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Abstract
We employed random distributions and gradient descent methods for the Generator Coordinate Method (GCM) to identify 
effective basis wave functions, taking halo nuclei 6 He and 6 Li as examples. By comparing the ground state ( 0+ ) energy of 
6 He and the excited state ( 0+ ) energy of 6 Li calculated with various random distributions and manually selected genera-
tion coordinates, we found that the heavy tail characteristic of the logistic distribution better describes the features of the 
halo nuclei. Subsequently, the Adam algorithm from machine learning was applied to optimize the basis wave functions, 
indicating that a limited number of basis wave functions can approximate the converged values. These results offer some 
empirical insights for selecting basis wave functions and contribute to the broader application of machine learning methods 
in predicting effective basis wave functions.

Keywords  Generator Coordinate Method · Effective basis wave functions · Nuclear cluster model · Machine learning · 
Halo nuclei

1  Introduction

Clustering is a universal phenomenon observed in various 
systems, ranging from clusters of galaxies to clusters of 
nuclei [1–3]. In nuclear physics, clustering is one of the most 
important features in light nuclei [4–9]. Since the develop-
ment of the � cluster model, light nuclei have been studied 
from the perspective of cluster features for more than half 

a century [10–14]. Various nuclear theories have been pro-
posed to investigate nuclear clustering [15–19]. The three 
traditional nuclear cluster models are the Resonance Group 
Method (RGM) [20–22], Generator Coordinate Method 
(GCM) [23–26], and Orthogonality Condition Model 
(OCM) [27]. Some developed models, such as the Antisym-
metrized Molecular Dynamics (AMD) model [28–30] and 
the Tohsaki-Horiuchi-Schuck-Röpke (THSR) model [31], 
have also been introduced in recent years.

The Generator Coordinate Method (GCM) was first intro-
duced by Hill and Wheeler [23] in 1953 in the context of 
nuclear fission. Subsequently, Griffin and Wheeler extended 
this method of a general many-body tool [24]. The principle 
of the GCM is to express nuclear state wave functions as 
superpositions of non-orthogonal basis functions such as 
Slater determinants [32]. Because of the flexibility in select-
ing the basis functions or generator coordinates, GCM offers 
a general method for addressing many-body problems in 
nuclear cluster physics and other fields [33–37].

The GCM requires the superposition of different types of 
basis wave functions, thereby demonstrating their flexibil-
ity. However, selecting basis states is a crucial issue in some 
cases. The choice of collective coordinates often relies on 
empirical and phenomenological methods, which increase the 
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complexity and computational time for many-body cluster sys-
tems. This issue is especially pronounced when applying the 
GCM to the structure of halo nuclei such as 6He, a well-known 
Borromean nucleus. It comprises a loosely bound and spatially 
extended three-body system, typically including the � core sur-
rounded by two weakly bound neutrons � + n + n [38–40]. 
Using more efficient basis states in the GCM to describe such 
three-body gas-like systems accurately is an important issue 
[41].

In recent years, there have been many theoretical studies 
[42–44] exploring how to select effective basis states for the 
GCM. For example, Suzuki and Varga introduced stochastic 
sampling in the few-body model [45]; Suhara and Kanada-
En’yo have proposed the � − � constrained selection of 
Slater determinants in nuclear cluster model [46]; Addition-
ally, Fukuoka et al. developed the imaginary-time evolution 
method in the mean-field model [47]; And Takatoshi et al. 
refined the Bloch-Brink � cluster model with the stochastic 
sampling method [48]. Owing to the powerful data processing 
capabilities of machine learning algorithms (ML), they have 
been widely employed in addressing different nuclear phys-
ics issues, including nuclear mass systematics [49–51], radii 
prediction [52], decay descriptions [53], many-body problems 
[54, 55], and nuclear structure [56]. It has attempted to identify 
hidden laws from a large amount of historical data and use 
them for prediction or classification.

In this study, by choosing the di-neutron halo nucleus of 
6 He (� + n + n) and the proton–neutron halo of 6 Li (� + n + p) 
systems [57], we studied the effective basis problems in GCM, 
using global optimization and local gradient descent methods. 
First, the empirical law of the effective basis wave function 
distribution was summarized by comparing various random 
distributions. Subsequently, the Adam method [58] was used 
to provide a better standard of basis wave functions.

This paper is organized in the following way. Section 2 
briefly reviews the framework of the wave function and the 
Generator Coordinate Method. In Sect. 3, the numerical results 
of optimization and discussions are provided. Finally, a sum-
mary is provided in Sect. 4.

2 � Theoretical framework

The general ansatz of the Generator Coordinate Method [24] 
can be expressed,

where q = (q1, q2, ..., qn) denotes a series of generator coor-
dinates. The f (q) is the weight function. The trial wave func-
tion �Φ(q)⟩ is important, because it should be based on the 
specific motion patterns of the physical system. The GCM 
approach offers the benefit of obtaining the ground states 

(1)��ΨGCM⟩ = ∫ dq�Φ(q)⟩f (q).

and various categories of excited states that are described 
by the selected generator coordinates.

In nuclear cluster physics, the Brink wave function 
[59] is typically used as the basis wave function for GCM 
calculations. Taking 6 He as an example, the Brink wave 
function with an � + n + n cluster configuration can be 
written as

Here, the wave function Φ� represents the �-cluster with a 
configuration of (0s)4 , and the valence neutron wave func-
tion is denoted as Φn . R1,R2 and R� represent the generator 
coordinates of � particles and two neutrons, abbreviated as 
{R} =

{
R1,R2,R�

}
 . �

(
R, ri

)
�i�i describes the i-th single-

particle wave function, with �
(
R, ri

)
 specifying the spatial 

wave function. The spin and isospin of each nucleon are 
denoted by �i and �i , respectively. The spins of the two 
valence neutrons were set up and down, respectively. The 
harmonic oscillator parameter b =

√
1∕(2�) = 1.46 fm to 

avoid spurious center-of-mass problems in this work, which 
is identical to that used in Ref. [60, 61]. The microscopic 
cluster wave function of 6Li(� + n + p ) can be constructed 
similarly.

Within the GCM framework, the final wave function of 
6 He can be obtained by superposing various configurations 
of � + n + n.

where PJ
MK

 and P� denote the angular-momentum and 
parity projector, respectively. For convenience, we write 
PJ
MK

P�Φ({R}) = ΦJ�
MK

({R}) . The coefficients f{R}K can then 
be calculated using the Hill–Wheeler equation [32]

By changing the values in the generated coordinate set {R} , 
various basis wave functions can be obtained. Note that as 
long as the number of superposed basis wave functions is 
sufficiently large, the final wave function is highly accurate. 
However, this approach results in a significant computa-
tional time. Fortunately, not all the basis wave functions are 
equally important. Therefore, selecting effective basis wave 
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functions can achieve the same effect as superposing a large 
number of them, but with fewer effective wave functions. 
The objective of this study is to select effective basis wave 
functions characterized by the generated coordinate set {R} 
from both global and local perspectives.

The Hamiltonian for 6 He and 6 Li three-body systems can 
be written as:

where ti represents the kinetic energy of the individual 
nucleons, and the center of mass is denoted by Tc.m. . vN , vC , 
and vLS denote the effective nucleon–nucleon interaction, 
the Coulomb interaction and spin-orbit interaction, respec-
tively. The Volkov No.2 interaction [62] was employed for 
the nucleon–nucleon interaction. The expression is given as:

The parameters were set as follows: W = 0.4 , M = 0.6 . 
For 6He, B = H = 0.125 [10]; For 6Li, B = H = 0.08 [63]. 
Regarding the Gaussian terms, the values are V1 = −60.65 
MeV, V2 = 61.14 MeV, c1 = 1.80 fm, and c2 = 1.01 fm.

For the spin–orbit interaction, the G3RS potential [64, 
65] is adopted,

The strength parameter V0 was fixed at 2000 MeV. The 
Gaussian parameters d1 and d2 are configured to 5.0 fm−2 
and 2.778 fm−2 , respectively.

3 � Results and discussion

In this section, we take the di-neutron halo nucleus 6 He and 
proton–neutron halo nucleus 6 Li as examples, each concep-
tualized as three-cluster structures � + n + n and � + n + p , 
respectively. First, we summarize empirical laws using ran-
dom distribution methods from a global perspective. Subse-
quently, at the local level, the Adam algorithm from machine 
learning is introduced to optimize the generation coordinates 
using the gradient descent theory.

3.1 � Searching for specific distributions leading 
to effective basis wave functions

In the GCM, the mesh points for the generator coordinates 
were not predetermined. Although it is theoretically feasible 
to obtain exact solutions by enumerating a large number of 
wave functions with different configurations, this approach 
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2
)
P̂31L̂ ⋅ Ŝ.

is computationally impractical. Instead, we hypothesize that 
the effective basis wave functions may follow specific distri-
butions. To test this hypothesis, we generated coordinate sets 
{R} using various random distributions and applied them 
to calculate the ground state energy of the di-neutron halo 
nucleus 6He. By analyzing the relationship between the num-
ber of superimposed basis wave functions and the resulting 
ground state energies, we aim to derive global empirical 
rules that can enhance the efficiency of the GCM.

As a benchmark test, we first calculated the ground state 
of the di-neutron halo 6 He nucleus using traditional mesh 
points for the Brink wave functions. As shown in Fig. 1, 
different sets of coordinates can be generated by adjust-
ing the relative distances L1 , L2 , and angle � relative to the 
x-axis. Where L1 is the distance between the � particle and 
neutron, and L2 is the distance between the other neutron 
and the center-of-mass of the � particle and neutron. Subse-
quently, various configurations with different sets ( L1 , L2 , � ) 
were superposed. The mesh points for L1 were established 
at intervals of 0.35 fm, resulting in 14 points, whereas for 
L2 , the intervals were set at 0.5 fm, accumulating 18 points. 
The values for angle � were sequentially determined to be 
0◦ , 30◦ , 60◦ , and 90◦ . By employing this traditional method, 
1008 basis wave functions were generated. Subsequently, 
the ground state energy was computed after diagonaliza-
tion. Due to large overlap between some wave functions or 
their lack of physical significance, 539 out of the initial 1008 
basis wave functions were removed during the calculations. 
This outcome is shown in the last column of Table 1, along 
with other results recorded in the same table. Furthermore, 
Fig. 2 displays how the energy varies with the superposition 
of wave functions.

Another common method for selecting mesh points is to 
distribute them within a spherical shell structure. The spher-
ical structure of the latter is depicted as a three-dimensional, 
multi-layered spherical shell. The initial radius of the spheri-
cal shell was set at 1 fm, with spacing between adjacent lay-
ers at 1 fm, producing a total of five layers from the inside 

Fig. 1   (Color online) This schematic figure illustrates the Brink wave 
function of 6 He (� + n + n) . Blue spheres represent neutrons, while 
red spheres denote protons. The � cluster and the two neutrons are 
aligned in the same plane
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out. The Marsaglia algorithm [66] was employed to ensure 
a uniform distribution of points on each spherical shell. For 
each layer, 200 random three-dimensional coordinate values 
were generated. Following a procedure similar to the earlier 
one, the coordinates of the 1000 points generated are des-
ignated as R

1i

(
x1i, y1i, z1i

)
 . This randomization process was 

repeated three times to obtain the generation coordinates for 
the � particles and two neutrons. By superposing these 1000 
basis wave functions, the ground state of 6 He was calculated. 
Detailed information regarding the results is presented in 
Fig. 2 and Table 1.

In addition to the above common methods, we also 
introduce other random distribution functions for gener-
ating mesh points, such as Gamma distribution, Uniform 
distribution, Chi-square distribution, Logistic distribution, 

and Normal distribution. Considering the halo feature of 6
He, which is characterized by a diffuse density distribution 
around the nucleus, specific parameters for various random 
distribution functions have been selectively determined to 
assess their impact on the tail region. Although no quan-
titative relationships for parameter values under different 
distributions have been specified, we fortuitously discovered 
that the results remained relatively stable within a reason-
able range of parameter values after experimenting with 
various settings. The probability density functions and spe-
cific parameter values for random distributions are listed 
in Table 1. Furthermore, GCM calculations are performed 
within the center-of-mass coordinate system; consequently, 
the results depend solely on the relative distances between 
the clusters. Thus, in the Normal and Logistic distributions, 
the results are influenced only by the standard deviation � , 
independent of the mean � . For computational convenience, 
� is set to zero in these cases. Each random distribution is 
utilized to generate 1000 basis wave functions for the GCM 
calculations.

Figure 2 shows the energy convergence of the ground 
state using the various methods presented here to generate 
the basis wave functions. As one can see, the convergence 
rate of the energy variation curves corresponding to random 
distributions is significantly faster than that derived from 
manually configured structures. Table 1 provided qualita-
tive insights. The ground state energies obtained using the 
traditional and spherical shell methods are −27.884 MeV 
and −28.212 MeV, respectively, both of which are obviously 
higher than those from all random distributions.

From Fig. 2 and Table 1, it is interesting to see that the 
Logistic distributions outperform other random distribu-
tions, with the 0 + state energies calculated at −28.260 MeV. 
Note that the Gamma distribution is also effective, although 
it is determined by two parameters ( �, � ), which provide 
a wider range of adjustments. Single-parameter Normal 
and Logistic distributions offer significant advantages for 

Fig. 2   (Color online) Energy convergence of the ground state ( 0+ ) 
of 6 He using various methods to generate basis wave functions. The 
brown and gray lines represent the results from the spherical shell and 
traditional methods, respectively. The curves in other colors represent 
the calculation result of the generated coordinates generated by the 
random distribution

Table 1   Comparison of the 
different methods to generate 
basis wave functions. The 
calculated ground state energies 
of 6 He (MeV) and the number 
of superposed basis are listed

Distribution model Probability density function Parameters E (MeV) Super-
posed 
basis

Spherical shell − − −28.212 704
Traditional approach − − −27.884 469
Gamma distribution f (x;�, �) =

1

��Γ(�)
x�−1e

−
x

� � = 2.3, � = 1.5 −28.257 939

Rayleigh distribution
f (x;�) =

x

�2
e
−

x2

2�2
� = 3.0 −28.239 916

Exponential distribution f (x;�) = �e−�x � = 0.5 −28.229 764
Normal distribution

f (x;�, �) =
1√
2��

e
−

(x−�)2

2�2
(� = 0), � = 2.3 −28.245 957

Logistic distribution f (x;�, �) =
e−(x−�)∕�

�(1+e−(x−�)∕� )
2

(� = 0), � = 1.2 −28.260 946
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practical calculations. This superiority is attributed to the 
assumption of independence in the Normal distribution, 
which mirrors the relative spatial near independence of the 
clusters in the nuclei. Furthermore, the thicker asymptotic 
tails of the probability density function in the Normal dis-
tribution closely corresponded to the halo characteristics of 
6He. Similarly, although the Logistic distribution resembles 
the Normal distribution, it features notably heavier tails. 
This characteristic better captures the extended features 
of the 6 He halo nucleus structure, thereby encompassing a 
broader distribution of the effective basis states.

To substantiate this conclusion further, we compared 
the ground state energy by maintaining approximate equal-
ity between the standard deviations of the Logistic and 
Normal distributions according to the theoretical formula 
� = (

√
3�)∕� . In this case, the two distributions have similar 

shapes but slightly different tail thicknesses. We selected 
four sets of generation coordinates with varying parameters 
for comparison, where each set generates 1000 basic wave 
functions. Specifically, the parameters for the Logistic dis-
tribution were set at � = 1.2, 1.3, 1.4, 1.5 and for the Normal 
distribution at � = 1.8, 2.0, 2.3, 2.5 . The calculated ground 
state (0+ ) energies of 6 He are presented in Table 2, and Fig. 3 
illustrates the energy convergences with an increasing num-
ber of basis. From Table 2, it can be seen that among the 
computations employing Normal distributions, the best 
performance is achieved with a standard deviation � of 2.3, 
where the ground state energy converges to −28.245 MeV. 
Conversely, for � values of 1.8, 2.0, and 2.5, the energies 
converge to −28.224 MeV, −28.222 MeV, and −28.231 MeV, 
respectively. On the other hand, the Logistic distribution 

clearly outperforms the Normal distribution, with ground 
state energies uniformly converging around −28.26 MeV. 
Notably, even at its poorest performance with parameter 
� = 1.2 , the energy convergence reaches −28.260 MeV, 
surpassing the mean performance of the Normal distribu-
tion groups. Additionally, Fig. 3 illustrates that the rate of 
energy convergence for the Logistic distribution group is 
substantially faster than that for the Normal distribution 
group, thereby exhibiting greater robustness. This indicates 
that the Logistic distribution includes a more effective basis, 
which could be because of its heavy tail part.

It is worth mentioning that the ground state (1+ ) of 6 Li 
converges rapidly, requiring only a minimal number of basis 
wave functions. Calculations using various parameters for 
the Logistic and Normal distributions also quickly converged 
to approximately −30.02 MeV, indicating that there is no 
need for further optimization of the basis wave functions. 
Therefore, further discussion of the 6 Li ground state is omit-
ted in this work.

To confirm the aforementioned conclusions and ascer-
tain the universality of the Logistic distribution in halo 
nuclear structures, we studied the excited states (0+ ) of 
6 Li and generated three sets of Logistic and Normal dis-
tributions under conditions of similar standard deviations 
for comparative analysis. Parameters for the Logistic dis-
tribution were set at � =1.0, 1.3, and 1.5, whereas those 
for the Normal distribution were set at � = 1.8, 2.0, and 
2.3. Considering the proton–neutron halo structure of 6Li, 
whose excited state energy converges more readily than 
the ground state energy of 6He, we generated 400 basis 
wave functions for each parameter set to perform the GCM 
calculations. The results are shown in Fig. 4 and Table 3. 
It is gratifying to observe that compared with the Normal 
distribution, the Logistic distribution still performs well in 
each group. According to the excitation energy of the 0 + 
state in Table 3, it can be observed that the Logistic dis-
tribution parameters � are set at 1.0, 1.3, and 1.5, yielding 

Fig. 3   (Color online) Energy convergence of the ground state (0+ ) 
of 6He. To compare the results of Normal distribution and Logistic 
distribution, 1000 ground state wave functions are generated using 
four sets of different parameters. In addition, the red line denotes the 
results of Adam optimization

Table 2   The numerical results of the ground state (0+ ) of 6He, from 
the calculations of Logistic distribution and Normal distribution with 
different parameters

Distribution Parameters E (MeV)

Logistic distribution � = 1.2 −28.260

� = 1.3 −28.268

� = 1.4 −28.262

� = 1.5 −28.266

Normal distribution � = 1.8 −28.224

� = 2.0 −28.222

� = 2.3 −28.245

� = 2.5 −28.231
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convergence values of energy at −27.945 MeV, −27.999 
MeV, and −28.013 MeV, respectively. These values 
slightly surpass those derived from the Normal distribu-
tion parameter � set at 1.8, 2.0, and 2.3, which resulted in 
energy convergences of −27.933 MeV, −27.969 MeV, and 
−27.991 MeV. As shown in Fig. 4, the energy gradually 
converges as the number of basis wave functions increases, 
with the Logistic distribution exhibiting a slightly faster 
rate of convergence than the Normal distribution. These 
results indicate that the thick-tail characteristic of the 
Logistic distribution is not only suitable for calculating the 
ground state (0+ ) energy of 6 He with a di-neutron halo, but 
also applicable to the excited state (0+ ) of 6 Li with a pro-
ton–neutron halo. Furthermore, the Logistic distribution 
encompasses a broader range of effective basis wave func-
tions, thereby providing crucial empirical insights for the 

subsequent selection of effective basis wave functions. It 
is important to analyze the underlying mechanisms behind 
this distribution.

3.2 � Adam optimization based on gradient descent 
principle

In GCM calculations, determining an appropriate distri-
bution of optimized basis wave functions is of paramount 
importance for practical computations. However, studying 
the optimal basis wave functions mathematically at a local 
level is indispensable.

As shown in Eq. (3), the eigen energy E can be considered 
as a multivariable function with a set of {R} as its independ-
ent variables. Thus, solving for the energy using the vari-
ational principle is analogous to finding the minimum of a 
multivariable function f ({R}1, {R}2,… , {R}i) . The compu-
tational procedure for optimizing the superposition of 100 
basis wave functions is as follows: To begin this process, a 
random set of generated coordinates {{R}1, {R}2,… , {R}i} 
is created as the starting position. For the first basis wave 
function Φ({R}1) , the energy gradient must be calculated to 
adjust the coordinates {R}1 in the gradient direction. When 
a local minimum was reached, this position was recorded as 
the effective basis wave function location {R}opt

1
 . Next, for 

the second basis wave function Φ({R}2) , we superimpose 
it onto the previously optimized {R}opt

1
 . This results in a 

simplified expression for the wave function as Φ({R}
opt

1
) + 

Φ({R}2) . Then, only coordinates {R}2 are adjusted in the 
direction of the gradient, while coordinates Φ({R}

opt

1
) are 

held constant. Once the local minimum is achieved, the cur-
rent position is designated as the effective basis wave func-
tion position, Φ({R}

opt

2
) . For the third basis wave function 

Φ({R}3) , the same procedure was followed. The adjustment 
process focuses solely on coordinates {R}3 in the direction 
of the gradient, keeping {R}opt

1
 and {R}opt

2
 constant. This 

method was repeated for each subsequent wave function, 
ensuring that the optimized coordinates remained fixed, 
while the new coordinates underwent gradient descent. This 
iterative approach continues until all basis wave functions 
are optimized. In principle, a set of optimal generating coor-
dinates for the basis wave functions can be obtained with 
sufficient computational precision.

We used the Adam algorithm for gradient descent [58]. 
The Adam algorithm was chosen for its efficiency in opti-
mizing the basis wave functions, particularly for handling 
complex and flat energy surfaces. By adapting learning rates 
and leveraging historical gradients, Adam outperformed tra-
ditional methods, reducing computational costs and improv-
ing the convergence speed. This makes it well suited for 
challenging calculations, such as those involving halo nuclei.

Fig. 4   (Color online) Energy convergence of the excited state (0+ ) of 
6Li. To compare the results of Normal distribution and Logistic dis-
tribution, 400 wave functions are generated using three sets of differ-
ent parameters. The red line represents the results of Adam optimiza-
tion

Table 3   The numerical results of the excited state (0+ ) of 6Li, from 
the calculations of Logistic distribution and Normal distribution with 
different parameters

Distribution Parameters E (MeV)

Logistic distribution � = 1.0 −27.945

� = 1.3 −27.999

� = 1.5 −28.013

Normal distribution � = 1.8 −27.933

� = 2.0 −27.969

� = 2.3 −27.991
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Given the gradual slowing of energy convergence with 
increasing number of basis wave functions, distinct treat-
ments were applied to the initial and terminal functions. In 
the early superposition phase, owing to the rapid decrease in 
energy, the Adam algorithm’s learning rate � was set at 0.3 
with a maximum iteration count of 12 and an allowance for 
four oscillations to prevent missing minimal value points. 
When the fifth wave function was reached, as the rate of 
energy decline slowed, the learning rate was adjusted to 0.7 
with the maximum iterations increasing to 40, and oscilla-
tions allowed up to eight to minimize time consumption.

Although Sect. 3.1 shows the Logistic distribution out-
performing Normal distributions and other models, we used 
the Normal distribution with � = 2.3 to generate 100 initial 
coordinates {R} for a clearer comparative analysis. The opti-
mization results for the ground state (0+ ) of 6He, as shown 
in Fig. 3. Compared to −28.064 MeV with unoptimized 
basis wave functions, the energy significantly decreases to 
−28.203 MeV after Adam optimization. Even compared to 
the well-performing Normal distribution, the superposition 
of 100 optimized basis wave functions through the Adam 
method equates to the effects of adding 200 or even 500 
basis wave functions in the Normal distribution. This out-
come not only confirms the feasibility and effectiveness of 
gradient descent optimization using the Adam method but 
also demonstrates that a small number of basis wave func-
tions can achieve the effects of superposing multiple wave 
functions, and that Adam optimization includes a large num-
ber of effective basis wave functions.

To further validate this conclusion, the Adam algorithm 
was applied to the calculation of the excited state (0+ ) energy 
of 6Li, and the results are depicted in Fig. 4. Compared to 
−27.656 MeV with non-optimized basis wave functions, the 
energy decreased significantly to −27.937 MeV after Adam 
optimization. Compared with other parameter settings in the 
Normal distribution, the superposition effect of 100 opti-
mized basis wave functions is equivalent to adding 200−300 
ones in the Normal distribution. This suggests that there is 
still room for improvement in determining better distribu-
tions for the mesh points in the GCM. It is worth noting that 
owing to the differing nuclear structures of various nuclei, 
the optimized basis functions derived by the Adam algo-
rithm for one nucleus in principle cannot be directly applied 
to another.

4 � Summary and outlook

To conclude, we investigated the effective basis wave func-
tion distributions for the di-neutron halo nucleus 6 He and 
proton–neutron halo nucleus 6 Li using the Generator Coor-
dinate Method. From a global perspective, our comparative 

analysis of various random distributions against manually 
configured models revealed that the Normal distribution 
performed significantly better than the other distributions, 
except for the Logistic distribution. This superior perfor-
mance is attributed to the independence assumption of 
the Normal distribution, which mirrors the relative spa-
tial independence of the nuclei, and the heavy tail of its 
probability density function, which resembles the diffuse 
characteristics typical of halo nuclei. Interestingly, the 
Logistic distribution, with its probability density curve 
similar to that of the Normal distribution but with a more 
pronounced tail, not only retained the advantages of the 
Normal distribution but also more accurately represented 
halo nuclear structures. In both the ground state (0+ ) of 
6 He and the excited state (0+ ) of 6Li, the Logistic distribu-
tion yielded better results than the Normal distribution, 
suggesting that it encompasses a broader range of effective 
basis wave functions and reduces the number of necessary 
wave function overlays for halo structures.

Furthermore, from a local viewpoint, we analogized the 
optimization of basis wave functions to solve a multivari-
ate extremum problem and employed the Adam algorithm 
to optimize 100 basis wave functions, achieving consider-
able outcomes. The results for both the ground state (0+ ) 
of 6 He and the excited state (0+ ) of 6 Li indicated that a few 
optimized basis wave functions could achieve the effects 
of multiple wave functions overlays, thus validating the 
feasibility and universality of the gradient descent method. 
This not only provides a benchmark for selecting effec-
tive basis wave functions but also makes a solid founda-
tion for future applications of machine learning methods 
to comprehensively predict the coordinates of effective 
basis wave functions. Although the Adam algorithm cur-
rently requires extensive runtime due to computational 
constraints, future research will focus on optimizing it to 
enhance computational efficiency.
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