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Abstract

We employed random distributions and gradient descent methods for the Generator Coordinate Method (GCM) to identify
effective basis wave functions, taking halo nuclei ®He and °Li as examples. By comparing the ground state (0%) energy of
®He and the excited state (0%) energy of °Li calculated with various random distributions and manually selected genera-
tion coordinates, we found that the heavy tail characteristic of the logistic distribution better describes the features of the
halo nuclei. Subsequently, the Adam algorithm from machine learning was applied to optimize the basis wave functions,
indicating that a limited number of basis wave functions can approximate the converged values. These results offer some
empirical insights for selecting basis wave functions and contribute to the broader application of machine learning methods

in predicting effective basis wave functions.

Keywords Generator Coordinate Method - Effective basis wave functions - Nuclear cluster model - Machine learning -

Halo nuclei

1 Introduction

Clustering is a universal phenomenon observed in various
systems, ranging from clusters of galaxies to clusters of
nuclei [1-3]. In nuclear physics, clustering is one of the most
important features in light nuclei [4-9]. Since the develop-
ment of the a cluster model, light nuclei have been studied
from the perspective of cluster features for more than half
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a century [10-14]. Various nuclear theories have been pro-
posed to investigate nuclear clustering [15—19]. The three
traditional nuclear cluster models are the Resonance Group
Method (RGM) [20-22], Generator Coordinate Method
(GCM) [23-26], and Orthogonality Condition Model
(OCM) [27]. Some developed models, such as the Antisym-
metrized Molecular Dynamics (AMD) model [28-30] and
the Tohsaki-Horiuchi-Schuck-Ropke (THSR) model [31],
have also been introduced in recent years.

The Generator Coordinate Method (GCM) was first intro-
duced by Hill and Wheeler [23] in 1953 in the context of
nuclear fission. Subsequently, Griffin and Wheeler extended
this method of a general many-body tool [24]. The principle
of the GCM is to express nuclear state wave functions as
superpositions of non-orthogonal basis functions such as
Slater determinants [32]. Because of the flexibility in select-
ing the basis functions or generator coordinates, GCM offers
a general method for addressing many-body problems in
nuclear cluster physics and other fields [33-37].

The GCM requires the superposition of different types of
basis wave functions, thereby demonstrating their flexibil-
ity. However, selecting basis states is a crucial issue in some
cases. The choice of collective coordinates often relies on
empirical and phenomenological methods, which increase the
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complexity and computational time for many-body cluster sys-
tems. This issue is especially pronounced when applying the
GCM to the structure of halo nuclei such as ‘He, a well-known
Borromean nucleus. It comprises a loosely bound and spatially
extended three-body system, typically including the « core sur-
rounded by two weakly bound neutrons a + n + n [38—40].
Using more efficient basis states in the GCM to describe such
three-body gas-like systems accurately is an important issue
[41].

In recent years, there have been many theoretical studies
[42—44] exploring how to select effective basis states for the
GCM. For example, Suzuki and Varga introduced stochastic
sampling in the few-body model [45]; Suhara and Kanada-
En’yo have proposed the f —y constrained selection of
Slater determinants in nuclear cluster model [46]; Addition-
ally, Fukuoka et al. developed the imaginary-time evolution
method in the mean-field model [47]; And Takatoshi et al.
refined the Bloch-Brink & cluster model with the stochastic
sampling method [48]. Owing to the powerful data processing
capabilities of machine learning algorithms (ML), they have
been widely employed in addressing different nuclear phys-
ics issues, including nuclear mass systematics [49-51], radii
prediction [52], decay descriptions [53], many-body problems
[54, 55], and nuclear structure [56]. It has attempted to identify
hidden laws from a large amount of historical data and use
them for prediction or classification.

In this study, by choosing the di-neutron halo nucleus of
®He (& 4+ n + n) and the proton—neutron halo of °Li (a + n + p)
systems [57], we studied the effective basis problems in GCM,
using global optimization and local gradient descent methods.
First, the empirical law of the effective basis wave function
distribution was summarized by comparing various random
distributions. Subsequently, the Adam method [58] was used
to provide a better standard of basis wave functions.

This paper is organized in the following way. Section 2
briefly reviews the framework of the wave function and the
Generator Coordinate Method. In Sect. 3, the numerical results
of optimization and discussions are provided. Finally, a sum-
mary is provided in Sect. 4.

2 Theoretical framework

The general ansatz of the Generator Coordinate Method [24]
can be expressed,

[Poem) = /dqlcb(q))f(q)- 1

where ¢ = (q,. 45, ..., q,) denotes a series of generator coor-
dinates. The f(q) is the weight function. The trial wave func-
tion |®(g)) is important, because it should be based on the
specific motion patterns of the physical system. The GCM
approach offers the benefit of obtaining the ground states
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and various categories of excited states that are described
by the selected generator coordinates.

In nuclear cluster physics, the Brink wave function
[59] is typically used as the basis wave function for GCM
calculations. Taking °He as an example, the Brink wave
function with an « + n + n cluster configuration can be
written as

O(R,,Ry,R,) = A{®,(R,)®, (R,) 0, (R,) }

6
®,(R,) = A{Hqs(R,ri)xir,}
i=3
®,R) = ¢R.1) 1,7,
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d(R.1;) = ( )

— ) e W .
nb?

@

Here, the wave function @, represents the a-cluster with a
configuration of (0s)*, and the valence neutron wave func-
tion is denoted as @,,. R, R, and R, represent the generator
coordinates of « particles and two neutrons, abbreviated as
{R} = {R|.R,.R,}. $(R.r;) y;7; describes the i-th single-
particle wave function, with ¢(R, ;) specifying the spatial
wave function. The spin and isospin of each nucleon are
denoted by y; and 7;, respectively. The spins of the two
valence neutrons were set up and down, respectively. The
harmonic oscillator parameter b = 4/1/(2v) = 1.46 fm to
avoid spurious center-of-mass problems in this work, which
is identical to that used in Ref. [60, 61]. The microscopic
cluster wave function of °Li(a + n + p) can be constructed
similarly.

Within the GCM framework, the final wave function of
®He can be obtained by superposing various configurations
ofa+n+n.

VT = firc PP (R, 3)

(R)K

where %K and P* denote the angular-momentum and
parity projector, respectively. For convenience, we write
P, PTO({R}) = ®{F ({R}). The coefficients fiz,x can then
be calculated using the Hill-Wheeler equation [32]

(I)Jn

> Fuw (@i RY| |0l ((R')))

{R'}K’ “
= E( @y (R | @ ({R'}))] = 0.

By changing the values in the generated coordinate set {R},
various basis wave functions can be obtained. Note that as
long as the number of superposed basis wave functions is
sufficiently large, the final wave function is highly accurate.
However, this approach results in a significant computa-
tional time. Fortunately, not all the basis wave functions are
equally important. Therefore, selecting effective basis wave
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functions can achieve the same effect as superposing a large
number of them, but with fewer effective wave functions.
The objective of this study is to select effective basis wave
functions characterized by the generated coordinate set {R }
from both global and local perspectives.

The Hamiltonian for *He and SLi three-body systems can
be written as:

A A A A
= Phi= T+ 30+ Y e+ Y s )

i=1 i<j i<j i<j

where ¢, represents the kinetic energy of the individual
nucleons, and the center of mass is denoted by T, ., . vy, Ve,
and v g denote the effective nucleon—nucleon interaction,
the Coulomb interaction and spin-orbit interaction, respec-
tively. The Volkov No.2 interaction [62] was employed for
the nucleon—nucleon interaction. The expression is given as:

by =(W — MP°P* + BP* — HP")
6
X [Vyexp (=r*/ct) + Vyexp (=17 /c3)]. ©
The parameters were set as follows: W = 0.4, M = 0.6.
For °He, B = H = 0.125 [10]; For °Li, B = H = 0.08 [63].
Regarding the Gaussian terms, the values are V|, = —60.65
MeV, V, = 61.14 MeV, ¢, = 1.80 fm, and ¢, = 1.01 fm.
For the spin—orbit interaction, the G3RS potential [64,
65] is adopted,

‘,}LS = V0<€d‘r2 _ edzr2>i)3li .8 @)

The strength parameter V|, was fixed at 2000 MeV. The
Gaussian parameters d, and d, are configured to 5.0 fm™
and 2.778 fm~2, respectively.

3 Results and discussion

In this section, we take the di-neutron halo nucleus ®He and
proton—neutron halo nucleus ®Li as examples, each concep-
tualized as three-cluster structures @« + n+nand « + n + p,
respectively. First, we summarize empirical laws using ran-
dom distribution methods from a global perspective. Subse-
quently, at the local level, the Adam algorithm from machine
learning is introduced to optimize the generation coordinates
using the gradient descent theory.

3.1 Searching for specific distributions leading
to effective basis wave functions

In the GCM, the mesh points for the generator coordinates
were not predetermined. Although it is theoretically feasible
to obtain exact solutions by enumerating a large number of
wave functions with different configurations, this approach

is computationally impractical. Instead, we hypothesize that
the effective basis wave functions may follow specific distri-
butions. To test this hypothesis, we generated coordinate sets
{R} using various random distributions and applied them
to calculate the ground state energy of the di-neutron halo
nucleus ®He. By analyzing the relationship between the num-
ber of superimposed basis wave functions and the resulting
ground state energies, we aim to derive global empirical
rules that can enhance the efficiency of the GCM.

As a benchmark test, we first calculated the ground state
of the di-neutron halo *He nucleus using traditional mesh
points for the Brink wave functions. As shown in Fig. 1,
different sets of coordinates can be generated by adjust-
ing the relative distances L,, L,, and angle 6 relative to the
x-axis. Where L, is the distance between the a particle and
neutron, and L, is the distance between the other neutron
and the center-of-mass of the a particle and neutron. Subse-
quently, various configurations with different sets (L, L,, 6)
were superposed. The mesh points for L, were established
at intervals of 0.35 fm, resulting in 14 points, whereas for
L,, the intervals were set at 0.5 fm, accumulating 18 points.
The values for angle 6 were sequentially determined to be
0°,30°, 60°, and 90°. By employing this traditional method,
1008 basis wave functions were generated. Subsequently,
the ground state energy was computed after diagonaliza-
tion. Due to large overlap between some wave functions or
their lack of physical significance, 539 out of the initial 1008
basis wave functions were removed during the calculations.
This outcome is shown in the last column of Table 1, along
with other results recorded in the same table. Furthermore,
Fig. 2 displays how the energy varies with the superposition
of wave functions.

Another common method for selecting mesh points is to
distribute them within a spherical shell structure. The spher-
ical structure of the latter is depicted as a three-dimensional,
multi-layered spherical shell. The initial radius of the spheri-
cal shell was set at 1 fm, with spacing between adjacent lay-
ers at 1 fm, producing a total of five layers from the inside

Fig.1 (Color online) This schematic figure illustrates the Brink wave
function of ®He (¢ 4+ n + n). Blue spheres represent neutrons, while
red spheres denote protons. The a cluster and the two neutrons are
aligned in the same plane
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Fig.2 (Color online) Energy convergence of the ground state (0%)
of ®He using various methods to generate basis wave functions. The
brown and gray lines represent the results from the spherical shell and
traditional methods, respectively. The curves in other colors represent
the calculation result of the generated coordinates generated by the
random distribution

out. The Marsaglia algorithm [66] was employed to ensure
a uniform distribution of points on each spherical shell. For
each layer, 200 random three-dimensional coordinate values
were generated. Following a procedure similar to the earlier
one, the coordinates of the 1000 points generated are des-
ignated as Ry, (xy;, yy;, 25;)- This randomization process was
repeated three times to obtain the generation coordinates for
the a particles and two neutrons. By superposing these 1000
basis wave functions, the ground state of %He was calculated.
Detailed information regarding the results is presented in
Fig. 2 and Table 1.

In addition to the above common methods, we also
introduce other random distribution functions for gener-
ating mesh points, such as Gamma distribution, Uniform
distribution, Chi-square distribution, Logistic distribution,

and Normal distribution. Considering the halo feature of ©
He, which is characterized by a diffuse density distribution
around the nucleus, specific parameters for various random
distribution functions have been selectively determined to
assess their impact on the tail region. Although no quan-
titative relationships for parameter values under different
distributions have been specified, we fortuitously discovered
that the results remained relatively stable within a reason-
able range of parameter values after experimenting with
various settings. The probability density functions and spe-
cific parameter values for random distributions are listed
in Table 1. Furthermore, GCM calculations are performed
within the center-of-mass coordinate system; consequently,
the results depend solely on the relative distances between
the clusters. Thus, in the Normal and Logistic distributions,
the results are influenced only by the standard deviation o,
independent of the mean u. For computational convenience,
1 is set to zero in these cases. Each random distribution is
utilized to generate 1000 basis wave functions for the GCM
calculations.

Figure 2 shows the energy convergence of the ground
state using the various methods presented here to generate
the basis wave functions. As one can see, the convergence
rate of the energy variation curves corresponding to random
distributions is significantly faster than that derived from
manually configured structures. Table 1 provided qualita-
tive insights. The ground state energies obtained using the
traditional and spherical shell methods are —27.884 MeV
and —28.212 MeV, respectively, both of which are obviously
higher than those from all random distributions.

From Fig. 2 and Table 1, it is interesting to see that the
Logistic distributions outperform other random distribu-
tions, with the 0% state energies calculated at —28.260 MeV.
Note that the Gamma distribution is also effective, although
it is determined by two parameters (a, ), which provide
a wider range of adjustments. Single-parameter Normal
and Logistic distributions offer significant advantages for

Table 1 Comparison of the

: Distribution model Probability density function Parameters E (MeV) Super-
different methods to generate posed
basis wave functions. The basis
calculated ground state energies
of °He (MeV) and the number Spherical shell - - 28212 704
of superposed basis are listed Traditional approach - - -27.884 469

Gamma distribution floa, p) = ﬂurl(n)xafle—; a=23,p=15 —28.257 939
Rayleigh distribution Flxo) = ﬁe_z% c=3.0 —28.239 916
Exponential distribution fod) = de™™ A=0.5 —28.229 764
1 1 1 (= p0)? = = —_
Normal distribution Fop, o) = 1 e_<262) (u=0),0=23 28.245 957
V2zo
Logistic distribution Fuy) = oG-y (u=0),y=12 —28.260 946

y( 14+e=C—=w/r )2
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practical calculations. This superiority is attributed to the
assumption of independence in the Normal distribution,
which mirrors the relative spatial near independence of the
clusters in the nuclei. Furthermore, the thicker asymptotic
tails of the probability density function in the Normal dis-
tribution closely corresponded to the halo characteristics of
®He. Similarly, although the Logistic distribution resembles
the Normal distribution, it features notably heavier tails.
This characteristic better captures the extended features
of the °He halo nucleus structure, thereby encompassing a
broader distribution of the effective basis states.

To substantiate this conclusion further, we compared
the ground state energy by maintaining approximate equal-
ity between the standard deviations of the Logistic and
Normal distributions according to the theoretical formula
y = (\/ga) /x. In this case, the two distributions have similar
shapes but slightly different tail thicknesses. We selected
four sets of generation coordinates with varying parameters
for comparison, where each set generates 1000 basic wave
functions. Specifically, the parameters for the Logistic dis-
tribution were set aty = 1.2, 1.3, 1.4, 1.5 and for the Normal
distribution at o = 1.8,2.0,2.3,2.5. The calculated ground
state (0*) energies of °He are presented in Table 2, and Fig. 3
illustrates the energy convergences with an increasing num-
ber of basis. From Table 2, it can be seen that among the
computations employing Normal distributions, the best
performance is achieved with a standard deviation ¢ of 2.3,
where the ground state energy converges to —28.245 MeV.
Conversely, for ¢ values of 1.8, 2.0, and 2.5, the energies
converge to —28.224 MeV, —28.222 MeV, and —28.231 MeV,
respectively. On the other hand, the Logistic distribution

-25.5
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~ 265 |
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Fig.3 (Color online) Energy convergence of the ground state (0%)
of ®He. To compare the results of Normal distribution and Logistic
distribution, 1000 ground state wave functions are generated using
four sets of different parameters. In addition, the red line denotes the
results of Adam optimization

Table 2 The numerical results of the ground state (0*) of ®He, from
the calculations of Logistic distribution and Normal distribution with
different parameters

Distribution Parameters E (MeV)
Logistic distribution y=12 —28.260
y=13 —28.268
y=14 —28.262
y=15 —28.266
Normal distribution c=18 —28.224
=20 —28.222
c=23 —28.245
c=25 —28.231

clearly outperforms the Normal distribution, with ground
state energies uniformly converging around —28.26 MeV.
Notably, even at its poorest performance with parameter
y = 1.2, the energy convergence reaches —28.260 MeV,
surpassing the mean performance of the Normal distribu-
tion groups. Additionally, Fig. 3 illustrates that the rate of
energy convergence for the Logistic distribution group is
substantially faster than that for the Normal distribution
group, thereby exhibiting greater robustness. This indicates
that the Logistic distribution includes a more effective basis,
which could be because of its heavy tail part.

It is worth mentioning that the ground state (1*) of ®Li
converges rapidly, requiring only a minimal number of basis
wave functions. Calculations using various parameters for
the Logistic and Normal distributions also quickly converged
to approximately —30.02 MeV, indicating that there is no
need for further optimization of the basis wave functions.
Therefore, further discussion of the °Li ground state is omit-
ted in this work.

To confirm the aforementioned conclusions and ascer-
tain the universality of the Logistic distribution in halo
nuclear structures, we studied the excited states (0) of
®Li and generated three sets of Logistic and Normal dis-
tributions under conditions of similar standard deviations
for comparative analysis. Parameters for the Logistic dis-
tribution were set at y =1.0, 1.3, and 1.5, whereas those
for the Normal distribution were set at ¢ = 1.8, 2.0, and
2.3. Considering the proton—neutron halo structure of 5Li,
whose excited state energy converges more readily than
the ground state energy of ®He, we generated 400 basis
wave functions for each parameter set to perform the GCM
calculations. The results are shown in Fig. 4 and Table 3.
It is gratifying to observe that compared with the Normal
distribution, the Logistic distribution still performs well in
each group. According to the excitation energy of the 0*
state in Table 3, it can be observed that the Logistic dis-
tribution parameters y are set at 1.0, 1.3, and 1.5, yielding

@ Springer
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Fig.4 (Color online) Energy convergence of the excited state (0%) of
®Li. To compare the results of Normal distribution and Logistic dis-
tribution, 400 wave functions are generated using three sets of differ-
ent parameters. The red line represents the results of Adam optimiza-
tion

Table 3 The numerical results of the excited state (0*) of °Li, from
the calculations of Logistic distribution and Normal distribution with
different parameters

Distribution Parameters E (MeV)
Logistic distribution y=10 —27.945
y=13 —27.999
y=15 —28.013
Normal distribution c=18 —27.933
c=20 —27.969
c=23 -27.991

convergence values of energy at —27.945 MeV, —27.999
MeV, and -28.013 MeV, respectively. These values
slightly surpass those derived from the Normal distribu-
tion parameter o set at 1.8, 2.0, and 2.3, which resulted in
energy convergences of —27.933 MeV, —27.969 MeV, and
—27.991 MeV. As shown in Fig. 4, the energy gradually
converges as the number of basis wave functions increases,
with the Logistic distribution exhibiting a slightly faster
rate of convergence than the Normal distribution. These
results indicate that the thick-tail characteristic of the
Logistic distribution is not only suitable for calculating the
ground state (0%) energy of ®He with a di-neutron halo, but
also applicable to the excited state (0*) of °Li with a pro-
ton—neutron halo. Furthermore, the Logistic distribution
encompasses a broader range of effective basis wave func-
tions, thereby providing crucial empirical insights for the

@ Springer

subsequent selection of effective basis wave functions. It
is important to analyze the underlying mechanisms behind
this distribution.

3.2 Adam optimization based on gradient descent
principle

In GCM calculations, determining an appropriate distri-
bution of optimized basis wave functions is of paramount
importance for practical computations. However, studying
the optimal basis wave functions mathematically at a local
level is indispensable.

As shown in Eq. (3), the eigen energy E can be considered
as a multivariable function with a set of { R} as its independ-
ent variables. Thus, solving for the energy using the vari-
ational principle is analogous to finding the minimum of a
multivariable function f({R},, {R},, ..., {R},;). The compu-
tational procedure for optimizing the superposition of 100
basis wave functions is as follows: To begin this process, a
random set of generated coordinates { {R},, {R},, ..., {R};}
is created as the starting position. For the first basis wave
function ®({R},), the energy gradient must be calculated to
adjust the coordinates {R}, in the gradient direction. When
a local minimum was reached, this position was recorded as
the effective basis wave function location {R}}™. Next, for
the second basis wave function ®({R},), we superimpose
it onto the previously optimized {R};". This results in a
simplified expression for the wave function as ®({R }(I)Pt) +
®({R},). Then, only coordinates {R}, are adjusted in the
direction of the gradient, while coordinates CD({R}(I)pt) are
held constant. Once the local minimum is achieved, the cur-
rent position is designated as the effective basis wave func-
tion position, C[)({R};pt). For the third basis wave function
®({R},), the same procedure was followed. The adjustment
process focuses solely on coordinates {R} in the direction
of the gradient, keeping {R}(l’pt and {R}(z’pt constant. This
method was repeated for each subsequent wave function,
ensuring that the optimized coordinates remained fixed,
while the new coordinates underwent gradient descent. This
iterative approach continues until all basis wave functions
are optimized. In principle, a set of optimal generating coor-
dinates for the basis wave functions can be obtained with
sufficient computational precision.

We used the Adam algorithm for gradient descent [58].
The Adam algorithm was chosen for its efficiency in opti-
mizing the basis wave functions, particularly for handling
complex and flat energy surfaces. By adapting learning rates
and leveraging historical gradients, Adam outperformed tra-
ditional methods, reducing computational costs and improv-
ing the convergence speed. This makes it well suited for
challenging calculations, such as those involving halo nuclei.
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Given the gradual slowing of energy convergence with
increasing number of basis wave functions, distinct treat-
ments were applied to the initial and terminal functions. In
the early superposition phase, owing to the rapid decrease in
energy, the Adam algorithm’s learning rate a was set at 0.3
with a maximum iteration count of 12 and an allowance for
four oscillations to prevent missing minimal value points.
When the fifth wave function was reached, as the rate of
energy decline slowed, the learning rate was adjusted to 0.7
with the maximum iterations increasing to 40, and oscilla-
tions allowed up to eight to minimize time consumption.

Although Sect. 3.1 shows the Logistic distribution out-
performing Normal distributions and other models, we used
the Normal distribution with ¢ = 2.3 to generate 100 initial
coordinates { R} for a clearer comparative analysis. The opti-
mization results for the ground state (0%) of %He, as shown
in Fig. 3. Compared to —28.064 MeV with unoptimized
basis wave functions, the energy significantly decreases to
—28.203 MeV after Adam optimization. Even compared to
the well-performing Normal distribution, the superposition
of 100 optimized basis wave functions through the Adam
method equates to the effects of adding 200 or even 500
basis wave functions in the Normal distribution. This out-
come not only confirms the feasibility and effectiveness of
gradient descent optimization using the Adam method but
also demonstrates that a small number of basis wave func-
tions can achieve the effects of superposing multiple wave
functions, and that Adam optimization includes a large num-
ber of effective basis wave functions.

To further validate this conclusion, the Adam algorithm
was applied to the calculation of the excited state (0) energy
of SLi, and the results are depicted in Fig. 4. Compared to
—27.656 MeV with non-optimized basis wave functions, the
energy decreased significantly to —27.937 MeV after Adam
optimization. Compared with other parameter settings in the
Normal distribution, the superposition effect of 100 opti-
mized basis wave functions is equivalent to adding 200—300
ones in the Normal distribution. This suggests that there is
still room for improvement in determining better distribu-
tions for the mesh points in the GCM. It is worth noting that
owing to the differing nuclear structures of various nuclei,
the optimized basis functions derived by the Adam algo-
rithm for one nucleus in principle cannot be directly applied
to another.

4 Summary and outlook

To conclude, we investigated the effective basis wave func-
tion distributions for the di-neutron halo nucleus ®He and
proton—neutron halo nucleus °Li using the Generator Coor-
dinate Method. From a global perspective, our comparative

analysis of various random distributions against manually
configured models revealed that the Normal distribution
performed significantly better than the other distributions,
except for the Logistic distribution. This superior perfor-
mance is attributed to the independence assumption of
the Normal distribution, which mirrors the relative spa-
tial independence of the nuclei, and the heavy tail of its
probability density function, which resembles the diffuse
characteristics typical of halo nuclei. Interestingly, the
Logistic distribution, with its probability density curve
similar to that of the Normal distribution but with a more
pronounced tail, not only retained the advantages of the
Normal distribution but also more accurately represented
halo nuclear structures. In both the ground state (0*) of
®He and the excited state (0*) of °Li, the Logistic distribu-
tion yielded better results than the Normal distribution,
suggesting that it encompasses a broader range of effective
basis wave functions and reduces the number of necessary
wave function overlays for halo structures.

Furthermore, from a local viewpoint, we analogized the
optimization of basis wave functions to solve a multivari-
ate extremum problem and employed the Adam algorithm
to optimize 100 basis wave functions, achieving consider-
able outcomes. The results for both the ground state (07)
of ®He and the excited state (0%) of °Li indicated that a few
optimized basis wave functions could achieve the effects
of multiple wave functions overlays, thus validating the
feasibility and universality of the gradient descent method.
This not only provides a benchmark for selecting effec-
tive basis wave functions but also makes a solid founda-
tion for future applications of machine learning methods
to comprehensively predict the coordinates of effective
basis wave functions. Although the Adam algorithm cur-
rently requires extensive runtime due to computational
constraints, future research will focus on optimizing it to
enhance computational efficiency.
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