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Abstract

To study the uncertainty quantification of resonant states in open quantum systems, we developed a Bayesian framework by
integrating a reduced basis method (RBM) emulator with the Gamow coupled-channel (GCC) approach. The RBM, con-
structed via eigenvector continuation and trained on both bound and resonant configurations, enables the fast and accurate
emulation of resonance properties across the parameter space. To identify the physical resonant states from the emulator’s
output, we introduce an overlap-based selection technique that effectively isolates true solutions from background artifacts.
By applying this framework to unbound nucleus °Be, we quantified the model uncertainty in the predicted complex ener-
gies. The results demonstrate relative errors of 17.48% in the real part and 8.24% in the imaginary part, while achieving a
speedup of four orders of magnitude compared with the full GCC calculations. To further investigate the asymptotic behavior
of the resonant-state wavefunctions within the RBM framework, we employed a Lippmann—Schwinger (L-S)-based cor-
rection scheme. This approach not only improves the consistency between eigenvalues and wavefunctions but also enables
a seamless extension from real-space training data to the complex energy plane. By bridging the gap between bound-state
and continuum regimes, the LS correction significantly enhances the emulator’s capability to accurately capture continuum
structures in open quantum systems.

Keywords Uncertainty quantification - Reduced basis method - Resonance emulator - Bayesian analysis - Gamow coupled-
channel model

1 Introduction

Modern nuclear physics has evolved into a field of increas-
ing complexity, accompanied by the development of a wide
range of theoretical models capable of describing diverse
systems and observables with growing precision [1-5].
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Rather than focusing solely on numerical predictions, it is
increasingly important to deepen our understanding of the
predictive capabilities and reliability of theoretical mod-
els, and to elucidate their connection with experimental
observations. This shift in perspective has motivated the
growing emphasis on uncertainty quantification in recent
years [6—13], which not only provides quantitative measures
of predictive reliability, but also allows the systematic con-
straint of model parameters through realistic experimental
data. These advances ultimately lead to deeper insights into
the interpretation of the observed nuclear phenomena.
Statistical methods have played a pivotal role in this para-
digm shift. Although traditional frequentist approaches are
widely used for parameter estimation and regression [9],
the rise in machine learning (ML) techniques, particularly
within the Bayesian framework, has opened new opportuni-
ties for model calibration, experimental design, and model
mixing [14-20]. In contrast with classical frequentist sta-
tistics, Bayesian inference incorporates prior knowledge
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of a model and its parameters into posterior distributions,
treating data as probabilistic ensembles rather than isolated
points [21]. This framework is particularly advantageous for
rigorous uncertainty quantification.

A key challenge in Bayesian analysis is the high com-
putational costs associated with large-scale sampling. Mil-
lions or even billions of model evaluations are typically
required to achieve convergence of posterior distributions.
This is prohibitive for state-of-the-art nuclear models, which
are often characterized by large Hilbert spaces and high-
dimensional operators [22]. Efficient and accurate surrogate
models are essential to address this bottleneck. Although
Gaussian Process (GP) emulators have been applied in the
previous studies [8], their data-driven nature often limits
physical interpretability. This limitation motivates the adop-
tion of model-driven strategies, such as the reduced basis
method (RBM), which has emerged as a powerful tool
for reducing the computational cost of physics-informed
simulations [23-25]. The RBM is particularly effective
because it constructs low-dimensional approximations
rooted in the fundamental dynamics of the system, such as
the Schrodinger equation. Certain implementations of the
RBM are mathematically similar to the variational princi-
ple [24], making them suitable for uncertainty analysis in
linearly varying parameter spaces [19, 26-28]. Furthermore,
the RBM enables effective extrapolation into regions that
are inaccessible to direct high-fidelity computations [29].

One of the most cutting-edge directions in nuclear physics
is the study of nuclei near driplines, which are considered
open quantum systems. These exotic nuclei have attracted
considerable attention because of their unique structural fea-
tures [5, 30, 31], where continuum coupling and resonance
degrees of freedom play central roles. Accurately describ-
ing such systems requires models that explicitly account for
these continuum effects, which significantly increases the
complexity of high-fidelity computations. At present, only a
limited number of microscopic models are capable of treat-
ing resonant states in a consistent and unified framework [5,
32, 33], among which the Gamow Shell Model (GSM) and
its variants [5] are prominent examples. To quantify or even
improve the computational capabilities of these models, it is
essential to advance our understanding of the dripline, and
ultimately, the unified nuclear chart.

Although the ground states of stable nuclei can be accu-
rately reproduced using a simple Galerkin RBM [26, 34], mod-
eling open quantum systems presents new challenges. In such
systems, exotic structural features and nonsmooth parameter
dependencies significantly hinder the performance of standard
RBM emulators, thereby complicating the large-scale sam-
pling required for Bayesian inference. A key characteristic of
dripline nuclei is the presence of resonant states, whose wave-
functions exhibit fundamentally different asymptotic behav-
iors compared with bound states [35]. Developing reliable
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emulators for such resonance states remains a challenge. For
example, Ref. [36] proposed an improved eigenvector continu-
ation (EC) scheme to extrapolate resonance energies from a
bound-state training subspace.

In this study, we employed an EC-based emulator to per-
form uncertainty quantification for the weakly bound nucleus
%Be within the Gamow coupled-channel (GCC) framework. To
further address the asymptotic behavior of resonant wavefunc-
tions, we apply a Lippmann—Schwinger (L-S) equation-based
correction, aiming to construct an emulator that can extrapo-
late from the bound to resonant states and provide corrected
wavefunctions within the reduced subspace.

The remainder of this paper is organized as follows. In
Sect. 2, we introduce the three-body GCC model, Bayesian
inference framework, and the construction of the EC emulator.
In Sect. 3, we present the uncertainty quantification results for
®Be and the outcomes of the LS correction scheme. Finally, a
summary and outlook are provided in Sect. 4.

2 Methods

2.1 The three-body Gamow coupled-channel
method

In this study, we focused on atomic nuclei that can be effec-
tively described as three-body systems. Within the three-body
GCC model, such systems are modeled as frozen cores with
two valence nucleons. The corresponding Hamiltonian is given
by

3
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where the kinetic energy of each cluster is represented by
pi2 /2m;, and T . is the kinetic energy of the center of mass.
The potential energy consists of the interactions between
the clusters; specifically, V; represents the nuclear force
between the frozen core and each valence nucleon, which
is modeled using the phenomenological Woods—Saxon
(WS) potential within the GCC approach. The potential is
expressed as follows:

cps € 1d -
V\[Nos M) = Vof () + ¢, - Vs,o.<;af(r)) ~(L8) + Veou (),
@)
where the form factor f{7) is given by

1
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In addition, the Coulomb potential is defined by the point-
charge formula when the distance between two clusters
exceeds the Coulomb radius R, while transitioning to a
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finite-distribution form when the distance becomes smaller
than R.

The nucleon—nucleon interaction between the two valence
nucleons V;(r,;) was modeled using the Minnesota poten-
tial [37]. To capture the different effects of the nuclear
force and ‘pairing’ interactions, we introduce a set of three
potential strength parameters, ¢ = [c,, ¢;,c,]". Specifically,
¢, governs the central potential, ¢, accounts for spin—orbit
coupling, and ¢, indicates the nucleon—nucleon interaction.
These parameters set the stage for exploring how non-affine
parameters influence the entire potential, thereby providing
a framework for future investigations.

In the GCC framework, the total three-body wavefunc-
tion is expressed in Jacobi coordinates, which is particularly
advantageous for describing the asymptotic behavior of the
system [33, 38]. The angular components are constructed
using hyperspherical harmonic oscillator basis functions,
while the radial part—determined by a set of quantum num-
bers representing various configurations—is expanded using
the Berggren basis [39, 40]. This basis is directly related
to the incoming and outgoing momenta of free particles as
well as the complex energy of the eigenstates, satisfying
the orthogonality and completeness relationship [41]. The
Berggren basis is a key feature of the GCC model, allow-
ing it to treat scattering states, resonances, and bound states
equally. This provides a universal framework for modeling
the nuclear structure and scattering properties.

2.2 Bayesian inference framework

The basic philosophy of Bayesian inference is encapsulated
by Bayes’ theorem, which in this context is expressed as:

P(E|c) X P(c)

P(c|E) = PE) “

where P(c|E) is the posterior probability that represents the
updated distribution of model parameters c after incorporat-
ing the observed data E. The term P(E|c) is the likelihood,
which describes the probability of observing data E given
the parameters c. P(c) represents the prior probability that
encodes the initial belief regarding the parameters before
observing any data. The denominator P(E) is the marginal
likelihood, which ensures that the posterior sums to one.
Therefore, the key function in Bayesian inference is

posterior « likelihood X prior. )

In this study, we applied a Bayesian framework to quan-
tify uncertainties in the three-body energy and the associ-
ated sensitivities of the strength parameters for nuclear and
nucleon—nucleon forces between valence pairs. We assume
that the error between the observable energy and model

predictions follows a normal distribution; therefore, the
likelihood is expressed as Gaussian:

1
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where y(c) is the energy predicted by the model for param-
eters ¢ and Ey, | are the real and imaginary components of
the observed energy, respectively, and oy | represents the
experimental errors in the real and imaginary parts, respec-
tively. The error Eg | = y(€)g + €g consists of three com-
ponents: intrinsic model error (61?,(1))’ emulator error (eﬁ'fl‘ ,
and experimental error (eli’fl). Each of these errors follows a
normal distribution with standard deviations 01'2‘]’, aﬁr";, and
af{fl, respectively. These contribute to the total error, which
is given by

P(E|c) =

(6)

Ora = (O )* + (o) + (o)’ ™
Next, we utilize Markov Chain Monte Carlo (MCMC) meth-
ods to sample from the posterior distribution. MCMC pro-
vides a way to avoid direct computation of the marginal like-
lihood P(E), which would be computationally expensive. In
each step, new parameter proposals are drawn from a normal
distribution, and the acceptance probability is determined
using the Metropolis algorithm.

p(C’IE)>

A(cac):min(l,m

®)
where lowercase p is the posterior computed as the product
of the likelihood and prior, and ¢ and ¢’ represent the current
and proposed parameters, respectively. This approach satis-
fies the detailed balance condition, ensuring that the sam-
pling distribution converges to the true posterior distribution.

However, the high computational cost of high-fidelity
models, such as GCC, makes direct evaluations for every
parameter sample prohibitive. To overcome this chal-
lenge, we employed an emulator based on the reduced basis
method, which offers a fast and accurate approximation of
the original model. This emulator dramatically reduces the
computational time while preserving the accuracy, thereby
enabling efficient posterior sampling within a feasible
timeframe.

2.3 The emulator
Intrinsically, the wavefunction exhibits several consistent
properties as the parameters of the Hamiltonian in Eq. (1)

vary, assuming that the system remains linear. For exam-
ple, when the total potential strength V is sufficiently large,
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the system becomes tightly bound and the corresponding
eigenstate wavefunction is spatially localized. By contrast,
for a weak total potential strength, the system becomes
loosely bound or unbound, and the wavefunction displays
an extended asymptotic tail, which is characteristic of reso-
nant states [35]. By leveraging these properties, one can
avoid repeated diagonalization of the high-dimensional,
high-fidelity Hamiltonian in Eq. (1) for each parameter set.
Instead, the emulator algorithm learns the trajectory of the
wavefunctions across the parameter space, thereby enabling
efficient and accurate predictions. This is mathematically
expressed as

Ny—1

Yo~ ) a, ¥ )
n=0

Here, the wavefunction ¥ of the target Hamiltonian, gov-
erned by specific parameters, is written as a linear combina-
tion of NV, reduced basis functions ‘I’EB. These reduced basis
functions are generally chosen as high-fidelity solutions for
selected parameters, which can be prepared in advance dur-
ing the offline stage [42]. Numerically, we apply principal
component analysis (PCA) to these high-fidelity solutions
to extract the main features of the physical wavefunction,
further reducing the number of required reduced basis func-
tions [25]. We refer to the resulting reduced basis as the
training basis because it captures the essential physical fea-
tures of eigenstates.

This basis spans a low-dimensional subspace that effec-
tively represents the main characteristics of the physical
eigenstates, in stark contrast with the significantly larger
dimensionality of the original free-particle basis. By insert-
ing the reduced basis expansion into the Schrodinger equa-
tion, we obtain a projected Hamiltonian defined in this
reduced subspace, with matrix elements given by

a,, =Y gy, (10)
The associated norm matrix is defined as
N, = WRE WS, (11)

The approximated eigenstate £, was then determined as an
eigenvalue of the combined matrices. The eigenvectors cor-
respond to the solutions of the basis coefficients {a, } in Eq.
).

A central challenge in reduced basis modeling is identi-
fying the physically relevant eigenstate among many solu-
tions of the reduced subspace. In contrast with high-fidelity
calculations based on the Berggren basis—where the ana-
lytic structure of the complex energy plane facilitates clear
classification of bound, resonant, and scattering states—the
emulator’s eigenvalues are often irregularly distributed and
do not exhibit distinct branch cuts. Consequently, additional
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selection criteria were required to isolate the target physical
eigenstate.

One possible approach is to examine the eigenvector com-
ponents on a principal component basis. In theory, physi-
cally meaningful eigenstates should exhibit dominant con-
tributions from the first few principal components, because
these components are associated with localized structures in
the configuration or momentum space. However, this strat-
egy is hindered by the complexity of configuration mixing
and the lack of direct physical interpretability of the indi-
vidual principal components.

Given that the current reduced basis method (RBM) is

mathematically equivalent to a variational approach [24], the
physical eigenstate is expected to closely resemble the train-
ing basis. In contrast, spurious solutions—such as those cor-
responding to scattering-like states—typically show weaker
projections onto this basis. To distinguish the target eigen-
state robustly, we adopted an overlap-based method. In this
approach, a reference wavefunction is selected in advance,
and the overlap between this reference and each eigenfunc-
tion in the reduced subspace is computed as:
Overlap(i) = |‘Pfef‘lli|, (12)
where W, represents the i-th eigenvalue solution in the sub-
space, and W ; is the reference. The maximum overlap indi-
cates the solution corresponding to the target state.

To improve the accuracy of the emulator’s approximation,
we applied a wavefunction correction scheme inspired by
the Lippmann—Schwinger equation [43] using the following
iterative formula:

(@)
P = . # +(1-w)- P, (13)
o — diag(Ey)
where o is a relaxation factor used to preserve the local
features of the initial emulator solution and suppress diver-
gence toward scattering-like solutions. Once the corrected
wavefunction is obtained, the energy is updated as

(i+1) _ \g(i+D=* (i+1)
EGHD = WD e, (14)

While a more detailed analysis of the L—S correction method
is provided in [43], the present work focuses on its prelimi-
nary performance and its effectiveness in improving emula-
tor predictions for realistic physical systems.

2.4 Model space and parameters

We selected the two-proton emitter 5Be as our test nucleus,
which has been extensively studied [44-46]. The experi-
mental energy of the 0* state of °Be has been reported to be
1.372 — 0.092i MeV.
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In the GCC framework, the hyperangular configuration
for °Be is constructed as described in Ref. [33]. The quan-
tum number set (K, 7, fy) determines the different configu-
rations, where we set max(Z,,# ) < 8 and K;,,, = 16. We
employ the Berggren basis for channels, where Ko <3t0
account for continuum effects, using the Harmonic Oscil-
lator (HO) basis with an oscillator length & = 1.75 fm and
N,.x = 20, supplemented in higher orbitals. Although the
L-S correction method is theoretically inapplicable on an
HO basis, we set the maximum hyperspherical quantum
number K, = 8 and used the Berggren basis for all angu-
lar parts.

To fit the experimental energy, we adjusted several
non-affine potential parameters and the Berggren
basis contour. The nuclear force is primarily governed
by six parameters, which we set as: a =0.65fm,
Vo =—-49MeV, R, =2fm, V., =30MeV, R, =2 fm,
and the radius of the Coulomb potential R- = 2 fm. The
complex momentum Berggren basis contour is defined
as k=0-03-01i—-04-005-05-08—>12-2-4-6
(all in fm™"), with 30 discretized scattering states in each
segment. The nucleon—nucleon interaction was modeled
using the Minnesota potential, with detailed parameters
set as in Ref. [37].

To maximize the accuracy of the emulator, both the
bound and resonance states were included in the training
subspace, although the target state was resonant. The train-
ing parameter is the strength of the total potential, which
varies between [0.9, 1] for resonance states and [1.2, 2]
for bound states, to obtain their corresponding wavefunc-
tions. PCA is then performed on the 20 training vectors
with a singular value accuracy of 1071, which is close to
the computational limitations of our current servers.

The standard deviation 6™ was chosen empirically to
ensure effective convergence of the probability distribution
following the previous studies, and was set to 0.25% of the
corresponding experimental value [19, 27]. The error 6®* is
negligible compared with the other sources of uncertainty.
For the emulator error 6™, we collected random samples
and fitted their error distribution with a Gaussian func-
tion as well as the Berggren basis contour properties, ulti-
mately determining its value to be 15% of the experimental
value, as will be discussed in detail later. Prior studies
employed uncertainty decomposition methods to address
model deviations with improved precision [7]. However,
given the much larger deviations in our emulator, we omit-
ted such corrections from this analysis.

We assume that the prior distribution for parameter vec-
tor ¢ follows a multivariate normal distribution as follows:

¢ 170252 o o
eo|l~M|1].| 0 0252 o
¢, 1{| o o0 025

For each step in the Metropolis algorithm, new param-
eters were proposed using a multivariate Gaussian distri-
bution, with the current parameter being the mean value.
To ensure faster convergence, we adjusted the standard
deviation to maintain an acceptance rate of approximately
30% ~ 40% [47], setting it to 0.02 - c.

3 Results and discussion
3.1 Computational performance of the Emulator

PCA is a powerful dimensionality reduction technique that
is particularly effective when the training space exhibits
redundancy. To quantitatively assess this redundancy, we
analyzed the singular values of the principal components and
determined an appropriate cutoff for the subspace dimen-
sion. Figure 1 shows the singular value spectrum of the
dataset. Although resonance states feature abrupt changes
in their asymptotic behavior compared with bound states,
their key features can still be efficiently captured via PCA
owing to similarities in the local structure of their wave-
functions. Specifically, the first component that captures
the largest singular value in Fig. 1 resembles the shapes of
the bound states. The second component corresponds to the
average shape of a sharp peak in the resonance wavefunc-
tion in momentum space, as well as the oscillatory outgoing
wave. The exponentially decaying weighted components are
more similar to the free-particle basis, which is analogous
to the Berggren basis.

100.

1076.

1078.

0 2 4 6 8 10 12 14 16 18
n

Fig. 1 Singular values of the wavefunction distribution. n denotes the
index of the principal components, and s represents their correspond-
ing singular values
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The singular value analysis indicates that our training
space sufficiently captures the high-fidelity properties. While
both bound and resonance features are included, the emula-
tion process primarily functions as an interpolation operator
because the parameter variations are smooth. Therefore, it is
more reasonable to estimate the error between the emulator
and GCC using a statistical approach rather than providing
o™ point by point.

As discussed previously, isolating the target eigenstate
within the emulator subspace is crucial. To achieve this,
we employed an overlap technique, which is mathemati-
cally defined in Eq. (12). Figure 2 presents the overlap
analysis for a representative parameter point given by
[cos €15 21T =10.9, 0.8, 1.1]T. In this case, the reference
wavefunction was chosen as the resonance state obtained
using all potential strengths set to unity. This reference is
sufficiently diffuse to suppress spurious overlaps with scat-
tering-like states, which may otherwise introduce significant
noise into the overlap calculation.

In Fig. 2, each circle corresponds to the eigenvalue of
the emulator Hamiltonian in the reduced subspace. The
size and color intensity of the circles represent the mag-
nitude of overlap with the reference wavefunction. The
largest overlap is associated with the emulator-predicted
eigenstate, marked by the darkest circle, which yields an
energy of E., =2.715-0.45(9)i MeV. For compari-
son, the exact result obtained from the full GCC model is
Egce = 2.649 — 0.52(7)i MeV, shown as a red square. The
non-negligible difference between these values highlights
the necessity of incorporating emulator error into MCMC
sampling to ensure a reasonable acceptance rate.

0.0t
[ Exact o 0.6
— _p9ob ©  Emulated
=
D]

_ ° 04 o
\E/ 0.4 ° ° £
— og_] <
K -06f ° @)
N— ° O
E 0.2
— —0.8f o

OO
—1.0p | ° , ||
0 5 10

Re(F) (MeV)

Fig.2 Overlap between the reference state and eigenstates for the
chosen parameters. The darkest and largest point represents the larg-
est overlap, corresponding to the emulated eigenstate energy. The red
square marks the exact energy calculated by GCC
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Assuming that the emulator error follows a normal distri-
bution, we estimated it by sampling 1000 random parameter
points. After excluding unphysical scattering-like states (102
invalid cases), we retained 898 valid samples for the analy-
sis. The resulting relative error distributions are shown in
Fig. 3, where over 90% of the predictions exhibited devia-
tions below 10% in both the real and imaginary parts. The
mean relative error is approximately 15%, demonstrating the
overall robustness of the emulator. Relative errors provide
a more consistent metric across varying energy scales than
absolute deviations. In practice, because exact GCC results
are unavailable during sampling, we use the experimental
energy E,,, as a practical reference for converting relative

€X
errors into l:1bsolute uncertainty, assigning 6™ = 15% - E,.
This threshold also serves to filter non-resonant or deeply
bound states during posterior inference. While approxi-
mately 10% of the points exceed our acceptable error range,
likely owing to pathological parameter configurations or
model limitations, these outliers exhibit limited deviation
magnitudes and negligibly impact our overall uncertainty
estimates. The physical reasonableness of our results is fur-
ther confirmed by the posterior energy distributions shown
in Fig. 5, thus validating the uncertainty quantification
approach.

The remarkable computational efficiency of the emulator
is worth emphasizing. The diagonalization of the projected
Hamiltonian requires only 5.26 x 10~% s, which is nearly four
orders of magnitude faster than the 36.6 s required for full

:
S @
E/ :.' ° Samples
= gt S Acceptable zone
—6 —1 50
Ig|Re(Femu— FEccc)/Re(Eceo)|

Fig.3 (Color online) Cross-validation of the emulator performance.
The two axes show the log-scaled relative errors of the real and imag-
inary parts of the predicted energies, respectively. Dashed lines indi-
cate the upper limit of the acceptable region, corresponding to a rela-
tive error of 10%
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high-fidelity GCC calculation. This acceleration enabled the
use of an emulator for large-scale posterior sampling and
uncertainty quantification.

3.2 Constraining potentials in °Be

We investigated the 0 ground state of ®Be by using our
Bayesian analysis framework. Following a burn-in of 1000
points and collection of 100,000 posterior samples, we
achieved an acceptance rate of 36.7%. The entire computa-
tion was completed in approximately 3 h on a server, which
would have required nearly four months without the use of
the emulator.

Figure 4 presents the posterior distributions for all three
model parameters. Evidently, the central force strength ¢, is
strongly constrained by the data. In contrast, the spin—orbit
strength ¢, retains a distribution shape close to its prior
value, suggesting limited sensitivity of the observable to
this parameter in the current setting. The distribution of the
nucleon—nucleon interaction strength ¢, shows a moderate
deviation from the prior value, which may be attributed to a
negative correlation with the central force strength .

We further visualize the distribution of the calculated res-
onance energies under the sampled posterior parameters, as
shown in Fig. 5. The peak values of the distributions exhib-
ited noticeable deviations from the experimental resonance
energies. This discrepancy may arise partly because the
likelihood function is more sensitive to the imaginary part
of energy, which is smaller than the real energy. Moreover,
latent variables that are not directly sampled in this study,
such as the diffuseness and radius parameters of the WS
potential, also contribute to the overall model uncertainty.

—— Posterior
—— Prior
Pl
NN
2
o \<D
SIS
S S Y s N L
AV AT AR NN
Co C1 2

Fig.4 (Color online) Posterior distributions of the parameters. c,
¢, and ¢, represent the strengths of the central force, spin—orbit cou-
pling, and nucleon—nucleon interaction, respectively. The black histo-
grams show the posterior distributions, and the blue curves represent
the prior sampling regions

= —0.084
o =0.017

I
o
S
S
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(==l
(==}
(=)

Counts

—-0.15  —=0.10  —0.05
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Fig.5 (Color online) Energy distribution of the posterior parameters.
The blue histogram represents the real energy distribution, while the
green histogram corresponds to the imaginary energy distribution.
Each distribution has been fitted with a Gaussian function, with the
mean value y and standard deviation ¢ indicated

We fitted the predicted energy distributions shown in
Fig. 5 to Gaussian functions, extracting both the mean (u)
and standard deviation (o) values, which are indicated in
the upper-right corner of each subplot. The predicted mean
energies deviate by 17% (real energy) and 8% (imaginary
energy) from the reference values. The energy deviations fall
within approximately +1¢ credible intervals, demonstrating
the statistical consistency between the results of the emulator
and the expected uncertainty distribution. Furthermore, this
implies that emulators can be developed for other non-affine
parameters in the future to investigate the overall impact of
our model on multi-nucleon decay.

3.3 Correcting the emulated eigen-pair with L-S
method

As discussed above, the (L—S) correction not only yields
consistent improvements in both eigenvalues and wavefunc-
tions, but also enables a natural extension of real-space train-
ing data to the complex energy plane.

Here, we examine the performance of our L-S correc-
tion method for two types of training spaces in the Be sys-
tem: One composed of bound-state solutions, and the other
of resonance-state solutions. We selected a representative
parameter point, [cy, ¢, ¢,] =[0.925, 1,1.4], drawn from
the posterior distribution shown in Fig. 4. This parameter
set corresponds to a resonance state that is close to the
experimental value.

The maximum iteration step was set to 1000, and we
defined e(FE) as the relative error of each step compared to
the previous step. Figure 6 illustrates the convergence behav-
ior of our iteration, whereas Table 1 lists the final corrected
energy with high accuracy. The results demonstrate that
the L—S correction can converge to nearly the same energy
within a few hundred steps regardless of whether the training
space consists of bound or resonance states. This is particu-
larly beneficial for improving the extrapolation capability
of the RBM, particularly when only bound high-fidelity
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—21
10 — DBound training
1061 — Resonance training
—
~10{
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10714 L
0 250 500 750 1000
iter step

Fig.6 (Color online) Convergence behavior of the L-S correction.
The blue line represents the result when the RBM training space is
constructed with bound states, where the total potential strength
ranges from 2 to 2.5. The green line corresponds to the case where
the training space is constructed with resonances, with the total
potential strength ranging from 0.9 to 1

Table 1 Energy corrections for °Be system (all in MeV)

Bound training Resonance training

1.520 — 0.085(4)i
1.807 — 0.052(7)i
1.844 — 0.091(4)i

Egec 1.520 — 0.085(4)i
Egm 2.394 — 0.008(4)i
E 1.844 — 0.091(4)i

Ccorr.

solutions are available as a training subspace. In Table 1,
the LS correction significantly improved the energy accu-
racy, particularly the width, bringing it closer to the GCC
high-fidelity value.

Remarkably, the L—S correction can restore the resonance
energy even when the emulator subspace consists only of
bound states, which do not exhibit oscillatory asymptotic
behavior outside the nucleus in the resonance state. Fig-
ure 7 illustrates how the wavefunction in momentum space
is restored. The emulated wavefunction closely resembles
that of the bound states, with small contributions from the
low-momentum components and outer regions of the coor-
dinate space. The dominant configurations, such as C, and
C, with occupation probabilities exceeding 0.1 and quan-
tum numbers K = 0 or 4, are well recovered, leading to an
energy correction that closely approaches the resonance
state. In contrast, configurations associated with higher K
values (e.g., K = 8 and 12) exhibit larger deviations in the
wavefunction shape compared with the high-fidelity results.
These discrepancies are particularly pronounced at low
momenta, particularly below 2 fm~!. This can be attributed
to the fact that high-K configurations typically represent
the subdominant components in the total wavefunction. As
such, infinitesimal features such as inflection points on the
momentum axis, which are not well captured by the original

@ Springer

emulator, can lead to amplified errors in the correction pro-
cess. Nevertheless, these results highlight that the L—S cor-
rection method can be an effective tool for extending the
emulator to continuum physics. Further studies should be
conducted in the future.

4 Summary

In this study, we developed a Bayesian uncertainty quan-
tification framework for resonant states in open quantum
systems by integrating an RBM emulator with a GCC model.
The emulator was constructed using the EC technique with
a training subspace that included both the bound and reso-
nant components. To isolate physical resonance solutions
from scattering-like background states, we introduced an
overlap-based selection method that enables accurate and
robust emulation of complex energy eigenvalues relevant to
continuum structures.

We applied this framework to an unbound nucleus °Be for
the first time. The EC emulator demonstrated both accuracy
and efficiency, achieving at least four orders of magnitude
in computational speedup relative to full GCC calculations.
Large-scale Bayesian sampling was completed within 3 h,
allowing us to identify key sensitivity patterns in the param-
eter space. In particular, we found that the central component
of the nuclear force plays a dominant role in determining
the resonance position, while the valence nucleon—nucleon
interaction contributes a negatively correlated uncertainty.
The relative uncertainties in the predicted real and imagi-
nary energy components were 17% and 8%, respectively,
indicating a greater sensitivity of the resonance widths to
the interaction strength.

Furthermore, we explored the extrapolation of res-
onance properties from a bound-state training sub-
space by using a correction scheme based on the Lipp-
mann—Schwinger equation. This method provides refined
wavefunctions within the reduced subspace and consist-
ently improves the emulator’s output. The iterative cor-
rection converged to the machine precision (10~!3) within
400 steps. The corrected energies closely approach the
high-fidelity solutions regardless of whether the training
subspace is bound or resonant. The corrected wavefunc-
tions restored the dominant configurations well, particu-
larly in the asymptotic region of the resonance states. Most
of the remaining errors originate from higher-K configu-
rations, where the L—-S correction becomes suboptimal
owing to the absence of relevant perturbative components
in the initial emulated wavefunction used for the itera-
tion. These findings not only enhance the practical predic-
tive power of uncertainty quantification but also advance
algorithmic methods for resonance modeling, contributing
to the broader development of dripline nuclear physics.
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Fig.7 (Color online) Corrected wavefunctions for different configu-
rations. Each configuration is labeled as C;, where ‘i’ denotes integers
from 1 to 10, ordered by decreasing occupation probability (shown
as green numbers), respectively. Configurations are identified by the

The GCC framework’s inherent ability to describe open
quantum systems makes it ideal for extension to heavier
two-nucleon emitters. To enable realistic applications for
these nuclei, our future work will focus on incorporating
effects such as core excitations and deformation into the

uncertainty quantification.
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