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Abstract
To study the uncertainty quantification of resonant states in open quantum systems, we developed a Bayesian framework by 
integrating a reduced basis method (RBM) emulator with the Gamow coupled-channel (GCC) approach. The RBM, con-
structed via eigenvector continuation and trained on both bound and resonant configurations, enables the fast and accurate 
emulation of resonance properties across the parameter space. To identify the physical resonant states from the emulator’s 
output, we introduce an overlap-based selection technique that effectively isolates true solutions from background artifacts. 
By applying this framework to unbound nucleus 6Be, we quantified the model uncertainty in the predicted complex ener-
gies. The results demonstrate relative errors of 17.48% in the real part and 8.24% in the imaginary part, while achieving a 
speedup of four orders of magnitude compared with the full GCC calculations. To further investigate the asymptotic behavior 
of the resonant-state wavefunctions within the RBM framework, we employed a Lippmann–Schwinger (L–S)-based cor-
rection scheme. This approach not only improves the consistency between eigenvalues and wavefunctions but also enables 
a seamless extension from real-space training data to the complex energy plane. By bridging the gap between bound-state 
and continuum regimes, the L–S correction significantly enhances the emulator’s capability to accurately capture continuum 
structures in open quantum systems.

Keywords  Uncertainty quantification · Reduced basis method · Resonance emulator · Bayesian analysis · Gamow coupled-
channel model

1  Introduction

Modern nuclear physics has evolved into a field of increas-
ing complexity, accompanied by the development of a wide 
range of theoretical models capable of describing diverse 
systems and observables with growing precision  [1–5]. 

Rather than focusing solely on numerical predictions, it is 
increasingly important to deepen our understanding of the 
predictive capabilities and reliability of theoretical mod-
els, and to elucidate their connection with experimental 
observations. This shift in perspective has motivated the 
growing emphasis on uncertainty quantification in recent 
years [6–13], which not only provides quantitative measures 
of predictive reliability, but also allows the systematic con-
straint of model parameters through realistic experimental 
data. These advances ultimately lead to deeper insights into 
the interpretation of the observed nuclear phenomena.

Statistical methods have played a pivotal role in this para-
digm shift. Although traditional frequentist approaches are 
widely used for parameter estimation and regression [9], 
the rise in machine learning (ML) techniques, particularly 
within the Bayesian framework, has opened new opportuni-
ties for model calibration, experimental design, and model 
mixing [14–20]. In contrast with classical frequentist sta-
tistics, Bayesian inference incorporates prior knowledge 
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of a model and its parameters into posterior distributions, 
treating data as probabilistic ensembles rather than isolated 
points [21]. This framework is particularly advantageous for 
rigorous uncertainty quantification.

A key challenge in Bayesian analysis is the high com-
putational costs associated with large-scale sampling. Mil-
lions or even billions of model evaluations are typically 
required to achieve convergence of posterior distributions. 
This is prohibitive for state-of-the-art nuclear models, which 
are often characterized by large Hilbert spaces and high-
dimensional operators [22]. Efficient and accurate surrogate 
models are essential to address this bottleneck. Although 
Gaussian Process (GP) emulators have been applied in the 
previous studies [8], their data-driven nature often limits 
physical interpretability. This limitation motivates the adop-
tion of model-driven strategies, such as the reduced basis 
method (RBM), which has emerged as a powerful tool 
for reducing the computational cost of physics-informed 
simulations  [23–25]. The RBM is particularly effective 
because it constructs low-dimensional approximations 
rooted in the fundamental dynamics of the system, such as 
the Schrödinger equation. Certain implementations of the 
RBM are mathematically similar to the variational princi-
ple [24], making them suitable for uncertainty analysis in 
linearly varying parameter spaces [19, 26–28]. Furthermore, 
the RBM enables effective extrapolation into regions that 
are inaccessible to direct high-fidelity computations [29].

One of the most cutting-edge directions in nuclear physics 
is the study of nuclei near driplines, which are considered 
open quantum systems. These exotic nuclei have attracted 
considerable attention because of their unique structural fea-
tures [5, 30, 31], where continuum coupling and resonance 
degrees of freedom play central roles. Accurately describ-
ing such systems requires models that explicitly account for 
these continuum effects, which significantly increases the 
complexity of high-fidelity computations. At present, only a 
limited number of microscopic models are capable of treat-
ing resonant states in a consistent and unified framework [5, 
32, 33], among which the Gamow Shell Model (GSM) and 
its variants [5] are prominent examples. To quantify or even 
improve the computational capabilities of these models, it is 
essential to advance our understanding of the dripline, and 
ultimately, the unified nuclear chart.

Although the ground states of stable nuclei can be accu-
rately reproduced using a simple Galerkin RBM [26, 34], mod-
eling open quantum systems presents new challenges. In such 
systems, exotic structural features and nonsmooth parameter 
dependencies significantly hinder the performance of standard 
RBM emulators, thereby complicating the large-scale sam-
pling required for Bayesian inference. A key characteristic of 
dripline nuclei is the presence of resonant states, whose wave-
functions exhibit fundamentally different asymptotic behav-
iors compared with bound states [35]. Developing reliable 

emulators for such resonance states remains a challenge. For 
example, Ref. [36] proposed an improved eigenvector continu-
ation (EC) scheme to extrapolate resonance energies from a 
bound-state training subspace.

In this study, we employed an EC-based emulator to per-
form uncertainty quantification for the weakly bound nucleus 
6 Be within the Gamow coupled-channel (GCC) framework. To 
further address the asymptotic behavior of resonant wavefunc-
tions, we apply a Lippmann–Schwinger (L–S) equation-based 
correction, aiming to construct an emulator that can extrapo-
late from the bound to resonant states and provide corrected 
wavefunctions within the reduced subspace.

The remainder of this paper is organized as follows. In 
Sect. 2, we introduce the three-body GCC model, Bayesian 
inference framework, and the construction of the EC emulator. 
In Sect. 3, we present the uncertainty quantification results for 
6 Be and the outcomes of the L–S correction scheme. Finally, a 
summary and outlook are provided in Sect.  4.

2 � Methods

2.1 � The three‑body Gamow coupled‑channel 
method

In this study, we focused on atomic nuclei that can be effec-
tively described as three-body systems. Within the three-body 
GCC model, such systems are modeled as frozen cores with 
two valence nucleons. The corresponding Hamiltonian is given 
by

where the kinetic energy of each cluster is represented by 
p2
i
∕2mi , and Tc.m. is the kinetic energy of the center of mass. 

The potential energy consists of the interactions between 
the clusters; specifically, V1j represents the nuclear force 
between the frozen core and each valence nucleon, which 
is modeled using the phenomenological Woods–Saxon 
(WS) potential within the GCC approach. The potential is 
expressed as follows:

where the form factor f(r) is given by

In addition, the Coulomb potential is defined by the point-
charge formula when the distance between two clusters 
exceeds the Coulomb radius RC , while transitioning to a 
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finite-distribution form when the distance becomes smaller 
than RC.

The nucleon–nucleon interaction between the two valence 
nucleons V23(r23) was modeled using the Minnesota poten-
tial  [37]. To capture the different effects of the nuclear 
force and ‘pairing’ interactions, we introduce a set of three 
potential strength parameters, c = [c0, c1, c2]

T . Specifically, 
c0 governs the central potential, c1 accounts for spin–orbit 
coupling, and c2 indicates the nucleon–nucleon interaction. 
These parameters set the stage for exploring how non-affine 
parameters influence the entire potential, thereby providing 
a framework for future investigations.

In the GCC framework, the total three-body wavefunc-
tion is expressed in Jacobi coordinates, which is particularly 
advantageous for describing the asymptotic behavior of the 
system [33, 38]. The angular components are constructed 
using hyperspherical harmonic oscillator basis functions, 
while the radial part—determined by a set of quantum num-
bers representing various configurations—is expanded using 
the Berggren basis [39, 40]. This basis is directly related 
to the incoming and outgoing momenta of free particles as 
well as the complex energy of the eigenstates, satisfying 
the orthogonality and completeness relationship [41]. The 
Berggren basis is a key feature of the GCC model, allow-
ing it to treat scattering states, resonances, and bound states 
equally. This provides a universal framework for modeling 
the nuclear structure and scattering properties.

2.2 � Bayesian inference framework

The basic philosophy of Bayesian inference is encapsulated 
by Bayes’ theorem, which in this context is expressed as:

where P(c|E) is the posterior probability that represents the 
updated distribution of model parameters c after incorporat-
ing the observed data E. The term P(E|c) is the likelihood, 
which describes the probability of observing data E given 
the parameters c . P(c) represents the prior probability that 
encodes the initial belief regarding the parameters before 
observing any data. The denominator P(E) is the marginal 
likelihood, which ensures that the posterior sums to one. 
Therefore, the key function in Bayesian inference is

In this study, we applied a Bayesian framework to quan-
tify uncertainties in the three-body energy and the associ-
ated sensitivities of the strength parameters for nuclear and 
nucleon–nucleon forces between valence pairs. We assume 
that the error between the observable energy and model 

(4)P(c|E) = P(E|c) × P(c)

P(E)
,

(5)posterior ∝ likelihood × prior.

predictions follows a normal distribution; therefore, the 
likelihood is expressed as Gaussian:

where y(c) is the energy predicted by the model for param-
eters c and ER, I are the real and imaginary components of 
the observed energy, respectively, and �R, I represents the 
experimental errors in the real and imaginary parts, respec-
tively. The error ER,I = y(c)R,I + �R,I consists of three com-
ponents: intrinsic model error ( �mo

R,I
 ), emulator error ( �em

R,I
 ), 

and experimental error ( �ex
R,I

 ). Each of these errors follows a 
normal distribution with standard deviations �mo

R,I
, �em

R,I
 , and 

�ex
R,I

 , respectively. These contribute to the total error, which 
is given by

Next, we utilize Markov Chain Monte Carlo (MCMC) meth-
ods to sample from the posterior distribution. MCMC pro-
vides a way to avoid direct computation of the marginal like-
lihood P(E), which would be computationally expensive. In 
each step, new parameter proposals are drawn from a normal 
distribution, and the acceptance probability is determined 
using the Metropolis algorithm.

where lowercase p is the posterior computed as the product 
of the likelihood and prior, and c and c′ represent the current 
and proposed parameters, respectively. This approach satis-
fies the detailed balance condition, ensuring that the sam-
pling distribution converges to the true posterior distribution.

However, the high computational cost of high-fidelity 
models, such as GCC, makes direct evaluations for every 
parameter sample prohibitive. To overcome this chal-
lenge, we employed an emulator based on the reduced basis 
method, which offers a fast and accurate approximation of 
the original model. This emulator dramatically reduces the 
computational time while preserving the accuracy, thereby 
enabling efficient posterior sampling within a feasible 
timeframe.

2.3 � The emulator

Intrinsically, the wavefunction exhibits several consistent 
properties as the parameters of the Hamiltonian in Eq.  (1) 
vary, assuming that the system remains linear. For exam-
ple, when the total potential strength V is sufficiently large, 
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the system becomes tightly bound and the corresponding 
eigenstate wavefunction is spatially localized. By contrast, 
for a weak total potential strength, the system becomes 
loosely bound or unbound, and the wavefunction displays 
an extended asymptotic tail, which is characteristic of reso-
nant states [35]. By leveraging these properties, one can 
avoid repeated diagonalization of the high-dimensional, 
high-fidelity Hamiltonian in Eq.  (1) for each parameter set. 
Instead, the emulator algorithm learns the trajectory of the 
wavefunctions across the parameter space, thereby enabling 
efficient and accurate predictions. This is mathematically 
expressed as

Here, the wavefunction �⊙ of the target Hamiltonian, gov-
erned by specific parameters, is written as a linear combina-
tion of Nb reduced basis functions �RB

n
 . These reduced basis 

functions are generally chosen as high-fidelity solutions for 
selected parameters, which can be prepared in advance dur-
ing the offline stage [42]. Numerically, we apply principal 
component analysis (PCA) to these high-fidelity solutions 
to extract the main features of the physical wavefunction, 
further reducing the number of required reduced basis func-
tions [25]. We refer to the resulting reduced basis as the 
training basis because it captures the essential physical fea-
tures of eigenstates.

This basis spans a low-dimensional subspace that effec-
tively represents the main characteristics of the physical 
eigenstates, in stark contrast with the significantly larger 
dimensionality of the original free-particle basis. By insert-
ing the reduced basis expansion into the Schrödinger equa-
tion, we obtain a projected Hamiltonian defined in this 
reduced subspace, with matrix elements given by

The associated norm matrix is defined as

The approximated eigenstate E⊙ was then determined as an 
eigenvalue of the combined matrices. The eigenvectors cor-
respond to the solutions of the basis coefficients {an} in Eq. 
(9).

A central challenge in reduced basis modeling is identi-
fying the physically relevant eigenstate among many solu-
tions of the reduced subspace. In contrast with high-fidelity 
calculations based on the Berggren basis—where the ana-
lytic structure of the complex energy plane facilitates clear 
classification of bound, resonant, and scattering states—the 
emulator’s eigenvalues are often irregularly distributed and 
do not exhibit distinct branch cuts. Consequently, additional 

(9)�⊙ ≈

Nb−1∑
n=0

an�
RB
n
.

(10)H̃mn = �
RB
m

∗
H�

RB
n
.

(11)Nmn = �
RB
m

∗
�

RB
n
.

selection criteria were required to isolate the target physical 
eigenstate.

One possible approach is to examine the eigenvector com-
ponents on a principal component basis. In theory, physi-
cally meaningful eigenstates should exhibit dominant con-
tributions from the first few principal components, because 
these components are associated with localized structures in 
the configuration or momentum space. However, this strat-
egy is hindered by the complexity of configuration mixing 
and the lack of direct physical interpretability of the indi-
vidual principal components.

Given that the current reduced basis method (RBM) is 
mathematically equivalent to a variational approach [24], the 
physical eigenstate is expected to closely resemble the train-
ing basis. In contrast, spurious solutions—such as those cor-
responding to scattering-like states—typically show weaker 
projections onto this basis. To distinguish the target eigen-
state robustly, we adopted an overlap-based method. In this 
approach, a reference wavefunction is selected in advance, 
and the overlap between this reference and each eigenfunc-
tion in the reduced subspace is computed as:

where �i represents the i-th eigenvalue solution in the sub-
space, and �ref is the reference. The maximum overlap indi-
cates the solution corresponding to the target state.

To improve the accuracy of the emulator’s approximation, 
we applied a wavefunction correction scheme inspired by 
the Lippmann–Schwinger equation [43] using the following 
iterative formula:

where � is a relaxation factor used to preserve the local 
features of the initial emulator solution and suppress diver-
gence toward scattering-like solutions. Once the corrected 
wavefunction is obtained, the energy is updated as

While a more detailed analysis of the L–S correction method 
is provided in [43], the present work focuses on its prelimi-
nary performance and its effectiveness in improving emula-
tor predictions for realistic physical systems.

2.4 � Model space and parameters

We selected the two-proton emitter 6Be as our test nucleus, 
which has been extensively studied  [44–46]. The experi-
mental energy of the 0+ state of 6Be has been reported to be 
1.372 − 0.092i MeV.
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|||�

T
ref
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|||,
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In the GCC framework, the hyperangular configuration 
for 6Be is constructed as described in Ref.  [33]. The quan-
tum number set (K,�x,�y) determines the different configu-
rations, where we set max(�x,�y) ≤ 8 and Kmax = 16 . We 
employ the Berggren basis for channels, where Kmax ≤ 3 to 
account for continuum effects, using the Harmonic Oscil-
lator (HO) basis with an oscillator length b = 1.75 fm and 
Nmax = 20 , supplemented in higher orbitals. Although the 
L–S correction method is theoretically inapplicable on an 
HO basis, we set the maximum hyperspherical quantum 
number Kmax = 8 and used the Berggren basis for all angu-
lar parts.

To fit the experimental energy, we adjusted several 
non-affine potential parameters and the Berggren 
basis contour. The nuclear force is primarily governed 
by six parameters, which we set as: a = 0.65 fm , 
V0 = −49 MeV , R0 = 2 fm , Vs.o. = 30 MeV , Rs.o. = 2 fm , 
and the radius of the Coulomb potential RC = 2 fm . The 
complex momentum Berggren basis contour is defined 
as  k̃ = 0 → 0.3 − 0.1i → 0.4 − 0.05i → 0.5 → 0.8 → 1.2 → 2 → 4 → 6 
(all in fm−1 ), with 30 discretized scattering states in each 
segment. The nucleon–nucleon interaction was modeled 
using the Minnesota potential, with detailed parameters 
set as in Ref.  [37].

To maximize the accuracy of the emulator, both the 
bound and resonance states were included in the training 
subspace, although the target state was resonant. The train-
ing parameter is the strength of the total potential, which 
varies between [0.9,  1] for resonance states and [1.2,  2] 
for bound states, to obtain their corresponding wavefunc-
tions. PCA is then performed on the 20 training vectors 
with a singular value accuracy of 10−15 , which is close to 
the computational limitations of our current servers.

The standard deviation �mo was chosen empirically to 
ensure effective convergence of the probability distribution 
following the previous studies, and was set to 0.25% of the 
corresponding experimental value [19, 27]. The error �ex is 
negligible compared with the other sources of uncertainty. 
For the emulator error �em , we collected random samples 
and fitted their error distribution with a Gaussian func-
tion as well as the Berggren basis contour properties, ulti-
mately determining its value to be 15% of the experimental 
value, as will be discussed in detail later. Prior studies 
employed uncertainty decomposition methods to address 
model deviations with improved precision [7]. However, 
given the much larger deviations in our emulator, we omit-
ted such corrections from this analysis.

We assume that the prior distribution for parameter vec-
tor c follows a multivariate normal distribution as follows:

For each step in the Metropolis algorithm, new param-
eters were proposed using a multivariate Gaussian distri-
bution, with the current parameter being the mean value. 
To ensure faster convergence, we adjusted the standard 
deviation to maintain an acceptance rate of approximately 
30% ∼ 40% [47], setting it to 0.02 ⋅ c.

3 � Results and discussion

3.1 � Computational performance of the Emulator

PCA is a powerful dimensionality reduction technique that 
is particularly effective when the training space exhibits 
redundancy. To quantitatively assess this redundancy, we 
analyzed the singular values of the principal components and 
determined an appropriate cutoff for the subspace dimen-
sion. Figure 1 shows the singular value spectrum of the 
dataset. Although resonance states feature abrupt changes 
in their asymptotic behavior compared with bound states, 
their key features can still be efficiently captured via PCA 
owing to similarities in the local structure of their wave-
functions. Specifically, the first component that captures 
the largest singular value in Fig.  1 resembles the shapes of 
the bound states. The second component corresponds to the 
average shape of a sharp peak in the resonance wavefunc-
tion in momentum space, as well as the oscillatory outgoing 
wave. The exponentially decaying weighted components are 
more similar to the free-particle basis, which is analogous 
to the Berggren basis.

⎡
⎢⎢⎣

c0
c1
c2

⎤
⎥⎥⎦
∼ N

⎛
⎜⎜⎝

⎡
⎢⎢⎣

1

1

1

⎤
⎥⎥⎦
,

⎡
⎢⎢⎣

0.252 0 0

0 0.252 0

0 0 0.252

⎤
⎥⎥⎦

⎞
⎟⎟⎠
.

Fig. 1   Singular values of the wavefunction distribution. n denotes the 
index of the principal components, and s represents their correspond-
ing singular values
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The singular value analysis indicates that our training 
space sufficiently captures the high-fidelity properties. While 
both bound and resonance features are included, the emula-
tion process primarily functions as an interpolation operator 
because the parameter variations are smooth. Therefore, it is 
more reasonable to estimate the error between the emulator 
and GCC using a statistical approach rather than providing 
�em point by point.

As discussed previously, isolating the target eigenstate 
within the emulator subspace is crucial. To achieve this, 
we employed an overlap technique, which is mathemati-
cally defined in Eq.  (12). Figure 2 presents the overlap 
analysis for a representative parameter point given by 
[c0, c1, c2]

T = [0.9, 0.8, 1.1]T . In this case, the reference 
wavefunction was chosen as the resonance state obtained 
using all potential strengths set to unity. This reference is 
sufficiently diffuse to suppress spurious overlaps with scat-
tering-like states, which may otherwise introduce significant 
noise into the overlap calculation.

In Fig. 2, each circle corresponds to the eigenvalue of 
the emulator Hamiltonian in the reduced subspace. The 
size and color intensity of the circles represent the mag-
nitude of overlap with the reference wavefunction. The 
largest overlap is associated with the emulator-predicted 
eigenstate, marked by the darkest circle, which yields an 
energy of Eem = 2.715 − 0.45(9)i MeV. For compari-
son, the exact result obtained from the full GCC model is 
EGCC = 2.649 − 0.52(7)i MeV, shown as a red square. The 
non-negligible difference between these values highlights 
the necessity of incorporating emulator error into MCMC 
sampling to ensure a reasonable acceptance rate.

Assuming that the emulator error follows a normal distri-
bution, we estimated it by sampling 1000 random parameter 
points. After excluding unphysical scattering-like states (102 
invalid cases), we retained 898 valid samples for the analy-
sis. The resulting relative error distributions are shown in 
Fig. 3, where over 90% of the predictions exhibited devia-
tions below 10% in both the real and imaginary parts. The 
mean relative error is approximately 15%, demonstrating the 
overall robustness of the emulator. Relative errors provide 
a more consistent metric across varying energy scales than 
absolute deviations. In practice, because exact GCC results 
are unavailable during sampling, we use the experimental 
energy Eexp as a practical reference for converting relative 
errors into absolute uncertainty, assigning �em = 15% ⋅ Eexp . 
This threshold also serves to filter non-resonant or deeply 
bound states during posterior inference. While approxi-
mately 10% of the points exceed our acceptable error range, 
likely owing to pathological parameter configurations or 
model limitations, these outliers exhibit limited deviation 
magnitudes and negligibly impact our overall uncertainty 
estimates. The physical reasonableness of our results is fur-
ther confirmed by the posterior energy distributions shown 
in Fig.  5, thus validating the uncertainty quantification 
approach.

The remarkable computational efficiency of the emulator 
is worth emphasizing. The diagonalization of the projected 
Hamiltonian requires only 5.26 × 10−3 s, which is nearly four 
orders of magnitude faster than the 36.6 s required for full 

Fig. 2   Overlap between the reference state and eigenstates for the 
chosen parameters. The darkest and largest point represents the larg-
est overlap, corresponding to the emulated eigenstate energy. The red 
square marks the exact energy calculated by GCC​

Fig. 3   (Color online) Cross-validation of the emulator performance. 
The two axes show the log-scaled relative errors of the real and imag-
inary parts of the predicted energies, respectively. Dashed lines indi-
cate the upper limit of the acceptable region, corresponding to a rela-
tive error of 10%
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high-fidelity GCC calculation. This acceleration enabled the 
use of an emulator for large-scale posterior sampling and 
uncertainty quantification.

3.2 � Constraining potentials in 6Be

We investigated the 0+ ground state of 6 Be by using our 
Bayesian analysis framework. Following a burn-in of 1000 
points and collection of 100,000 posterior samples, we 
achieved an acceptance rate of 36.7%. The entire computa-
tion was completed in approximately 3 h on a server, which 
would have required nearly four months without the use of 
the emulator.

Figure 4 presents the posterior distributions for all three 
model parameters. Evidently, the central force strength c0 is 
strongly constrained by the data. In contrast, the spin–orbit 
strength c1 retains a distribution shape close to its prior 
value, suggesting limited sensitivity of the observable to 
this parameter in the current setting. The distribution of the 
nucleon–nucleon interaction strength c2 shows a moderate 
deviation from the prior value, which may be attributed to a 
negative correlation with the central force strength c0.

We further visualize the distribution of the calculated res-
onance energies under the sampled posterior parameters, as 
shown in Fig.  5. The peak values of the distributions exhib-
ited noticeable deviations from the experimental resonance 
energies. This discrepancy may arise partly because the 
likelihood function is more sensitive to the imaginary part 
of energy, which is smaller than the real energy. Moreover, 
latent variables that are not directly sampled in this study, 
such as the diffuseness and radius parameters of the WS 
potential, also contribute to the overall model uncertainty.

We fitted the predicted energy distributions shown in 
Fig. 5 to Gaussian functions, extracting both the mean ( � ) 
and standard deviation ( � ) values, which are indicated in 
the upper-right corner of each subplot. The predicted mean 
energies deviate by 17% (real energy) and 8% (imaginary 
energy) from the reference values. The energy deviations fall 
within approximately ±1� credible intervals, demonstrating 
the statistical consistency between the results of the emulator 
and the expected uncertainty distribution. Furthermore, this 
implies that emulators can be developed for other non-affine 
parameters in the future to investigate the overall impact of 
our model on multi-nucleon decay.

3.3 � Correcting the emulated eigen‑pair with L–S 
method

As discussed above, the (L–S) correction not only yields 
consistent improvements in both eigenvalues and wavefunc-
tions, but also enables a natural extension of real-space train-
ing data to the complex energy plane.

Here, we examine the performance of our L–S correc-
tion method for two types of training spaces in the 6 Be sys-
tem: One composed of bound-state solutions, and the other 
of resonance-state solutions. We selected a representative 
parameter point, [c0, c1, c2] = [0.925, 1, 1.4] , drawn from 
the posterior distribution shown in Fig.  4. This parameter 
set corresponds to a resonance state that is close to the 
experimental value.

The maximum iteration step was set to 1000, and we 
defined �(E) as the relative error of each step compared to 
the previous step. Figure 6 illustrates the convergence behav-
ior of our iteration, whereas Table 1 lists the final corrected 
energy with high accuracy. The results demonstrate that 
the L–S correction can converge to nearly the same energy 
within a few hundred steps regardless of whether the training 
space consists of bound or resonance states. This is particu-
larly beneficial for improving the extrapolation capability 
of the RBM, particularly when only bound high-fidelity 

Fig. 4   (Color online) Posterior distributions of the parameters. c
0
 , 

c
1
 , and c

2
 represent the strengths of the central force, spin–orbit cou-

pling, and nucleon–nucleon interaction, respectively. The black histo-
grams show the posterior distributions, and the blue curves represent 
the prior sampling regions

Fig. 5   (Color online) Energy distribution of the posterior parameters. 
The blue histogram represents the real energy distribution, while the 
green histogram corresponds to the imaginary energy distribution. 
Each distribution has been fitted with a Gaussian function, with the 
mean value � and standard deviation � indicated
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solutions are available as a training subspace. In Table 1, 
the L–S correction significantly improved the energy accu-
racy, particularly the width, bringing it closer to the GCC 
high-fidelity value.

Remarkably, the L–S correction can restore the resonance 
energy even when the emulator subspace consists only of 
bound states, which do not exhibit oscillatory asymptotic 
behavior outside the nucleus in the resonance state. Fig-
ure 7 illustrates how the wavefunction in momentum space 
is restored. The emulated wavefunction closely resembles 
that of the bound states, with small contributions from the 
low-momentum components and outer regions of the coor-
dinate space. The dominant configurations, such as C 1 and 
C 2 with occupation probabilities exceeding 0.1 and quan-
tum numbers K = 0 or 4, are well recovered, leading to an 
energy correction that closely approaches the resonance 
state. In contrast, configurations associated with higher K 
values (e.g., K = 8 and 12) exhibit larger deviations in the 
wavefunction shape compared with the high-fidelity results. 
These discrepancies are particularly pronounced at low 
momenta, particularly below 2 fm−1 . This can be attributed 
to the fact that high-K configurations typically represent 
the subdominant components in the total wavefunction. As 
such, infinitesimal features such as inflection points on the 
momentum axis, which are not well captured by the original 

emulator, can lead to amplified errors in the correction pro-
cess. Nevertheless, these results highlight that the L–S cor-
rection method can be an effective tool for extending the 
emulator to continuum physics. Further studies should be 
conducted in the future.

4 � Summary

In this study, we developed a Bayesian uncertainty quan-
tification framework for resonant states in open quantum 
systems by integrating an RBM emulator with a GCC model. 
The emulator was constructed using the EC technique with 
a training subspace that included both the bound and reso-
nant components. To isolate physical resonance solutions 
from scattering-like background states, we introduced an 
overlap-based selection method that enables accurate and 
robust emulation of complex energy eigenvalues relevant to 
continuum structures.

We applied this framework to an unbound nucleus 6 Be for 
the first time. The EC emulator demonstrated both accuracy 
and efficiency, achieving at least four orders of magnitude 
in computational speedup relative to full GCC calculations. 
Large-scale Bayesian sampling was completed within 3 h, 
allowing us to identify key sensitivity patterns in the param-
eter space. In particular, we found that the central component 
of the nuclear force plays a dominant role in determining 
the resonance position, while the valence nucleon–nucleon 
interaction contributes a negatively correlated uncertainty. 
The relative uncertainties in the predicted real and imagi-
nary energy components were 17% and 8%, respectively, 
indicating a greater sensitivity of the resonance widths to 
the interaction strength.

Furthermore, we explored the extrapolation of res-
onance properties from a bound-state training sub-
space by using a correction scheme based on the Lipp-
mann–Schwinger equation. This method provides refined 
wavefunctions within the reduced subspace and consist-
ently improves the emulator’s output. The iterative cor-
rection converged to the machine precision ( 10−15 ) within 
400 steps. The corrected energies closely approach the 
high-fidelity solutions regardless of whether the training 
subspace is bound or resonant. The corrected wavefunc-
tions restored the dominant configurations well, particu-
larly in the asymptotic region of the resonance states. Most 
of the remaining errors originate from higher-K configu-
rations, where the L–S correction becomes suboptimal 
owing to the absence of relevant perturbative components 
in the initial emulated wavefunction used for the itera-
tion. These findings not only enhance the practical predic-
tive power of uncertainty quantification but also advance 
algorithmic methods for resonance modeling, contributing 
to the broader development of dripline nuclear physics. 

Fig. 6   (Color online) Convergence behavior of the L–S correction. 
The blue line represents the result when the RBM training space is 
constructed with bound states, where the total potential strength 
ranges from 2 to 2.5. The green line corresponds to the case where 
the training space is constructed with resonances, with the total 
potential strength ranging from 0.9 to 1

Table 1   Energy corrections for 6 Be system (all in MeV)

Bound training Resonance training

E
GCC

1.520 − 0.085(4)i 1.520 − 0.085(4)i

E
Emu

2.394 − 0.008(4)i 1.807 − 0.052(7)i

Ecorr. 1.844 − 0.091(4)i 1.844 − 0.091(4)i
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The GCC framework’s inherent ability to describe open 
quantum systems makes it ideal for extension to heavier 
two-nucleon emitters. To enable realistic applications for 
these nuclei, our future work will focus on incorporating 
effects such as core excitations and deformation into the 
uncertainty quantification.
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