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Abstract
Exploring the limits of neutron binding in atomic nuclei remains a central focus of nuclear physics. However, the experi-
mental determination of the neutron drip line is challenging because of the minuscule production cross sections of the most 
neutron-rich isotopes. We investigate the effectiveness of multi-step fragmentation for producing extremely neutron-rich 
nuclides at relativistic energies. We demonstrate that multi-step fragmentation dominates over single-step fragmentation in 
thick-target experiments and can enhance the yields of drip-line nuclei by several orders of magnitude in a realistic experi-
ment using fragment separators. Such enhancements open new possibilities for locating the drip lines above sodium and thus 
significantly expand the research horizon.
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1  Introduction

The number of naturally occurring nuclides on Earth is 339, 
including 256 stable nuclides and 83 radioactive nuclides. 
The possible number of bound nuclides has been predicted 
by nuclear models to be approximately 6000∼9000 [1–3], 
for which only 3340 nuclides have been experimentally 
observed [4]. The nuclear drip line is the boundary beyond 
which the atomic nuclei are unbound to the emission of one 
or more proton(s) or neutron(s). Although the proton drip 
line has been extensively explored experimentally over the 
past decades, the neutron drip line has only been confirmed 
for light elements up to Ne [5].

The limit of nuclear existence is a fundamental subject 
in nuclear physics. Nuclei at or near drip lines can exhibit 
extreme structures [6], offering unique opportunities to study 
exotic open quantum behaviors and asymmetric nuclear mat-
ter. In addition to the naturally occurring radioactive nuclei, 
most unstable nuclei are artificially produced in accelerator 
facilities. Production methods are predominantly divided 
into two categories [7]: Isotope Separation On-Line (ISOL) 
and In-Flight (IF) fragment separation. ISOL facilities are 
renowned for generating high-purity isotopes with precise 
energies and low emittance, but suffer from poor extraction 
efficiencies for refractory materials and long extraction times 
for certain chemical elements. The In-Flight method effec-
tively delivers all reaction products with lifetimes longer 
than several hundred ns, making it the most productive route 
for isotope discovery in recent years [8, 9]. Fission during 
flight, primarily involving actinide elements, is highly com-
petitive for generating medium-mass neutron-rich nuclei 
(see Ref. [10]). Hybrid methods that integrate the strengths 
of ISOL and In-Flight techniques have attracted consider-
able interest because they offer promising opportunities 
to enhance the production yield of the most neutron-rich 
isotopes [11–13].

Despite significant progress in studying neutron-rich 
nuclei worldwide, exploring “terra incognita” near the 
neutron drip line remains challenging, where no data are 
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available, primarily because of their small yield. In fragmen-
tation reactions, the evaporation of neutrons from excited 
pre-fragments reduces the production cross sections of more 
neutron-rich nuclei [14, 15]. To address these challenges, 
numerous experimental strategies have been proposed to 
enhance beam intensity, spectrometer acceptance, and par-
ticle identification resolution at existing facility  [16, 17]. 
However, they cannot fully compensate for the decreased 
production cross sections toward the neutron drip line.

There are various theoretical models from the empiri-
cal formula [18–20] to the hybrid method using Bayesian 
neural networks (BNNs) as well as Qg systematics [21–23]. 
However, their extrapolations to systems with significant n/p 
asymmetry often exhibit large deviations. Transport models 
such as isospin-dependent quantum molecular dynamics [24] 
offer a microscopic description of the reaction mechanism 
and can reproduce experimental elemental fragmentation 
data fairly well [14, 25]. However, the QMD calculations are 
generally time-consuming and unsuitable for comprehensive 
calculations of multi-step fragmentation.

In this work, we investigate multi-step fragmentation 
reactions at relativistic energies of ∼GeV/nucleon on a thick 
target to increase the yield of neutron-rich nuclei far from 
the stability line. In multi-step fragmentation, neutron-rich 
fragments can undergo further fragmentation processes, 
producing even more neutron-rich nuclei. This is due to the 
inherent “memory effect" in fragmentation reactions, which 
works efficiently to produce fragments with mass-to-charge 
ratios similar to those of neutron-rich projectile nuclei. 
Additionally, the diversity of intermediate nuclei increases 
the ejection probability of neutron-rich fragments to a cer-
tain extent [26–28].

In the present study, the effect of multi-step processes was 
illustrated using the drip line nucleus 34 Ne as an example. 
We simulated its production and transmission processes to 
evaluate the effectiveness and advantages of multi-step reac-
tions. After optimizing the yields of neutron-rich nuclei, we 
estimated the production rates of neutron-rich nuclei above 
oxygen.

2 � Production in the multi‑step 
fragmentation

For a specific isotope of interest, the yield Y can be expressed 
as the product of three independent factors:

where � is the incident beam flux. P represents the probabil-
ity of producing the nucleus of interest in the target, which 
depends on multiple factors such as nuclear interaction, 
beam energy, and target thickness. The third parameter S 

(1)Y = �PS

is the total transmission efficiency, which is determined by 
the momentum distribution of the fragments and acceptance 
of the detection system. Estimations of P and S for drip line 
nuclei were the main focus of the present study. To evalu-
ate the factor P, one must consider not only the reactions 
of the projectile but also those of all the nuclei produced in 
the intermediate steps. Additionally, the angular and energy 
spreads of these product nuclei should be evaluated for the 
transmission factor S.

The production probability of the desired nuclide in a 
target, along with its angular and energy distribution, was 
calculated using the computer code LISE++ (version 
16.18.20) [28, 29]. The fragment cross sections were cal-
culated using the semi-empirical formula EPAX 2.15 [18], 
which has good precision in predicting the existing data near 
the neutron drip line in this mass region [30]. The slowing 
down processes, including energy loss, energy loss strag-
gling, and angular straggling, were evaluated using the 
ATIMA 1.2 code [31, 32], with the results serving as input 
for subsequent calculations. The momentum distribution of 
the fragments was assessed based on Goldhaber theory [33]. 
A higher energy projectile is preferable to optimize the con-
tribution of multi-step reactions; however, the accelerator 
facility imposes constraints on the energy choice. This study 
focuses on producing drip line nuclei near 34 Ne at the High-
Intensity heavy-ion Accelerator Facility (HIAF) [17] under 
construction. Therefore, the projectile energy was set to 
1500 MeV/nucleon.

The calculated production probability (P) of 34 Ne is 
shown in Fig. 1(a) as a function of target thickness for a 
48 Ca beam incident on a Be target. The target thickness is 
expressed in units of the mean free path ( � ), calculated using 
the reaction cross section of 1547 mb for 48 Ca on Be. In this 
case, the thickness � corresponds to 9.68 g/cm2 or 5.2 cm. As 
indicated in Fig. 1(a), the single-step production probability 
saturates at a thickness of approximately 1.03� , which is 
significantly smaller than the thickness required for multi-
step yields to plateau. Multi-step fragmentation dominates 
the production in thick targets, accounting for more than 
95% of the total yield when the thickness exceeds � . The 
corresponding peak value, observed at 3.33� , was nearly 50 
times higher than that obtained under the assumption of a 
single-step process alone. We also note that this optimized 
thickness holds for beam energies above 0.8 GeV/nucleon. 
However, as the target thickness increases, the effects of 
the incident particle attenuation and fragmentation of the 
objective nuclei become more pronounced, reducing the 
final production probability. Consequently, optimizing the 
target thickness is crucial to achieve a high yield of neutron-
rich nuclei.

To determine which component plays a key role in 
multi-step fragmentation, we developed a dedicated code 
to compute the fragmentation yield, similar to Ref. [27]. 
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In this calculation, the reaction target was uniformly seg-
mented along the beam direction. Each segment thickness 
is much smaller than the mean free path of projectile-
like ions, so at most one reaction occurs per segment. 
The probability of fragment generation at each reaction 
point was calculated individually. The total probability 
was determined by evaluating all possible combinations 
of reaction positions and multi-step pathways. Figure 1(a) 
presents the calculated production probabilities from the 
single step to the fifth step. For target thicknesses of up 
to 2 � , the second-step reaction is the most crucial pro-
cess. Above this thickness, the third-step process became 
predominant, steadily increasing its contribution. The 
contribution from the fifth step account for less than 4% 
of the total yield, while contributions beyond the fifth 
step are negligible. The inclusion of up to five steps in our 

simulation is sufficient for the absolute yield estimates and 
is well consistent with the LISE++ results.

We have computed the yields using other reaction models. 
Despite discrepancies in absolute values across models, the 
overall trends in the production probability of drip line frag-
ments as a function of target thickness remained consistent, 
indicating that the enhancement via a multi-step mechanism 
in thick targets is a robust and model-independent feature.

To assess the yield of isotopes with varying neutron 
excesses, we present the relative yields of 26,28,30,32,34 Ne iso-
topes from the multi-step fragmentation in Fig. 1(b). A small 
scaling factor was introduced for the production probabilities 
to match the corresponding results at 0.6 GeV/nucleon. The 
yield curve for each isotope was normalized to the corre-
sponding value at a thickness of 0.2� . Although the curves 
exhibit a similar pattern across isotopes, the peak positions 
shift to a thicker thickness with increasing neutron excess. 
Two significant tendencies are observed: First, the yield 
enhancement at a larger � is more pronounced for neutron-
rich nuclei, indicating that multi-step fragmentation contrib-
utes more efficiently to their production. Second, the yield 
peaks at greater target thicknesses for more neutron-rich 
nuclei, highlighting the advantage of multi-step reactions in 
producing extremely neutron-rich nuclides. This pattern also 
holds for all neutron-rich isotopes. In contrast, increasing 
the target thickness to more than 1 � has little effect on the 
production of nuclei near the stability line. This pronounced 
disparity in yields suggests that employing a thick target 
for a relativistic projectile, where the multi-step fragmenta-
tion process gradually takes the lead, can compensate for 
the limitations associated with the smaller production cross 
sections of the most exotic nuclei. This approach has a clear 
advantage in pushing the limits of new isotope discovery.

3 � Transmission of multi‑step fragments

Reactions and penetration in a thick target inevitably lead 
to a notable increase in the beam transverse emittance and 
momentum spread, owing to the cumulative effects of frag-
mentation reactions and multiple scattering. Therefore, the 
fragments are eventually characterized by a high production 
rate but a broad momentum distribution. For experimen-
tal purposes, the separation, purification, and delivery of 
cocktail fragments to the terminal using a spectrometer or 
separator are often essential. The final yield at the experi-
mental terminal is determined by the momentum distribution 
and the transmission efficiency of the spectrometer.

In the following, we take the HIgh-rigidity Radioactive 
Ion Beam Line (HIRIBL) of the HIAF facility (in construc-
tion) as a realistic case to illustrate the transmission of ejec-
tive fragments from a thick target. The HIRIBL, formerly 
known as the High-energy FRagment Separator (HFRS), 
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Fig. 1   (Color online) (a) Production probability of 34 Ne as a func-
tion of target thickness for the reaction of 1500 MeV/nucleon 48 Ca 
on Be. The single-step and multi-step processes are represented by 
black and colored lines, respectively. Solid and dashed lines distin-
guish the results from LISE++ and our code, respectively. (b) Same 
as Panel (a) but for the relative yields of Ne isotopes calculated using 
LISE++. The yields have been normalized to that at the 0.2� thick-
ness. The hollow pentagons indicate the peak positions
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was designed to produce, separate, and purify rare isotopes 
with a maximum magnetic rigidity of 25 Tm. It is charac-
terized by an angular acceptance of ±30 mrad (x) and ±15 
mrad (y) and a momentum acceptance of ±2.0%. Details of 
the HIRIBL can be found in Refs. [34, 35]. The arrangement 
of the HIRIBL is shown in Fig. 2(a), with a Be production 
target at PF0. The reaction products were simulated at dif-
ferent focal planes. A clear particle identification is expected 
in the desired mass range.

The fragments are produced by bombarding a 1500 MeV/
nucleon 48 Ca beam on Be, then transmitted and separated by 
HIRIBL. The beam intensity was 3 ×1011 particles per pulse 
(ppp). Each pulse lasted for 13 s. Acceptance calculations 
were performed using the Monte Carlo method implemented 
in LISE++. A high incident energy was beneficial for reduc-
ing the influence of the momentum distribution of the final 
product. Figure 2(b) illustrates the momentum distribution 
of 34 Ne fragments produced for various target thicknesses. 
A distinct asymmetric distribution is observed with a broad 
shoulder on the low-momentum side as the target thickness 
increases from 0.5� to 3.0� . The broadening is due to the 
energy loss difference between the projectile beam and the 
fragment. The distributions become symmetric after consid-
ering the momentum acceptance of the spectrometer for the 
optimized yield of 34Ne.

Under the same target thicknesses, the momentum dis-
tributions at PF4 and MF6 exhibit similarity, with yields 
from PF4 to MF4 reduced by only 2.6% and 4.5% to MF6. 
In subsequent analyses, MF6 was used as the experimen-
tal terminal. Utilizing a thick target significantly reduces 
the transmission efficiency, as shown by the transmission 
efficiency curve in Fig. 2 (c). The transmission efficiency 
decreased from 92% at 0.21� to 38% at 3.10� . The impact of 
spectrometer acceptance on the final yield is also illustrated 
in Fig. 2 (c). The optimized target thickness with the HIR-
IBL transmission is slightly reduced from 3.33� to 1.76� , 
and the maximum yield decreases to 45% of the peak value 
obtained after the reaction target. However, using a thick 
target enhances the daily yield of 34 Ne by more than a fac-
tor of 30 compared with the case involving only single-step 
reactions. Moreover, utilizing a Ni projectile beam at the 
same beam intensity can enhance the 34 Ne yield rate by more 
than a factor of 130, as indicated in Fig. 3.

Finally, Fig. 3 summarizes the optimized production rates 
and the enhancement factor in producing the most neutron-
rich isotopes between oxygen and chlorine using HIR-
IBL. The neutron drip lines predicted by the WS4 [1] and 
UNEDF1 [36] mass models are shown for comparison. The 
enhancement factor is the ratio between the production rates 
calculated using the multi-step fragmentation and those 
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Fig. 2   (Color online) (a) Schematic layout of the HIRIBL. PF0-PF4 
are the focal planes of the pre-separator, while MF0-MF6 corre-
spond to the focal planes of the main separator. Dipole magnets are 
shown in blue, and multipole magnets in red. (b) Momentum distribu-
tions of 34 Ne expected after the reaction target at PF0 (solid lines), 
PF4 (dashed lines), and MF6 (dotted lines) for the target thicknesses 
of 0.5� , 1.5� , and 3.0� . The projectile beam energy is fixed at 1500 

MeV/nucleon with a beam intensity of 3 ×1011 ppp. (c) Production 
rate of 34 Ne (in particles per pulse) transmitted through HIRIBL as a 
function of target thickness. Solid and dashed lines represent results 
immediately after the target and at MF6 of HIRIBL, respectively, 
considering the multi-step fragmentation process. The black dots 
indicate the transmission efficiency at different target thicknesses
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calculated using only the single-step process. The projectile 
beam of 64 Ni is assumed to be at 1500 MeV/nucleon and 
has an intensity of 3 ×1011 ppp. Each isotope was calculated 
to achieve the best production rate by optimizing the tar-
get thickness and transmission in the HIRIBL. Compared 
to single-step reactions alone, an increase of more than two 
orders of magnitude in the yields of the most exotic nuclei 
can typically be achieved. For example, the expected daily 
event rate of 45 Si increases from 1.28×10−3 to approximately 
1.69. Other projectile nuclei such as 82 Se may help achieve 
even higher yields [37]. These enhancements provide new 
possibilities for locating the drip line above sodium and thus 
significantly expanding the research horizon.

4 � Conclusion

In summary, the multi-step fragmentation of relativistic 
ions occurring in a thick target can significantly enhance 
the yields of neutron drip-line nuclei, effectively compen-
sating for their low production cross section. This enhance-
ment is a robust feature that is independent of the reaction 
model. The fragment separator HIRIBL is expected to be 
commissioned this year, and a proof-of-principle run will 
be planned during the first experimental run, which can 
be coupled naturally with charge-changing reaction stud-
ies [38–40]. When coupled with the fragment separator 
HIRIBL, the production rates can be boosted by several 
orders of magnitude. Employing a higher-acceptance 
separator will further highlight such improvements. Thus, 
the multi-step fragmentation processes open new avenues 

for searching for new isotopes at the edge of nuclear sta-
bility and exploring novel structures and phenomena in 
extremely neutron-rich nuclei.

Enhancing production rates is expected to be more effec-
tive at higher projectile energies, which will be available at 
HIAF and FAIR facilities. Although we have restricted the 
discussion to multi-step fragmentation, one can naturally 
extend the study to other combinations of reactions, such 
as projectile fission followed by multi-step fragmentation. 
Different combinations of multi-step processes can help 
increase specific isotope rates. We would also like to note 
that the effect of multi-step fragmentation is present at ener-
gies below GeV/nucleon, albeit with reduced efficacy.
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Fig. 3   (Color online) Estimated daily event rate of the most neu-
tron-rich nuclei at HIRIBL, using the 1500 MeV/nucleon 64 Ni beam 
with an intensity of 3 ×1011 ppp on Be. The values in the square indi-
cate the corresponding daily event rates. Color code represents the 
enhancement factors of the production rates for the multi-step frag-

mentation relative to those for the single-step process. The black line 
denotes the boundary of the observed nuclei experimentally. Nuclei 
to the right of the black line remain to be discovered. The neutron 
drip lines predicted by the WS4 [1] and UNEDF1 [36] mass models 
are shown by the blue dotted and red dashed lines, respectively
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