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Abstract

Exploring the limits of neutron binding in atomic nuclei remains a central focus of nuclear physics. However, the experi-
mental determination of the neutron drip line is challenging because of the minuscule production cross sections of the most
neutron-rich isotopes. We investigate the effectiveness of multi-step fragmentation for producing extremely neutron-rich
nuclides at relativistic energies. We demonstrate that multi-step fragmentation dominates over single-step fragmentation in
thick-target experiments and can enhance the yields of drip-line nuclei by several orders of magnitude in a realistic experi-
ment using fragment separators. Such enhancements open new possibilities for locating the drip lines above sodium and thus

significantly expand the research horizon.

Keywords Multi-step fragmentation - Neutron drip line - Ion-optical simulation

1 Introduction

The number of naturally occurring nuclides on Earth is 339,
including 256 stable nuclides and 83 radioactive nuclides.
The possible number of bound nuclides has been predicted
by nuclear models to be approximately 6000~9000 [1-3],
for which only 3340 nuclides have been experimentally
observed [4]. The nuclear drip line is the boundary beyond
which the atomic nuclei are unbound to the emission of one
or more proton(s) or neutron(s). Although the proton drip
line has been extensively explored experimentally over the
past decades, the neutron drip line has only been confirmed
for light elements up to Ne [5].
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The limit of nuclear existence is a fundamental subject
in nuclear physics. Nuclei at or near drip lines can exhibit
extreme structures [6], offering unique opportunities to study
exotic open quantum behaviors and asymmetric nuclear mat-
ter. In addition to the naturally occurring radioactive nuclei,
most unstable nuclei are artificially produced in accelerator
facilities. Production methods are predominantly divided
into two categories [7]: Isotope Separation On-Line (ISOL)
and In-Flight (IF) fragment separation. ISOL facilities are
renowned for generating high-purity isotopes with precise
energies and low emittance, but suffer from poor extraction
efficiencies for refractory materials and long extraction times
for certain chemical elements. The In-Flight method effec-
tively delivers all reaction products with lifetimes longer
than several hundred ns, making it the most productive route
for isotope discovery in recent years [8, 9]. Fission during
flight, primarily involving actinide elements, is highly com-
petitive for generating medium-mass neutron-rich nuclei
(see Ref. [10]). Hybrid methods that integrate the strengths
of ISOL and In-Flight techniques have attracted consider-
able interest because they offer promising opportunities
to enhance the production yield of the most neutron-rich
isotopes [11-13].

Despite significant progress in studying neutron-rich
nuclei worldwide, exploring “terra incognita” near the
neutron drip line remains challenging, where no data are
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available, primarily because of their small yield. In fragmen-
tation reactions, the evaporation of neutrons from excited
pre-fragments reduces the production cross sections of more
neutron-rich nuclei [14, 15]. To address these challenges,
numerous experimental strategies have been proposed to
enhance beam intensity, spectrometer acceptance, and par-
ticle identification resolution at existing facility [16, 17].
However, they cannot fully compensate for the decreased
production cross sections toward the neutron drip line.

There are various theoretical models from the empiri-
cal formula [18-20] to the hybrid method using Bayesian
neural networks (BNNs) as well as 0, systematics [21-23].
However, their extrapolations to systems with significant n/p
asymmetry often exhibit large deviations. Transport models
such as isospin-dependent quantum molecular dynamics [24]
offer a microscopic description of the reaction mechanism
and can reproduce experimental elemental fragmentation
data fairly well [14, 25]. However, the QMD calculations are
generally time-consuming and unsuitable for comprehensive
calculations of multi-step fragmentation.

In this work, we investigate multi-step fragmentation
reactions at relativistic energies of ~GeV/nucleon on a thick
target to increase the yield of neutron-rich nuclei far from
the stability line. In multi-step fragmentation, neutron-rich
fragments can undergo further fragmentation processes,
producing even more neutron-rich nuclei. This is due to the
inherent “memory effect" in fragmentation reactions, which
works efficiently to produce fragments with mass-to-charge
ratios similar to those of neutron-rich projectile nuclei.
Additionally, the diversity of intermediate nuclei increases
the ejection probability of neutron-rich fragments to a cer-
tain extent [26—28].

In the present study, the effect of multi-step processes was
illustrated using the drip line nucleus **Ne as an example.
We simulated its production and transmission processes to
evaluate the effectiveness and advantages of multi-step reac-
tions. After optimizing the yields of neutron-rich nuclei, we
estimated the production rates of neutron-rich nuclei above
oxygen.

2 Production in the multi-step
fragmentation

For a specific isotope of interest, the yield Y can be expressed
as the product of three independent factors:
Y = ¢PS (1)

where ¢ is the incident beam flux. P represents the probabil-
ity of producing the nucleus of interest in the target, which
depends on multiple factors such as nuclear interaction,
beam energy, and target thickness. The third parameter S
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is the total transmission efficiency, which is determined by
the momentum distribution of the fragments and acceptance
of the detection system. Estimations of P and S for drip line
nuclei were the main focus of the present study. To evalu-
ate the factor P, one must consider not only the reactions
of the projectile but also those of all the nuclei produced in
the intermediate steps. Additionally, the angular and energy
spreads of these product nuclei should be evaluated for the
transmission factor S.

The production probability of the desired nuclide in a
target, along with its angular and energy distribution, was
calculated using the computer code LISE++ (version
16.18.20) [28, 29]. The fragment cross sections were cal-
culated using the semi-empirical formula EPAX 2.15 [18],
which has good precision in predicting the existing data near
the neutron drip line in this mass region [30]. The slowing
down processes, including energy loss, energy loss strag-
gling, and angular straggling, were evaluated using the
ATIMA 1.2 code [31, 32], with the results serving as input
for subsequent calculations. The momentum distribution of
the fragments was assessed based on Goldhaber theory [33].
A higher energy projectile is preferable to optimize the con-
tribution of multi-step reactions; however, the accelerator
facility imposes constraints on the energy choice. This study
focuses on producing drip line nuclei near **Ne at the High-
Intensity heavy-ion Accelerator Facility (HIAF) [17] under
construction. Therefore, the projectile energy was set to
1500 MeV/nucleon.

The calculated production probability (P) of 3*Ne is
shown in Fig. 1(a) as a function of target thickness for a
“8Ca beam incident on a Be target. The target thickness is
expressed in units of the mean free path (4), calculated using
the reaction cross section of 1547 mb for “3Ca on Be. In this
case, the thickness A corresponds to 9.68 g/cm? or 5.2 cm. As
indicated in Fig. 1(a), the single-step production probability
saturates at a thickness of approximately 1.034, which is
significantly smaller than the thickness required for multi-
step yields to plateau. Multi-step fragmentation dominates
the production in thick targets, accounting for more than
95% of the total yield when the thickness exceeds A. The
corresponding peak value, observed at 3.334, was nearly 50
times higher than that obtained under the assumption of a
single-step process alone. We also note that this optimized
thickness holds for beam energies above 0.8 GeV/nucleon.
However, as the target thickness increases, the effects of
the incident particle attenuation and fragmentation of the
objective nuclei become more pronounced, reducing the
final production probability. Consequently, optimizing the
target thickness is crucial to achieve a high yield of neutron-
rich nuclei.

To determine which component plays a key role in
multi-step fragmentation, we developed a dedicated code
to compute the fragmentation yield, similar to Ref. [27].
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Fig.1 (Color online) (a) Production probability of 3*Ne as a func-
tion of target thickness for the reaction of 1500 MeV/nucleon “8Ca
on Be. The single-step and multi-step processes are represented by
black and colored lines, respectively. Solid and dashed lines distin-
guish the results from LISE++ and our code, respectively. (b) Same
as Panel (a) but for the relative yields of Ne isotopes calculated using
LISE++. The yields have been normalized to that at the 0.24 thick-
ness. The hollow pentagons indicate the peak positions

In this calculation, the reaction target was uniformly seg-
mented along the beam direction. Each segment thickness
is much smaller than the mean free path of projectile-
like ions, so at most one reaction occurs per segment.
The probability of fragment generation at each reaction
point was calculated individually. The total probability
was determined by evaluating all possible combinations
of reaction positions and multi-step pathways. Figure 1(a)
presents the calculated production probabilities from the
single step to the fifth step. For target thicknesses of up
to 24, the second-step reaction is the most crucial pro-
cess. Above this thickness, the third-step process became
predominant, steadily increasing its contribution. The
contribution from the fifth step account for less than 4%
of the total yield, while contributions beyond the fifth
step are negligible. The inclusion of up to five steps in our

simulation is sufficient for the absolute yield estimates and
is well consistent with the LISE++ results.

We have computed the yields using other reaction models.
Despite discrepancies in absolute values across models, the
overall trends in the production probability of drip line frag-
ments as a function of target thickness remained consistent,
indicating that the enhancement via a multi-step mechanism
in thick targets is a robust and model-independent feature.

To assess the yield of isotopes with varying neutron
excesses, we present the relative yields of 26-28-3032.34Ne iso-
topes from the multi-step fragmentation in Fig. 1(b). A small
scaling factor was introduced for the production probabilities
to match the corresponding results at 0.6 GeV/nucleon. The
yield curve for each isotope was normalized to the corre-
sponding value at a thickness of 0.24. Although the curves
exhibit a similar pattern across isotopes, the peak positions
shift to a thicker thickness with increasing neutron excess.
Two significant tendencies are observed: First, the yield
enhancement at a larger A is more pronounced for neutron-
rich nuclei, indicating that multi-step fragmentation contrib-
utes more efficiently to their production. Second, the yield
peaks at greater target thicknesses for more neutron-rich
nuclei, highlighting the advantage of multi-step reactions in
producing extremely neutron-rich nuclides. This pattern also
holds for all neutron-rich isotopes. In contrast, increasing
the target thickness to more than 14 has little effect on the
production of nuclei near the stability line. This pronounced
disparity in yields suggests that employing a thick target
for a relativistic projectile, where the multi-step fragmenta-
tion process gradually takes the lead, can compensate for
the limitations associated with the smaller production cross
sections of the most exotic nuclei. This approach has a clear
advantage in pushing the limits of new isotope discovery.

3 Transmission of multi-step fragments

Reactions and penetration in a thick target inevitably lead
to a notable increase in the beam transverse emittance and
momentum spread, owing to the cumulative effects of frag-
mentation reactions and multiple scattering. Therefore, the
fragments are eventually characterized by a high production
rate but a broad momentum distribution. For experimen-
tal purposes, the separation, purification, and delivery of
cocktail fragments to the terminal using a spectrometer or
separator are often essential. The final yield at the experi-
mental terminal is determined by the momentum distribution
and the transmission efficiency of the spectrometer.

In the following, we take the HIgh-rigidity Radioactive
Ion Beam Line (HIRIBL) of the HIAF facility (in construc-
tion) as a realistic case to illustrate the transmission of ejec-
tive fragments from a thick target. The HIRIBL, formerly
known as the High-energy FRagment Separator (HFRS),
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was designed to produce, separate, and purify rare isotopes
with a maximum magnetic rigidity of 25 Tm. It is charac-
terized by an angular acceptance of +30 mrad (x) and +15
mrad (y) and a momentum acceptance of +2.0%. Details of
the HIRIBL can be found in Refs. [34, 35]. The arrangement
of the HIRIBL is shown in Fig. 2(a), with a Be production
target at PFO. The reaction products were simulated at dif-
ferent focal planes. A clear particle identification is expected
in the desired mass range.

The fragments are produced by bombarding a 1500 MeV/
nucleon “*Ca beam on Be, then transmitted and separated by
HIRIBL. The beam intensity was 3x10'' particles per pulse
(ppp)- Each pulse lasted for 13 s. Acceptance calculations
were performed using the Monte Carlo method implemented
in LISE++. A high incident energy was beneficial for reduc-
ing the influence of the momentum distribution of the final
product. Figure 2(b) illustrates the momentum distribution
of 3*Ne fragments produced for various target thicknesses.
A distinct asymmetric distribution is observed with a broad
shoulder on the low-momentum side as the target thickness
increases from 0.54 to 3.04. The broadening is due to the
energy loss difference between the projectile beam and the
fragment. The distributions become symmetric after consid-
ering the momentum acceptance of the spectrometer for the
optimized yield of **Ne.
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Fig.2 (Color online) (a) Schematic layout of the HIRIBL. PFO-PF4
are the focal planes of the pre-separator, while MFO-MF6 corre-
spond to the focal planes of the main separator. Dipole magnets are
shown in blue, and multipole magnets in red. (b) Momentum distribu-
tions of 3*Ne expected after the reaction target at PFO (solid lines),
PF4 (dashed lines), and MF6 (dotted lines) for the target thicknesses
of 0.54, 1.54, and 3.04. The projectile beam energy is fixed at 1500
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Under the same target thicknesses, the momentum dis-
tributions at PF4 and MF6 exhibit similarity, with yields
from PF4 to MF4 reduced by only 2.6% and 4.5% to MF6.
In subsequent analyses, MF6 was used as the experimen-
tal terminal. Utilizing a thick target significantly reduces
the transmission efficiency, as shown by the transmission
efficiency curve in Fig. 2 (c). The transmission efficiency
decreased from 92% at 0.214 to 38% at 3.104. The impact of
spectrometer acceptance on the final yield is also illustrated
in Fig. 2 (c). The optimized target thickness with the HIR-
IBL transmission is slightly reduced from 3.334 to 1.764,
and the maximum yield decreases to 45% of the peak value
obtained after the reaction target. However, using a thick
target enhances the daily yield of 3*Ne by more than a fac-
tor of 30 compared with the case involving only single-step
reactions. Moreover, utilizing a Ni projectile beam at the
same beam intensity can enhance the 3*Ne yield rate by more
than a factor of 130, as indicated in Fig. 3.

Finally, Fig. 3 summarizes the optimized production rates
and the enhancement factor in producing the most neutron-
rich isotopes between oxygen and chlorine using HIR-
IBL. The neutron drip lines predicted by the WS4 [1] and
UNEDF1 [36] mass models are shown for comparison. The
enhancement factor is the ratio between the production rates
calculated using the multi-step fragmentation and those
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MeV/nucleon with a beam intensity of 3x10' ppp. (c) Production
rate of **Ne (in particles per pulse) transmitted through HIRIBL as a
function of target thickness. Solid and dashed lines represent results
immediately after the target and at MF6 of HIRIBL, respectively,
considering the multi-step fragmentation process. The black dots
indicate the transmission efficiency at different target thicknesses
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Fig.3 (Color online) Estimated daily event rate of the most neu-
tron-rich nuclei at HIRIBL, using the 1500 MeV/nucleon *Ni beam
with an intensity of 3x10'! ppp on Be. The values in the square indi-
cate the corresponding daily event rates. Color code represents the
enhancement factors of the production rates for the multi-step frag-

calculated using only the single-step process. The projectile
beam of %Ni is assumed to be at 1500 MeV/nucleon and
has an intensity of 3x10'! ppp. Each isotope was calculated
to achieve the best production rate by optimizing the tar-
get thickness and transmission in the HIRIBL. Compared
to single-step reactions alone, an increase of more than two
orders of magnitude in the yields of the most exotic nuclei
can typically be achieved. For example, the expected daily
event rate of #Si increases from 1.28x1073 to approximately
1.69. Other projectile nuclei such as #2Se may help achieve
even higher yields [37]. These enhancements provide new
possibilities for locating the drip line above sodium and thus
significantly expanding the research horizon.

4 Conclusion

In summary, the multi-step fragmentation of relativistic
ions occurring in a thick target can significantly enhance
the yields of neutron drip-line nuclei, effectively compen-
sating for their low production cross section. This enhance-
ment is a robust feature that is independent of the reaction
model. The fragment separator HIRIBL is expected to be
commissioned this year, and a proof-of-principle run will
be planned during the first experimental run, which can
be coupled naturally with charge-changing reaction stud-
ies [38—40]. When coupled with the fragment separator
HIRIBL, the production rates can be boosted by several
orders of magnitude. Employing a higher-acceptance
separator will further highlight such improvements. Thus,
the multi-step fragmentation processes open new avenues

mentation relative to those for the single-step process. The black line
denotes the boundary of the observed nuclei experimentally. Nuclei
to the right of the black line remain to be discovered. The neutron
drip lines predicted by the WS4 [1] and UNEDF1 [36] mass models
are shown by the blue dotted and red dashed lines, respectively

for searching for new isotopes at the edge of nuclear sta-
bility and exploring novel structures and phenomena in
extremely neutron-rich nuclei.

Enhancing production rates is expected to be more effec-
tive at higher projectile energies, which will be available at
HIAF and FAIR facilities. Although we have restricted the
discussion to multi-step fragmentation, one can naturally
extend the study to other combinations of reactions, such
as projectile fission followed by multi-step fragmentation.
Different combinations of multi-step processes can help
increase specific isotope rates. We would also like to note
that the effect of multi-step fragmentation is present at ener-
gies below GeV/nucleon, albeit with reduced efficacy.
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