Nuclear Science and Techniques (2025) 36:194
https://doi.org/10.1007/541365-025-01779-0

=

Check for
updates

Predictions of complete fusion cross-sections of 6.7Li, 9Be, and 19B using
a Bayesian neural network method

Kai-Xuan Cheng'® - Rong-Xing He' - Chun-Yuan Qiao’ - Chun-Wang Ma?

Received: 20 January 2025 / Revised: 6 March 2025 / Accepted: 31 March 2025 / Published online: 31 July 2025
© The Author(s), under exclusive licence to China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese
Academy of Sciences, Chinese Nuclear Society 2025

Abstract

A machine learning approach based on Bayesian neural networks was developed to predict the complete fusion cross-sections
of weakly bound nuclei. This method was trained and validated using 475 experimental data points from 39 reaction systems
induced by ®’Li, °Be, and '°B. The constructed Bayesian neural network demonstrated a high degree of accuracy in evaluat-
ing complete fusion cross-sections. By comparing the predicted cross-sections with those obtained from a single-barrier
penetration model, the suppression effect of ’Li and °Be with a stable nucleus was systematically analyzed. In the cases of
®Li and "Li, less suppression was predicted for relatively light-mass targets than for heavy-mass targets, and a notably distinct
dependence relationship was identified, suggesting that the predominant breakup mechanisms might change in different mass
target regions. In addition, minimum suppression factors were predicted to occur near target nuclei with neutron-closed shell.
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1 Introduction

Advancements in beam quality and detection technology
in the latest generation of radiation nuclear beam facilities
have brought the study of reaction mechanisms induced by
weakly bound nuclei in the Coulomb barrier energy region
to the forefront of nuclear physics research [1, 2]. In con-
trast with the fusion processes involving strongly bound
nuclei, the mechanisms triggered by weakly bound nuclei
are complex because of their lower binding energies. This
complexity is mainly exemplified by the extended nuclear
matter distribution and breakup effect [3, 4]. The former,
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a static effect, results in a reduction in the average fusion
barrier height, consequently enhancing the fusion cross-sec-
tions. The dynamic breakup of the projectile can diminish
the flux of direct fusion reactions, leading to three distinct
processes: (1) sequential complete fusion (SCF), where all
fragments resulting from the breakup fuse with the target;
(2) incomplete fusion (ICF), where only some of the breakup
fragments are absorbed by the target; and (3) no capture
breakup (NCBU), where none of the breakup fragments are
captured by the target. The reaction process, in which the
entire projectile without breakup is captured by the target,
is termed direct complete fusion (DCF). However, from an
experimental perspective, differentiating between the fusion
yields of SCF and DCF is challenging. As a result, only
complete fusion (CF) cross-sections, including both DCF
and SCF cross-sections, can be measured.

Over the past few decades, numerous experimental [5—8]
and theoretical [9-11] studies have been conducted on fusion
reactions involving weakly bound nuclei. The main objective
of these studies was to investigate the influence of breakup
on fusion reactions near the Coulomb barrier [12—-14]. One
of the most widely adopted approaches is to compare data
with predictions from a single-barrier penetration model [15,
16] or a coupled channel model without breakup channels
[17-19]. It has been demonstrated that the CF cross-sections
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are suppressed at energies near and above the Coulomb barrier
[20, 21]. Thus far, the dependence of the suppression effect
on the breakup threshold energy of the projectile has been
revealed, and an empirical relationship between the suppres-
sion factors and threshold energies has been reported [22].
However, suppression phenomena with various target nuclei
remain unexplained [14, 23], and no systematic behavior of
the CF suppression factors has been observed in the relatively
heavy-mass target region [1]. For light- and medium-mass tar-
gets, the behavior of the suppression factor has not been fully
established because of the experimental difficulty in distin-
guishing residues from ICF and CF. Therefore, we extended
a machine learning method to fusion reactions induced by
weakly bound projectiles and analyzed the systematic behav-
ior of suppression factors across various mass target regions.

Bayesian neural networks (BNNs), one of the commonly
used machine learning methods, have been applied to vari-
ous problems in nuclear physics, such as predicting atomic
nuclear mass [24, 25], nuclear charge radii [26, 27], nuclear
p-decay half-life [28], nuclear fission yields [29-31], spalla-
tion reactions [32-34], fragmentation reactions [35-37], and
neutron nuclear reactions [38]. In this study, based on 475
experimental data points from 39 reaction systems induced
by %7Li, °Be, and '°B, a BNN was constructed to evaluate the
CF cross-sections of weakly bound nuclei for the first time. A
systematic analysis of the suppression effect at energies above
the Coulomb barrier was also conducted. The remainder of
this paper is organized as follows. In Sect. 2, the main charac-
teristics of the proposed BNN method are briefly described.
Prediction results are presented in Sect. 3. Section 4 presents
a summary.

2 Model descriptions

As a prominent machine learning technology, BNNs are highly
effective for constructing novel models based on existing data.
BNNSs, which comprise a specific number of input units, hid-
den units of several layers, and output units, are capable of
delivering high-quality predictions [39, 40]. This section pre-
sents a simple description of the BNN methodology. More
detailed information can be found in [32, 35] and citations
therein.

Bayesian learning sets the prior distribution of the model,
p(w), through the network parameter w before observing any
data, and updates the prior distribution to the posterior distri-
bution p(w|D) by observing the experimental data D(x, y}’),

p(D|w)p(w)

p(@|D) = D)

x p(D|w)p(w), (D

where the prior distribution is a Gaussian distribution with
zero mean derived from the initial knowledge of the model.
In the observed data D(xl’f s y;‘), the outputs y;7 correspond to
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the inputs x!, where n,i,j are the number of data points,
inputs, and outputs, respectively. The normalization func-
tion, p(D), which ensures the posterior distribution in the
effective probability density, is obtained through model
assumptions with a prior integral,

p(D) = / p(D|w)p(w)dw. )
The likelihood function, p(DIw), is based on the Gaussian

distribution of the objective function, )(2, which fits the data
using the least-squares method,

p(D|w) = exp(—x*/2), 3

“

Here ij’? denotes the Gaussian noise corresponding to the

ly =i w)]

n-th observation. A feedforward neural network is used for
BNNSs. This network typically includes a set of input varia-
bles, several hidden layers, and one or more output variables.
A typical network function that connects outputs yJ’? to inputs

x! through a hidden layer is

JRew w)—ak+2bjktanh<c +Zd,j > )

Jj=1 i=1

where N and I are the numbers of hidden units and inputs,
respectively; (d”, c;) and (bjk, a,) are the weights and biases
of the hidden and output layers, respectively. The hidden unit
values are obtained by a weighted summation of the input
values acting on a hyperbolic tangent activation function
(tanh), and the outputs fk”(xf';a)) are obtained by a weighted
summation of the hidden unit values and biases. The pre-

dicted distribution of the output y"Jrl corresponding to the

new input x’l?“ is obtained from the posterior distribution as
p(yj’.1+1 |x?+' ,D) = /p(y;.”'] Ix;’+' , w)p(w|D)dw. (6)

To calculate the output data of the model, the Markov-chain
Monte Carlo method is used to solve the high-dimensional
integral

n+1> —

K
7 ka”(x:-'“ W) )
k=1

where K denotes the number of iterations. The uncertainty

of the predictions is obtained by Ay; = ,/(yf) - ()?

because the model parameters are described using a proba-
bility distribution.
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In this study, the dataset comprised the measured CF
cross-sections in 39 reactions induced by ®’Li, °Be, and
10B, giving rise to 475 data points, as detailed in Table 1
[41-68]. Within this dataset, the incident energy of the reac-
tions ranges from 0.67V,, to 2.06V,, where V| is the Cou-
lomb barrier energy obtained from Akyiiz-Winther nuclear
potential and point-sphere Coulomb potential. The mass and
charge of the target nuclei fall within the ranges of 64 < A, <
209 and 28< Z, < 83, respectively. For model development,
380 data points (80% of all data) were randomly selected to
form the training set, facilitating neural network learning and
parameter optimization. The remaining 20% served as the
test set to evaluate the prediction capabilities of the network.
The input layer contains five parameters, {Zp, Ap, Z,ALE ),
where Z, and A, represent the proton and mass numbers
of the projectiles, respectively, and Z, and A, correspond to
those of the targets. The parameter E_, denotes the center-
of-mass energy in MeV. The output parameter is the CF
cross-section, denoted as o,,. Extensive efforts have been
devoted to constructing hidden units by exploring single-
and double-layer configurations. A double layer with 16 +16
neural units was ultimately verified as the most effective.

3 Results and discussion

To verify the evaluation capacity of the BNN model, we
performed a comparison between the predicted CF cross-
sections and the experimental data, as depicted in Fig. 1. A
logarithmic scale in Fig. 1a and a linear scale in Fig. 1b were
adopted to compare the details of the cross-sections at sub-
barrier and above-barrier energies, respectively. Taking the
SLi + 5°Tb, "Li + 2”Bi, °Be + %Y, and '°B + "°Tb systems
from the dataset as examples, the predicted results were in
good agreement with the experimental CF cross-sections,
both at sub-barrier and above-barrier energies. Further-
more, for the reaction system 8Li 4+ 2%Pb [69], which was
not included in the dataset, the BNN model provided results
consistent with the experimental data.

To further investigate the effects of the breakup channel
on the fusion of weakly bound systems, a systematic analysis
of the suppression factors of CF cross-sections at above-
barrier energies is presented below. The suppression factors
were obtained by fitting the CF cross-sections obtained from
the BNN model or the experimental data using

OBNN _ Oexp

exp

’ ®)
OBPM

where opyy and o, are the predicted and measured cross-
sections, respectively, and ogpy denotes the cross-sections
calculated using a single-barrier potential model. The
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Fig. 1 (Color online) Comparison of the CF cross-sections obtained
from the BNN model (solid lines) with experimental data (solid sym-
bols) for °Li + %9Tb, "Li + 29Bi, °Be + ¥Y, °Be + !%°Tb, and 3Li
+ 208Pb systems. The logarithmic and linear scales are shown in (a)
and (b), respectively. The arrows indicate the corresponding Coulomb
barrier energies. Note that the energies for “Li + 2%Bi and 3Li +
208Pb are shifted by 1.1 and 1.6, respectively

suppression factors calculated using the predicted CF cross-
sections and experimental data are listed in the fourth and
fifth columns of Table 1. Overall, the predictions of the
BNN model represent the experimental suppression factors
well. A detailed relationship between the suppression factor
and mass number of the target nucleus A, for °Li and "Li is
shown in Fig. 2a, and the corresponding results for °Be and
108 are shown in Fig. 2b. These target nuclei were mainly
located in the relatively heavy-mass region, and no obvious
dependence behavior was observed. In Fig. 2a, it is evident
that the suppression factor of "Li is larger than that of °Li for
the same mass target nuclei, which is attributed to the higher
breakup threshold energies of "Li [22].

Next, we extended this BNN model to various mass
regions of the target nucleus, including relatively light- and
medium-mass targets. The CF cross-sections of ’Li and °Be
with the target nuclei along f stability line were predicted.
The calculated suppression factors versus neutron, proton,
and mass numbers of the targets are shown in Fig. 3. A sur-
prising conclusion is that there is no suppression effect in
the vicinity of A, = 110 targets for ®*’Li and °Be, and A, =
180 targets for ®7Li. This was derived from the overall trend
of the available experimental data; further experimental CF
cross-sections are necessary to verify this conclusion.

In Fig. 3, the solid symbols denote the mean suppression fac-
tors derived from the targets with identical neutron (a), proton
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Fig.2 (Color online) Suppression factors obtained from the BNN
model (open symbols) and experimental data (full symbols) for
fusion systems listed in Table 1. The reaction systems induced by °Li,
7Li, °Be, and B are represented by circles, triangles, squares, and
stars, respectively. The horizontal dashed lines are the eye-guidance
reference lines

(b), and mass (c) numbers. Dashed error bars indicate corre-
sponding distribution ranges. Taking lead isotopes as an exam-
ple, the predicted suppression factors of the BNN model for "Li
+ 204.206,207.208ph, were (.78, 0.77, 0.76, and 0.75, respectively.
The mean suppression factor (0.765), upper limit of the error
bar (0.78), and lower limit of the error bar (0.75) are located
at Z, = 82 in Fig. 3(b). Consequently, the range of error bars
indicates the dependence of the suppression effect on the iso-
tone, isotope, and isobar target nuclei. The small error bars of
SLi and "Li suggest weak dependence, whereas the suppression
factors of °Be exhibit strong dependence. Owing to this sensi-
tivity to the number of nucleons in the target nucleus, there is
a pronounced fluctuation in various target nuclei for °Be. This
makes it difficult to identify a systematic trend for *Be.

For °Li and "Li, the consistent behavior of the mean sup-
pression factor suggests that they possess a similar breakup
mechanism, and the minimum values of the suppression factor
occur near the target nuclei with a neutron-closed shell. Within
the relatively light-mass target region (60 < A, < 90), the sup-
pression factors for Li and Li remain around 0.8 and 0.9,
respectively, which is significantly less suppression than that
observed for heavy targets (120 < A, < 160). Moreover, the
systematic behaviors in different mass target regions are mark-
edly distinct. For light-mass targets, the suppression factor var-
ies with the target nucleus mass number, initially increasing
and then decreasing. By contrast, in the heavy-mass target
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region, the suppression factor initially decreases and then
increases. This indicates that there is a competitive process in
the breakup mechanism and that the primary breakup chan-
nel may differ across various mass target regions. Owing to
the limitations of machine learning and the complexity of the
breakup processes, it is challenging to provide a specific physi-
cal mechanism. More experimental and theoretical research is
required to verify these conclusions and provide more explana-
tions for the underlying breakup mechanism.

4 Summary

In this study, we investigated the complete fusion reactions
of weakly bound nuclei using machine learning methods. A
BNN was constructed based on 475 existing experimental
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Fig.3 (Color online) Relationship between the suppression factors
and the neutron (a), proton (b), and mass (¢) numbers of the target
nuclei for projectile nuclei SLi (orange circles), "Li (blue triangles),
and °Be (red stars). The symbols denote the mean suppression fac-
tor whereas the dashed error bars indicate the distribution range. The
black symbols denote the corresponding experimental suppression
factors. The magic numbers are located by the vertical dotted lines.
The solid lines guide the eye. (See the text for more details.)
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iTI?('i’l'l‘ze‘d bTyhivzgé‘;Sg;‘L%“ems Reaction  Ee/Vy  New Faxn Fep Ref  Reaction  Eg/Vy  Ney Faxy Fep Ref

g{};’iecme nuclei /Li, “Be.and  epj e 0.85-2.06 15 087 088 [41]  Li+!®Tb 1.07-1.66 5 071 073 [57)
OLi+%%7r  0.82-1.65 8 0.67 0.7 [17] Li+!%Ho 0.86-1.69 10 0.79 0.74 [15]
SLi+%Zr 0.89-1.68 5 0.52 049 [7] Li+7Au  0.81-1.50 0.84 0.86 [50]
OLi+%7Zr  0.90-1.58 7 0.77 0.77 [42] TLi4+1%Pt 0.79—1.52 0.72  0.77 [58]
OLi+20Sn  0.74-1.32 13 0.78 0.81 [43,44] 7Li+25T1 0.82-1.31 10 0.77 0.74 [59]
OLi+!24Sn  0.83—1.70 15 0.72 0.66 [45] Li+2“Bi  0.83—1.67 21 0.75 0.77 [53]
SLi+#Sm 0.79-1.58 11 0.55 0.54 [46] ‘Be+¥Y 0.83—-1.39 15 0.78 0.75 [60]
OLi+!152Sm 0.80—1.60 20 0.63 0.62 [47] 9Be+Nb 0.85-1.45 7 0.85 0.90 [61]
OLi+!4Sm 1.04—-1.45 6 0.64 0.71 [48] 9Be+'%Sn  0.90—-1.33 13 0.73 0.75 [62]
OLi+!9Tb 0.87-1.50 13  0.65 0.66 [49] 9Be+'*Sm 0.89—-1.31 10 092 094 [63]
OLi+197Au 0.84-1.35 16 0.61 0.60 [50] 9Be+'®Tm 0.93—-1.33 12 0.78 0.80 [64]
OLi+!%%pt  0.67-1.14 10 0.75 0.75 [51] 9Be+'81Ta  0.94-1.34 13 0.66 0.68 [65]
OLi+2%pp  0.92-1.28 20 0.67 0.69 [52] 9Be+'80W  1.08—1.40 4 0.59 0.57 [66]
OLi+2"Bi 0.83—1.53 14 0.65 0.68 [53] 9Be+'8Re 0.93—-1.28 12 0.75 0.76 [64]
TLi+%Ni  0.872.06 16 0.90 0.90 [54] 9Be+'7Au  0.83—1.17 12 0.78 0.70 [67]
Li+"Nb  1.29-1.63 4 0.75 0.75 [55] 9Be+2%Pp  0.88—-1.24 16 0.78 0.79 [53]
Li+'"9Sn  0.72-1.30 15 093 094 [43,44] Be+2™Bi 0.88—1.21 19 098 0.98 [52]
TLi+'%Sn  0.79-1.86 23  0.71 0.73 [56] 10B4159Tp  0.91-1.66 16 0.87 0.87 [57]
TLi+'*Sm 0.88—1.59 14 0.63 0.63 [18] 10B4+209B;  1.06—1.44 5 0.88 0.89 [68]
TLi+'52Sm 0.81-1.61 16 0.66 0.69 [18]

The symbols E,

cm

represents the numbers of experimental CF cross-section. Fgyy and F,

and V), denote the center-of-mass energy and Coulomb barrier energy, respectively. N,

exp

«p denote the suppression factors

calculated by Ep. (8). The last column provides the corresponding reference where the measured cross-

sections were taken from

complete fusion data points induced by %7Li, °Be, and '°B.
This model characterizes five input parameters (projectile
and target information, and colliding energy), double hid-
den layers (16 + 16 neural units), and one output parameter
(CF cross-section). The CF cross-sections predicted by this
model exhibited excellent agreement with the experimental
data, demonstrating the high-quality predictive capabilities
of the model.

The suppression factors, defined as the ratio of the CF
cross-sections predicted by BNN model to those calculated
by a single-barrier penetration model at above-barrier ener-
gies, were systematically analyzed for weakly bound projec-
tiles ®’Li and °Be with the target nuclei along the f stability
line. The dependence behavior of the suppression effect was
predicted across various mass target regions, particularly for
relatively light-mass targets. For °Be, the suppression fac-
tors exhibited a marked sensitivity to the target nucleus, and
no apparent systematic behavior was observed in either the
heavy- or light-mass target regions. For °Li and "Li, the BNN
model predicted less suppression in relatively light-mass tar-
gets compared to that observed for heavy-mass targets. Fur-
thermore, the dependence in the light-mass target region was
exactly opposite to that in the heavy-mass target region. These

conclusions require further experimental and theoretical vali-
dation, as well as mechanistic explanations.
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