in the Dirac equation [21]. The code is used to solve the 
available single-particle states around doubly magic nuclei, 
including 16O , 40Ca , 48Ca , 56Ni , 100Sn , 132Sn , and 208Pb . The 
same potential can also reproduce the shell structures of many 
open nuclei well over the entire nuclear chart.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the formulation of the Dirac equation with 
corresponding potentials and boundary conditions. Section 3 
describes our method and the algorithm for solving the equa-
tion. Section 4 presents our results, and Sect. 5 discusses these 
results and presents an outlook on the possibilities for future 
extensions to this work.

2 � Theory

We limit ourselves to spherical symmetry. The Dirac Hamil-
tonian H with a scalar potential S , a vector potential V , and a 
tensor potential U can be given by (see, e.g., [22, 23])

The corresponding Dirac equation for the radial wave func-
tion can be expressed as

where f and g are the two components of the radial wave 
function and � = −(l + 1) for j = l +

1

2
 and � = l for 

j = l −
1

2
 . For convenience, we define our potentials as 

Σ = V + S and Δ = V − S as the sum of the vector and sca-
lar potentials. The above equations can also be rewritten as

(1)H = 𝛼⃗ ⋅ p⃗ + 𝛽(m + S) + V − i𝛽𝛼⃗ ⋅ r̂U.

(2)
(

d

dr
+

�

r
− U(r)

)

g�(r) = (E + m − Δ(r))f�(r),

(3)
(

d

dr
−

�

r
+ U(r)

)

f�(r) = −(E − m − Σ(r))g�(r),

(4)g�
�
= (2m + B − Δ)f� +

(

U −
�

r

)

g� ,

(5)f �
�
= (−B + Σ)g� +

(

�

r
− U

)

f� ,

where the binding energy B was obtained from the total 
energy E = B + m.

The potentials can be parameterized in a standard 
Woods–Saxon shape (see, e.g., [21, 24])

where R�,� = r�,�A
1∕3 and a are radius and diffuseness 

parameters, respectively. Naturally, the Coulomb potential 
term exists only for protons.

Quantities Σ0,n(p), and Δ0,n(p) are defined for the three 
possible scenarios. In Scenario 1, Δ0 is assumed to be 
directly proportional to Σ0 with a scaling factor. Scenario 
2 does not explicitly consider the dependence of the poten-
tial on the neutron excess. Scenario 3, on the other hand, 
describes dependence via a spin–orbit-dependent term �so . 
For further details, please refer to Ref. [21]). For each of 
the three different scenarios, where n and p stand for neu-
tron and proton states, respectively,

and Δ0,n(p) is defined for Scenario 1 as

for Scenario 2 as

which assumes no isospin dependence, and for Scenario 3 as

The parameters V0, �, �so, �, a� = a� , r0, and r0,ls are fitted to 
data for the three scenarios separately. In the simplest case, 
the diffuseness parameters a� and a� are assumed identical.

The Coulomb potential is defined as

where

(6)Σ =
Σ0,n(p)

1 + e
r−R�

a�

+ VCoulomb,

(7)Δ =
Δ0,n(p)

1 + e
r−R�

a�

+ VCoulomb,

(8)Σ0,p = V0

(

1 + �
N − Z

A

)

,

(9)Σ0,n = V0

(

1 − �
N − Z

A

)

,

(10)Δ0 = −�Σ0,

(11)Δ0 = −�V0,

(12)Δ0,p = −�V0

(

1 − �so
N − Z

A

)

,

(13)Δ0,n = −�V0

(

1 + �so
N − Z

A

)

.

(14)VCoulomb =

{

c
Z

r
r > r𝜎

c
Z(3r2

𝜎
−r2)

2r3
𝜎

r ≤ r𝜎 ,



Numerical solution of the Dirac equation with scalar, vector, and tensor potentials﻿	 Page 3 of 7  234

In addition, we have a tensor potential defined similarly in a 
Woods–Saxon shape:

The boundary condition for the bound states is defined sepa-
rately for limiting cases of small ( r → 0 ) and large ( r → ∞ ) 
radii. For small r, we have

where � denotes the radial variable in the small radius 
regime. For the boundary conditions in the case where 
r → ∞ , it is assumed that both wave functions approach 
zero in this limit.

To handle unbound neutron resonance states with positive 
energy, we implement for large r similar boundary condi-
tions to Eq. (26), as in [25]:

where j and y indicate the spherical Bessel functions 
l� = j ±

1

2
 and jz = −j,−j + 1,… j. Here, Yj,l,jz are the spinor 

spherical harmonics, as detailed in [26]. In the 1D case, one 
of the two components of the spinor spherical harmonics 
vanishes, and the solution is reduced to two components f 
and g. As such the boundary conditions for r → ∞ become

The low-lying proton resonance states can be well approxi-
mated as bound states, as most of these states are pretty 
long-lived with negligibly small imaginary parts. The 
boundary condition should be refined as a Coulomb Hankel 
function for higher-lying proton resonance states.

(15)c =
e2

4��0ℏc
≡ � ≈ 0.007297.

(16)U(r) =
U0

1 + e
Δ� (r)

a�

(17)f =

{

−a0

(

−B+Σ

k

)

𝜖l+2 k < 0

a0𝜖
l k > 0

,

(18)g =

{

a0𝜖
l+1 k < 0

a0

(

2m+B−Δ

k

)

𝜖l+1 k > 0
,

� =

�

[Cjl(r) + Dyl(r)]Yj,l,jz
√

B2+2Bm

B+2m
[Cjl� (r) + Dyl� (r)]Yj,l�,jz

�

,

(19)f = Cjl(r) + Dyl(r),

(20)g =

√

B2 + 2Bm

B + 2m
[Cjl� (r) + Dyl� (r)].

3 � Method

We attempt to combine an inner solution and an outer solu-
tion in what is known as the shooting method. The shooting 
method is a numerical scheme suitable for boundary-value 
problems. More specifically, the shooting method is a tech-
nique for solving a boundary-value problem by transforming 
it into an initial value problem (IVP). The method guesses 
the values of the boundary conditions at one end of the inter-
val and then integrates the differential equation from that end 
using an ordinary differential equation solver. The estimated 
boundary values were adjusted until the solution satisfied 
the boundary conditions at the other end of the interval. No 
verification was performed for the number of nodes.

Fig. 1   Flowchart of the DiracSVT solver scheme. IVP stands for ini-
tial value problem



	 A. W. Kiessling et al.234  Page 4 of 7

In our case, we employed shooting in two directions: out-
ward and inward. We used the Runge–Kutta 4 integration 
scheme as the ordinary differential equation solver. This is 
akin to the methods employed in earlier studies, such as [27].

The outward shooting solution originated from the origin. 
However, setting r = 0 causes a singularity in the model. To 
circumvent this, we set the inner point at a small distance 
r = � from the origin. As for initial values, the boundary 
conditions from Eqs. (17–20) are used. It should be noted 
that an initial guess for the binding energy is required. For 
simplicity, we used the experimental values with some vari-
ations for the example cases studied below.

Inward shooting originates from an asymptotic distance 
from the origin r = ∞ . As an approximation, we consider 
a point that we set to a relatively large distance from the 
origin. We used the boundary conditions for a large r in this 
shooting case.

Both the outward and inward solutions can be used inde-
pendently, as is. However, there is a major tendency for the 
calculated solutions of f(r) and g(r) to blow up and become 
numerically unstable. Thus, the matching concept of the 
shooting method is presented. We only solve from each 
direction up to a certain "middle" point which we denote as 
rm (note, this point does not have to be halfway in distance) 
where the two solutions are then matched.

To define the difference Δ(B0, a0) between the two solu-
tions at the matching point, there are a few options [15]. 
These include simple direct differences

as well as relative average value-based differences

Here, B0 and a0 are the shooting parameters that must be 
adjusted such that the inside and outside Dirac spinor solu-
tions match at the chosen matching radius rm , that is, the 
direct differences in the equations above yield zero. After 
the trial, simple direct differences were found to converge 
most consistently and were used in the solver.

(21)Δf (B0, a0) = fout(rm) − fin(rm),

(22)Δg(B0, a0) = gout(rm) − gin(rm),

(23)Δf (B0, a0) =
2(fout(rm) − fin(rm))

fout(rm) + fin(rm)
,

(24)Δg(B0, a0) =
2(gout(rm) − gin(rm))

gout(rm) + gin(rm)
.

To drive the differences to zero, we must define the 
change in the difference in terms of the parameters. We do 
this by linearizing through a first order Taylor expansion

This defines a linear system, which we solve iteratively using 
Newton’s root-finding method. The resultant solution is con-
sidered to be the correct solution after satisfactory conver-
gence, that is, the change in the solution becomes insignifi-
cant with further iterations. The overall solution method is 
shown in Fig. 1.

The implementation of the numerical solver is written in 
three different languages: Python, MATLAB, and C++. It 
was developed and tested mainly for Linux, and the experi-
ments were run on both Intel i7-2600 @3.40 GHz and AMD 
Ryzen 5 3600 @3.60 GHz. It is worth noting that the sensi-
tivity of the solution to the precision of the system solution 
is very high in some cases. Changing the float precision can 
induce convergence to very different solutions. Similarly, 
merely varying the underlying linear algebra routine version 
(e.g., BLAS/LAPACK) also resulted in similar problems. As 
such, while the solver has been tested on different architec-
tures, discrepancies remain regarding convergence that the 
reader should be aware of, resulting from different back-end 
libraries being utilized.

4 � Numerical results

For example, we calculated the single-particle energies of 
all known single-particle states and single-hole states around 
the doubly magic nuclei for all three scenarios and all three 
language frameworks in which the solver is written. The 
binding energies against which the parameters were fitted 
were extracted from the experimental nuclear data. The 
parameters were fitted to minimize the RMS error between 
the numerical solutions and the experimental single-particle 
energies, as specified in Tables 2 and 3, so that they replicate 
the energies of the spin–orbit partners. The tensor poten-
tial is not included in the fitting of the parameters given 
below because of the scarcity of experimental data that can 
fully constrain its strength. Its effect is expected to be more 

(25)Δf +
�Δf

�B
(Bnew − Bold) +

�Δf

�a0
(a0,new − a0,old) = 0,

(26)Δg +
�Δg

�B
(Bnew − Bold) +

�Δg

�a0
(a0,new − a0,old) = 0.

Table 1   Parameters used in the 
code for Scenario 1 (yielding 
the values in Tables 2 and 3)

Scenario V0 (MeV) �, �� � r� (MeV−1) a, a� (MeV−1) r� (MeV−1)

1 −61.44 0.73 13.36 0.006515 0.003638 0.004867



Numerical solution of the Dirac equation with scalar, vector, and tensor potentials﻿	 Page 5 of 7  234

significant as it approaches the neutron-rich nuclei around 
the neutron dripline.

In Table 1, the fitted parameters are given for Scenario 
1, which were used to obtain the values in Tables 2 and 3. 
The difference between the scenarios relies on the value of 
�so : Scenario 2 is identical to Scenario 1 but takes �so = 0 
and Scenario 3 takes �so = −� . The position was scaled by 
1∕ℏc , acquiring units of MeV

−1 , yielding a Coulomb barrier 
in MeV as per Eq. 15.

Some of the results are listed in Tables 2 and 3 for com-
parison purposes. The solutions from the three different 
code frameworks were identical within the numerical errors 
and were in reasonable agreement with the experimentally 
determined energies from Ref. [21]. The results for the three 
codes with the same inputs are listed. In some rare cases, 
one of the solvers can display a solution, while another 
diverges (marked as in the tables). This seems likely to be 
the result of different languages using various routines to 
invert matrices. Moreover, the solver can sometimes con-
verge to the energy levels of different states (e.g., the proton 
2d3∕2 and 2f7∕2 states in 208Pb ). This artifact can be easily 
spotted and is sensitive to the initial conditions and area of 
integration. We did not correct for comparison purposes. 
The convergence can be improved by slightly modifying the 
initial value, matching radius, and maximal radius. The val-
ues in Tables 2 and 3 are given for initial guesses equal to 
the experimental value for standardization. However, it may 
not always be the most suitable choice. In the case of unsuc-
cessful convergence, this can be tweaked until the converged 
value improves. For some outliers, the code converges to a 
state with different nodes, which is easy to identify because 
the calculated energy differs significantly from the desired 
value.

The solver also captured the waveform solution of the 
Dirac equation for the considered particle and state, as 
shown in Fig. 2. In the present work, we focus on bound 
states and very low-lying unbound states, as all quantities are 
assumed to be real. The bound and unbound states appear 
quite similar, except for the boundary conditions. This also 
implies that the code is not yet suitable for handling wide 
resonances.

Table 2   Experimental and calculated single-particle energies for neu-
trons around doubly magic nuclei. These energies were retrieved after 
a single run for the same input and scenario, using the three codes. 
Outliers and discrepancies are kept for illustrative purposes, and the 
details are discussed in the text

Nucleus State Experimen-
tal B

MATLAB B Python B C++ B

16O 1p1∕2 −15.66 −15.8374 −15.8374 −15.8374
16O 1d5∕2 −4.14 −6.3839 −6.3839 −6.38387
16O 2s1∕2 −3.27 −3.8203 −3.8203 −3.82027
40Ca 1d5∕2 −22.39 −21.6375 −21.6375 −21.6375
40Ca 2s1∕2 −18.19 −15.0881 −15.0881 −15.0881
40Ca 1d3∕2 −15.64 −15.8337 −15.8337 −15.8337
40Ca 1f7∕2 −8.36 −9.4823 −9.4823 −9.48232
40Ca 2p3∕2 −5.84 −4.4926 −4.4926 −4.49257
40Ca 2p1∕2 −4.2 −2.7787 −2.7787 −2.77869
40Ca 1f5∕2 −1.56 −3.9294 −3.9294 −3.92936
48Ca 1d5∕2 −15.61 −19.6859 −19.6859 −19.6859
48Ca 2s1∕2 −12.55 −14.1267 −14.1267 −14.1267
48Ca 1d3∕2 −12.53 −15.1527 −15.1527 −15.1527
48Ca 1f7∕2 −10 −8.7770 −8.7770 −8.77702
48Ca 2p3∕2 −4.6 −4.2724 −4.2724 −4.27242
48Ca 2p1∕2 −2.86 −2.9638 −2.9638 −2.96378
48Ca 1f5∕2 −1.2 −4.2483 −4.2483 −4.2483
56Ni 1f7∕2 −16.64 −16.0488 −16.0488 −16.0488
56Ni 2p3∕2 −10.25 −9.1691 −9.1691 −9.16906
56Ni 1f5∕2 −9.48 −10.0171 −10.0171 −10.0171
56Ni 2p1∕2 −9.13 −7.2951 −7.2951 −7.29513
100Sn 2p1∕2 −18.38 −16.9797 −16.9797 −16.9797
100Sn 1g9∕2 −17.93 −17.4011 −17.4011 −17.4011
100Sn 2d5∕2 −11.13 −9.2034 −9.2034 −9.20345
100Sn 1g7∕2 −10.93 −11.1915 −11.1915 −11.1915
100Sn 3s1∕2 −9.3 −6.3580 −6.3580 −6.3580
100Sn 1h11∕2 −8.6 −7.6706 −7.6706 −7.6706
100Sn 2d3∕2 −9.2 −6.7376 −6.7376 −6.7376
132Sn 1g7∕2 −9.75 −10.9534 −10.9534 −10.9534
132Sn 2d5∕2 −8.97 −8.6191 −8.6191 −8.6191
132Sn 3s1∕2 −7.64 −6.4832 −6.4832 −6.4832
132Sn 1h11∕2 −7.54 −7.1366 −7.1366 −7.136
132Sn 2d3∕2 −7.31 −7.0763 −7.0763 −7.0763
132Sn 2f7∕2 −2.47 – −1.3848 –
132Sn 3p3∕2 −1.57 −0.2211 −16.8335 −16.8335
132Sn 1h9∕2 −0.86 −2.8903 −2.8903 −2.8903
132Sn 2f5∕2 −0.42 0.2823 −19.1602 −19.1602
208Pb 1h9∕2 −11.4 −12.4667 −12.4667 −12.4667
208Pb 2f7∕2 −9.81 −9.3144 −9.3144 −9.3144
208Pb 1i13∕2 −9.24 −9.7762 −9.7762 −9.7762
208Pb 3p3∕2 −8.26 −6.3349 −6.3349 −6.3349
208Pb 2f5∕2 −7.94 −7.3793 −7.3793 −7.3793
208Pb 3p1∕2 −7.37 −8.0489 −23.3705 −6.0271

Table 2   (continued)

Nucleus State Experimen-
tal B

MATLAB B Python B C++ B

208Pb 2g9∕2 −3.94 −2.5108 −2.5108 −2.5108
208Pb 1i11∕2 −3.16 −5.2959 −5.2959 −5.2959
208Pb 1j15∕2 −2.51 −2.2689 −2.2689 –
208Pb 3d5∕2 −2.37 −0.2044 −16.6099 −16.6099
208Pb 4s1∕2 −1.9 −0.1299 −14.2321 −14.2321
208Pb 2g7∕2 −1.44 −0.2843 −19.6005 −19.6005



	 A. W. Kiessling et al.234  Page 6 of 7

5 � Summary

We presented the Dirac equation solver DiracSVT, which 
solves the Dirac equation in coordinate space with scalar, 

vector, and tensor nuclear potentials. The code is written in 
three different languages and uses the shooting method with 
the Runge–Kutta 4 integration scheme. The above potentials 
were parameterized in the Saxon form. We show that the 
potential can reproduce the known single-particle states very 
well around all the doubly magic nuclei. This code is freely 
available in Ref. [28].

Author Contributions  All authors contributed to the study conception 
and design. Material preparation, data collection, and analysis were 
performed by Chong Qi. First MATLAB version of the code presented 
in this paper was written by Yuxin Zhao. The Python and C++ versions 
were done by Alexander Kiessling and Daniel Karlsson. The first draft 
of the manuscript was written by Chong Qi, Alexander Kiessling, and 
Daniel Karlsson, and all authors commented on previous versions of 
the manuscript. Mário Amaro tested the code and contributed to the 
revision of the manuscript. All authors read and approved the final 
manuscript.

Funding  Open access funding provided by Royal Institute of 
Technology.

Declarations 

Conflict of interest  The authors declare that they have no conflict of 
interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 

Table 3   Experimental and calculated single-particle energies for pro-
tons

Nucleus State Experimen-
tal B

MATLAB B Python B C++ B

16O 1p1∕2 −12.13 −11.9334 −11.9334 −11.9334
16O 1d5∕2 −0.6 −2.9170 −2.9170 −2.9170
16O 2s1∕2 −0.11 −0.8547 −0.8547 −0.8547
16O 1d3∕2 4.688 4.7575 4.7575 4.7575
40Ca 1d5∕2 −15.07 −14.1180 −14.1180 −14.1180
40Ca 2s1∕2 −10.92 −7.7847 −7.7847 −7.7847
40Ca 1d3∕2 −8.33 −8.5334 −8.5334 −8.5334
40Ca 1f7∕2 −1.09 −2.5333 −2.5333 −2.5333
40Ca 2p3∕2 0.69 1.5992 1.5992 1.5992
48Ca 1d5∕2 −21.47 −22.4904 −22.4904 −22.4904
48Ca 1d3∕2 −16.18 −15.4556 −15.4556 −15.4556
48Ca 2s1∕2 −16.1 −14.2643 −14.2643 −14.2643
48Ca 1f7∕2 −9.35 −10.5523 −10.5523 −10.5523
48Ca 2p3∕2 −6.44 −3.2336 −3.2336 −3.2336
48Ca 2p1∕2 −4.64 11.7435 −0.9598 11.7435
56Ni 1f7∕2 −7.17 −6.9046 −6.9046 −6.9046
56Ni 2p3∕2 −0.69 −0.5831 −0.5831 −0.5831
56Ni 1f5∕2 0.33 8.5469 8.5469 8.5469
56Ni 2p1∕2 0.41 1.0938 1.0938 1.0938
100Sn 1f5∕2 −8.71 −7.0267 −7.0267 −7.0267
100Sn 2p3∕2 −6.38 −4.5904 −4.5904 −4.5904
100Sn 2p1∕2 −3.53 −3.0105 −3.0105 −3.0105
100Sn 1g9∕2 −2.92 −3.7950 −3.7950 −3.7950
100Sn 1g7∕2 3.9 1.9453 12.8860 12.8860
132Sn 2p3∕2 −16.01 −14.1064 −14.1064 −14.1064
132Sn 1g9∕2 −15.71 −18.0759 −18.0759 −18.0759
132Sn 1g7∕2 −9.68 −10.0481 −10.0481 −10.0481
132Sn 2d5∕2 −8.72 −6.9269 −6.9269 −6.9269
132Sn 2d3∕2 −6.97 −3.5858 – −28.5546
132Sn 1h11∕2 −6.89 −8.9825 −8.9825 −8.9825
208Pb 1g7∕2 −12 −13.3095 −13.3095 −13.3095
208Pb 2d5∕2 −9.82 −9.3826 −9.3826 −9.3826
208Pb 1h11∕2 −9.36 −13.2378 −13.2378 −13.2378
208Pb 2d3∕2 −8.36 −6.7044 −6.7044 −28.4605
208Pb 3s1∕2 −8.01 −5.3560 −25.9307 −25.9307
208Pb 1h9∕2 −3.8 −5.7976 −5.7976 −5.7976
208Pb 2f7∕2 −2.9 −1.6873 −1.6873 −27.3765
208Pb 1i13∕2 −2.1 −5.5308 −5.5308 –
208Pb 2f5∕2 −0.97 2.0965 −20.8512 −20.8512
208Pb 3p3∕2 −0.68 3.5255 −17.4631 −17.4631

Fig. 2   (Color online) Radial wave function for 16O , with neutron hole 
in state 1p1∕2 . The results from the three codes were indistinguishable. 
The position was scaled by 1∕ℏc , acquiring units of MeV

−1



Numerical solution of the Dirac equation with scalar, vector, and tensor potentials﻿	 Page 7 of 7  234

need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 P. Ring, Relativistic mean field theory in finite nuclei. Prog. Part. 
Nucl. Phys. 37, 193–263 (1996). https://​doi.​org/​10.​1016/​0146-​
6410(96)​00054-3

	 2.	 J. Meng (ed.), Relativistic Density Functional for Nuclear Struc-
ture, International Review of Nuclear Physics (World Scientific, 
Singapore, 2016)

	 3.	 J.N. Ginocchio, Pseudospin as a relativistic symmetry. Phys. Rev. 
Lett. 78, 436–439 (1997). https://​doi.​org/​10.​1103/​PhysR​evLett.​78.​
436

	 4.	 Z.X. Ren, S.Q. Zhang, J. Meng, Solving Dirac equations on a 
3d lattice with inverse Hamiltonian and spectral methods. Phys. 
Rev. C 95, 024313 (2017). https://​doi.​org/​10.​1103/​PhysR​evC.​95.​
024313

	 5.	 T. Oishi, Time-dependent Dirac equation applied to one-proton 
radioactive emission. (2022). https://​doi.​org/​10.​48550/​ARXIV.​
2212.​03271

	 6.	 T. Otsuka, A. Gade, O. Sorlin et al., Evolution of shell structure 
in exotic nuclei. Rev. Mod. Phys. 92, 015002 (2020). https://​doi.​
org/​10.​1103/​RevMo​dPhys.​92.​015002

	 7.	 P. Ring, Y. Gambhir, G. Lalazissis, Computer program for the 
relativistic mean field description of the ground state properties of 
even-even axially deformed nuclei. Comput. Phys. Commun. 105, 
77–97 (1997). https://​doi.​org/​10.​1016/​S0010-​4655(97)​00022-2

	 8.	 T. Nikšić, N. Paar, D. Vretenar et al., Dirhb-a relativistic self-
consistent mean-field framework for atomic nuclei. Comput. Phys. 
Commun. 185, 1808–1821 (2014). https://​doi.​org/​10.​1016/j.​cpc.​
2014.​02.​027

	 9.	 M. Piibeleht, Numerical investigations of the Dirac equation and 
bound state quantum electrodynamics in atoms: a thesis presented 
in partial fulfilment of the requirements for the degree of doctor 
of philosophy in physics at Massey University, Albany, New Zea-
land. Ph.D. thesis, Massey University (2022)

	10.	 H. Almanasreh, S. Salomonson, N. Svanstedt, Stabilized finite 
element method for the radial Dirac equation. J. Comput. Phys. 
236, 426–442 (2013). https://​doi.​org/​10.​1016/j.​jcp.​2012.​11.​020

	11.	 E. Ackad, M. Horbatsch, Numerical solution of the Dirac equation 
by a mapped Fourier grid method. J. Phys. A Math. Gen. 38, 3157 
(2005). https://​doi.​org/​10.​1088/​0305-​4470/​38/​14/​007

	12.	 I.G. Tsoulos, O.T. Kosmas, V. Stavrou, DiracSolver: a tool for 
solving the Dirac equation. Comput. Phys. Commun. 236, 237–
243 (2019). https://​doi.​org/​10.​1016/j.​cpc.​2018.​10.​010

	13.	 S. Sturniolo, A. Hillier, Mudirac: a Dirac equation solver for 
elemental analysis with muonic X-rays. X-Ray Spectrom. 50, 
180–196 (2021). https://​doi.​org/​10.​1002/​xrs.​3212

	14.	 F. Salvat, J.M. Fernández-Varea, radial: a Fortran subroutine package 
for the solution of the radial Schrödinger and Dirac wave equations. 
Comput. Phys. Commun. 240, 165–177 (2019). https://​doi.​org/​10.​
1016/j.​cpc.​2019.​02.​011

	15.	 R.R. Silbar, T. Goldman, Solving the radial Dirac equations: a 
numerical odyssey. Eur. J. Phys. 32, 217 (2010). https://​doi.​org/​10.​
1088/​0143-​0807/​32/1/​021

	16.	 S.G. Zhou, J. Meng, P. Ring, Spherical relativistic Hartree theory in 
a woods-saxon basis. Phys. Rev. C 68, 034323 (2003). https://​doi.​
org/​10.​1103/​physr​evc.​68.​034323

	17.	 S.Z. Xu, S.S. Zhang, X.Q. Jiang et al., The complex momentum 
representation approach and its application to low-lying resonances 
in 17 O and 29,31 F. Nucl. Sci. Tech. 34, 5 (2023). https://​doi.​org/​10.​
1007/​s41365-​022-​01159-y

	18.	 S.S. Zhang, J. Meng, S.G. Zhou et al., Analytic continuation of 
single-particle resonance energy and wave function in relativistic 
mean field theory. Phys. Rev. C 70, 034308 (2004). https://​doi.​org/​
10.​1103/​physr​evc.​70.​034308

	19.	 T.T. Sun, S.Q. Zhang, Y. Zhang et al., Green’s function method 
for single-particle resonant states in relativistic mean field theory. 
Phys. Rev. C 90, 054321 (2014). https://​doi.​org/​10.​1103/​physr​evc.​
90.​054321

	20.	 T.T. Sun, L. Qian, C. Chen et al., Green’s function method for the 
single-particle resonances in a deformed Dirac equation. Phys. Rev. 
C 101, 014321(2020). https://​doi.​org/​10.​1103/​physr​evc.​101.​014321

	21.	 Z.X. Xu, C. Qi, Shell evolution and its indication on the isospin 
dependence of the spin-orbit splitting. Phys. Lett. B 724, 247–252 
(2013). https://​doi.​org/​10.​1016/j.​physl​etb.​2013.​06.​018

	22.	 H. Akcay, Dirac equation with scalar and vector quadratic poten-
tials and Coulomb-like tensor potential. Phys. Lett. A 373, 616–620 
(2009). https://​doi.​org/​10.​1016/j.​physl​eta.​2008.​12.​029

	23.	 H. Hassanabadi, E. Maghsoodi, S. Zarrinkamar et al., Dirac equa-
tion under scalar, vector, and tensor Cornell interactions. Adv. High 
Energy Phys. 2012, 707041 (2012). https://​doi.​org/​10.​1155/​2012/​
707041

	24.	 P. Kennedy, The Woods-Saxon potential in the Dirac equation. J. 
Phys. A Math. Gen. 35, 689 (2002). https://​doi.​org/​10.​1088/​0305-​
4470/​35/3/​314

	25.	 V. Alonso, S. De Vincenzo, L. Mondino, On the boundary condi-
tions for the Dirac equation. Eur. J. Phys. 18, 315 (1997). https://​doi.​
org/​10.​1088/​0143-​0807/​18/5/​001

	26.	 D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quantum 
Theory of Angular Momentum (World Scientific, Singapore, 1988)

	27.	 J. Meng, Relativistic continuum Hartree-Bogoliubov theory with 
both zero range and finite range Gogny force and their application. 
Nucl. Phys. A 635, 3–42 (1998). https://​doi.​org/​10.​1016/​s0375-​
9474(98)​00178-x

	28.	 https://​codeo​cean.​com/​capsu​le/​73840​15/​tree/​v1

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0146-6410(96)00054-3
https://doi.org/10.1016/0146-6410(96)00054-3
https://doi.org/10.1103/PhysRevLett.78.436
https://doi.org/10.1103/PhysRevLett.78.436
https://doi.org/10.1103/PhysRevC.95.024313
https://doi.org/10.1103/PhysRevC.95.024313
https://doi.org/10.48550/ARXIV.2212.03271
https://doi.org/10.48550/ARXIV.2212.03271
https://doi.org/10.1103/RevModPhys.92.015002
https://doi.org/10.1103/RevModPhys.92.015002
https://doi.org/10.1016/S0010-4655(97)00022-2
https://doi.org/10.1016/j.cpc.2014.02.027
https://doi.org/10.1016/j.cpc.2014.02.027
https://doi.org/10.1016/j.jcp.2012.11.020
https://doi.org/10.1088/0305-4470/38/14/007
https://doi.org/10.1016/j.cpc.2018.10.010
https://doi.org/10.1002/xrs.3212
https://doi.org/10.1016/j.cpc.2019.02.011
https://doi.org/10.1016/j.cpc.2019.02.011
https://doi.org/10.1088/0143-0807/32/1/021
https://doi.org/10.1088/0143-0807/32/1/021
https://doi.org/10.1103/physrevc.68.034323
https://doi.org/10.1103/physrevc.68.034323
https://doi.org/10.1007/s41365-022-01159-y
https://doi.org/10.1007/s41365-022-01159-y
https://doi.org/10.1103/physrevc.70.034308
https://doi.org/10.1103/physrevc.70.034308
https://doi.org/10.1103/physrevc.90.054321
https://doi.org/10.1103/physrevc.90.054321
https://doi.org/10.1103/physrevc.101.014321
https://doi.org/10.1016/j.physletb.2013.06.018
https://doi.org/10.1016/j.physleta.2008.12.029
https://doi.org/10.1155/2012/707041
https://doi.org/10.1155/2012/707041
https://doi.org/10.1088/0305-4470/35/3/314
https://doi.org/10.1088/0305-4470/35/3/314
https://doi.org/10.1088/0143-0807/18/5/001
https://doi.org/10.1088/0143-0807/18/5/001
https://doi.org/10.1016/s0375-9474(98)00178-x
https://doi.org/10.1016/s0375-9474(98)00178-x
https://codeocean.com/capsule/7384015/tree/v1

	Numerical solution of the Dirac equation with scalar, vector, and tensor potentials
	Abstract
	1 Introduction
	2 Theory
	3 Method
	4 Numerical results
	5 Summary
	References




