
Vol.:(0123456789)

Nuclear Science and Techniques (2025) 36:194 
https://doi.org/10.1007/s41365-025-01779-0

Predictions of complete fusion cross‑sections of 6,7Li, 9Be, and 10 B using 
a Bayesian neural network method

Kai‑Xuan Cheng1   · Rong‑Xing He1 · Chun‑Yuan Qiao1 · Chun‑Wang Ma2 

Received: 20 January 2025 / Revised: 6 March 2025 / Accepted: 31 March 2025 / Published online: 31 July 2025 
© The Author(s), under exclusive licence to China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese 
Academy of Sciences, Chinese Nuclear Society 2025

Abstract
A machine learning approach based on Bayesian neural networks was developed to predict the complete fusion cross-sections 
of weakly bound nuclei. This method was trained and validated using 475 experimental data points from 39 reaction systems 
induced by 6,7Li, 9Be, and 10 B. The constructed Bayesian neural network demonstrated a high degree of accuracy in evaluat-
ing complete fusion cross-sections. By comparing the predicted cross-sections with those obtained from a single-barrier 
penetration model, the suppression effect of 6,7 Li and 9 Be with a stable nucleus was systematically analyzed. In the cases of 
6 Li and 7Li, less suppression was predicted for relatively light-mass targets than for heavy-mass targets, and a notably distinct 
dependence relationship was identified, suggesting that the predominant breakup mechanisms might change in different mass 
target regions. In addition, minimum suppression factors were predicted to occur near target nuclei with neutron-closed shell.
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1  Introduction

Advancements in beam quality and detection technology 
in the latest generation of radiation nuclear beam facilities 
have brought the study of reaction mechanisms induced by 
weakly bound nuclei in the Coulomb barrier energy region 
to the forefront of nuclear physics research [1, 2]. In con-
trast with the fusion processes involving strongly bound 
nuclei, the mechanisms triggered by weakly bound nuclei 
are complex because of their lower binding energies. This 
complexity is mainly exemplified by the extended nuclear 
matter distribution and breakup effect [3, 4]. The former, 

a static effect, results in a reduction in the average fusion 
barrier height, consequently enhancing the fusion cross-sec-
tions. The dynamic breakup of the projectile can diminish 
the flux of direct fusion reactions, leading to three distinct 
processes: (1) sequential complete fusion (SCF), where all 
fragments resulting from the breakup fuse with the target; 
(2) incomplete fusion (ICF), where only some of the breakup 
fragments are absorbed by the target; and (3) no capture 
breakup (NCBU), where none of the breakup fragments are 
captured by the target. The reaction process, in which the 
entire projectile without breakup is captured by the target, 
is termed direct complete fusion (DCF). However, from an 
experimental perspective, differentiating between the fusion 
yields of SCF and DCF is challenging. As a result, only 
complete fusion (CF) cross-sections, including both DCF 
and SCF cross-sections, can be measured.

Over the past few decades, numerous experimental [5–8] 
and theoretical [9–11] studies have been conducted on fusion 
reactions involving weakly bound nuclei. The main objective 
of these studies was to investigate the influence of breakup 
on fusion reactions near the Coulomb barrier [12–14]. One 
of the most widely adopted approaches is to compare data 
with predictions from a single-barrier penetration model [15, 
16] or a coupled channel model without breakup channels 
[17–19]. It has been demonstrated that the CF cross-sections 
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are suppressed at energies near and above the Coulomb barrier 
[20, 21]. Thus far, the dependence of the suppression effect 
on the breakup threshold energy of the projectile has been 
revealed, and an empirical relationship between the suppres-
sion factors and threshold energies has been reported [22]. 
However, suppression phenomena with various target nuclei 
remain unexplained [14, 23], and no systematic behavior of 
the CF suppression factors has been observed in the relatively 
heavy-mass target region [1]. For light- and medium-mass tar-
gets, the behavior of the suppression factor has not been fully 
established because of the experimental difficulty in distin-
guishing residues from ICF and CF. Therefore, we extended 
a machine learning method to fusion reactions induced by 
weakly bound projectiles and analyzed the systematic behav-
ior of suppression factors across various mass target regions.

Bayesian neural networks (BNNs), one of the commonly 
used machine learning methods, have been applied to vari-
ous problems in nuclear physics, such as predicting atomic 
nuclear mass [24, 25], nuclear charge radii [26, 27], nuclear 
�-decay half-life [28], nuclear fission yields [29–31], spalla-
tion reactions [32–34], fragmentation reactions [35–37], and 
neutron nuclear reactions [38]. In this study, based on 475 
experimental data points from 39 reaction systems induced 
by 6,7Li, 9Be, and 10 B, a BNN was constructed to evaluate the 
CF cross-sections of weakly bound nuclei for the first time. A 
systematic analysis of the suppression effect at energies above 
the Coulomb barrier was also conducted. The remainder of 
this paper is organized as follows. In Sect. 2, the main charac-
teristics of the proposed BNN method are briefly described. 
Prediction results are presented in Sect. 3. Section 4 presents 
a summary.

2 � Model descriptions

As a prominent machine learning technology, BNNs are highly 
effective for constructing novel models based on existing data. 
BNNs, which comprise a specific number of input units, hid-
den units of several layers, and output units, are capable of 
delivering high-quality predictions [39, 40]. This section pre-
sents a simple description of the BNN methodology. More 
detailed information can be found in [32, 35] and citations 
therein.

Bayesian learning sets the prior distribution of the model, 
p(�) , through the network parameter � before observing any 
data, and updates the prior distribution to the posterior distri-
bution p(�|D) by observing the experimental data D(xn

i
, yn

j
),

where the prior distribution is a Gaussian distribution with 
zero mean derived from the initial knowledge of the model. 
In the observed data D(xn

i
, yn

j
) , the outputs yn

j
 correspond to 

(1)p(�|D) = p(D|�)p(�)
p(D)

∝ p(D|�)p(�),

the inputs xn
i
 , where n,i,j are the number of data points, 

inputs, and outputs, respectively. The normalization func-
tion, p(D), which ensures the posterior distribution in the 
effective probability density, is obtained through model 
assumptions with a prior integral,

The likelihood function, p(D|w), is based on the Gaussian 
distribution of the objective function, �2 , which fits the data 
using the least-squares method,

Here Δyn
j
 denotes the Gaussian noise corresponding to the 

n-th observation. A feedforward neural network is used for 
BNNs. This network typically includes a set of input varia-
bles, several hidden layers, and one or more output variables. 
A typical network function that connects outputs yn

j
 to inputs 

xn
i
 through a hidden layer is

where N and I are the numbers of hidden units and inputs, 
respectively; (dij, cj) and (bjk, ak) are the weights and biases 
of the hidden and output layers, respectively. The hidden unit 
values are obtained by a weighted summation of the input 
values acting on a hyperbolic tangent activation function 
(tanh), and the outputs f n

k
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i
;�) are obtained by a weighted 

summation of the hidden unit values and biases. The pre-
dicted distribution of the output yn+1

j
 corresponding to the 

new input xn+1
i

 is obtained from the posterior distribution as

To calculate the output data of the model, the Markov-chain 
Monte Carlo method is used to solve the high-dimensional 
integral
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In this study, the dataset comprised the measured CF 
cross-sections in 39 reactions induced by 6,7Li, 9Be, and 
10 B, giving rise to 475 data points, as detailed in Table 1 
[41–68]. Within this dataset, the incident energy of the reac-
tions ranges from 0.67Vb to 2.06Vb , where Vb is the Cou-
lomb barrier energy obtained from Akyüz-Winther nuclear 
potential and point-sphere Coulomb potential. The mass and 
charge of the target nuclei fall within the ranges of 64 ≤ At ≤ 
209 and 28≤ Zt ≤ 83, respectively. For model development, 
380 data points (80% of all data) were randomly selected to 
form the training set, facilitating neural network learning and 
parameter optimization. The remaining 20% served as the 
test set to evaluate the prediction capabilities of the network. 
The input layer contains five parameters, {Zp,Ap, Zt,At,Ecm} , 
where Zp and Ap represent the proton and mass numbers 
of the projectiles, respectively, and Zt and At correspond to 
those of the targets. The parameter Ecm denotes the center-
of-mass energy in MeV. The output parameter is the CF 
cross-section, denoted as �exp . Extensive efforts have been 
devoted to constructing hidden units by exploring single- 
and double-layer configurations. A double layer with 16 +16 
neural units was ultimately verified as the most effective.

3 � Results and discussion

To verify the evaluation capacity of the BNN model, we 
performed a comparison between the predicted CF cross-
sections and the experimental data, as depicted in Fig. 1. A 
logarithmic scale in Fig. 1a and a linear scale in Fig. 1b were 
adopted to compare the details of the cross-sections at sub-
barrier and above-barrier energies, respectively. Taking the 
6 Li + 159Tb, 7 Li + 209Bi, 9 Be + 89 Y, and 10 B + 159 Tb systems 
from the dataset as examples, the predicted results were in 
good agreement with the experimental CF cross-sections, 
both at sub-barrier and above-barrier energies. Further-
more, for the reaction system 8 Li + 208 Pb [69], which was 
not included in the dataset, the BNN model provided results 
consistent with the experimental data.

To further investigate the effects of the breakup channel 
on the fusion of weakly bound systems, a systematic analysis 
of the suppression factors of CF cross-sections at above-
barrier energies is presented below. The suppression factors 
were obtained by fitting the CF cross-sections obtained from 
the BNN model or the experimental data using

where �BNN and �exp are the predicted and measured cross-
sections, respectively, and �BPM denotes the cross-sections 
calculated using a single-barrier potential model. The 

(8)FBNN =
�BNN

�BPM
or Fexp =

�exp

�BPM
,

suppression factors calculated using the predicted CF cross-
sections and experimental data are listed in the fourth and 
fifth columns of Table 1. Overall, the predictions of the 
BNN model represent the experimental suppression factors 
well. A detailed relationship between the suppression factor 
and mass number of the target nucleus At for 6 Li and 7 Li is 
shown in Fig. 2a, and the corresponding results for 9 Be and 
10 B are shown in Fig. 2b. These target nuclei were mainly 
located in the relatively heavy-mass region, and no obvious 
dependence behavior was observed. In Fig. 2a, it is evident 
that the suppression factor of 7 Li is larger than that of 6 Li for 
the same mass target nuclei, which is attributed to the higher 
breakup threshold energies of 7 Li [22].

Next, we extended this BNN model to various mass 
regions of the target nucleus, including relatively light- and 
medium-mass targets. The CF cross-sections of 6,7 Li and 9 Be 
with the target nuclei along � stability line were predicted. 
The calculated suppression factors versus neutron, proton, 
and mass numbers of the targets are shown in Fig. 3. A sur-
prising conclusion is that there is no suppression effect in 
the vicinity of At = 110 targets for 6,7 Li and 9Be, and At = 
180 targets for 6,7Li. This was derived from the overall trend 
of the available experimental data; further experimental CF 
cross-sections are necessary to verify this conclusion.

In Fig. 3, the solid symbols denote the mean suppression fac-
tors derived from the targets with identical neutron (a), proton 

Fig. 1   (Color online) Comparison of the CF cross-sections obtained 
from the BNN model (solid lines) with experimental data (solid sym-
bols) for 6 Li + 159Tb, 7 Li + 209Bi, 9 Be + 89 Y, 10 Be + 159Tb, and 8 Li 
+ 208 Pb systems. The logarithmic and linear scales are shown in (a) 
and (b), respectively. The arrows indicate the corresponding Coulomb 
barrier energies. Note that the energies for 7 Li + 209 Bi and 8 Li + 
208 Pb are shifted by 1.1 and 1.6, respectively
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(b), and mass (c) numbers. Dashed error bars indicate corre-
sponding distribution ranges. Taking lead isotopes as an exam-
ple, the predicted suppression factors of the BNN model for 7 Li 
+ 204,206,207,208 Pb were 0.78, 0.77, 0.76, and 0.75, respectively. 
The mean suppression factor (0.765), upper limit of the error 
bar (0.78), and lower limit of the error bar (0.75) are located 
at Zt = 82 in Fig. 3(b). Consequently, the range of error bars 
indicates the dependence of the suppression effect on the iso-
tone, isotope, and isobar target nuclei. The small error bars of 
6 Li and 7 Li suggest weak dependence, whereas the suppression 
factors of 9 Be exhibit strong dependence. Owing to this sensi-
tivity to the number of nucleons in the target nucleus, there is 
a pronounced fluctuation in various target nuclei for 9Be. This 
makes it difficult to identify a systematic trend for 9Be.

For 6 Li and 7Li, the consistent behavior of the mean sup-
pression factor suggests that they possess a similar breakup 
mechanism, and the minimum values of the suppression factor 
occur near the target nuclei with a neutron-closed shell. Within 
the relatively light-mass target region ( 60 ≤ At ≤ 90 ), the sup-
pression factors for 6 Li and 7 Li remain around 0.8 and 0.9, 
respectively, which is significantly less suppression than that 
observed for heavy targets ( 120 ≤ At ≤ 160 ). Moreover, the 
systematic behaviors in different mass target regions are mark-
edly distinct. For light-mass targets, the suppression factor var-
ies with the target nucleus mass number, initially increasing 
and then decreasing. By contrast, in the heavy-mass target 

region, the suppression factor initially decreases and then 
increases. This indicates that there is a competitive process in 
the breakup mechanism and that the primary breakup chan-
nel may differ across various mass target regions. Owing to 
the limitations of machine learning and the complexity of the 
breakup processes, it is challenging to provide a specific physi-
cal mechanism. More experimental and theoretical research is 
required to verify these conclusions and provide more explana-
tions for the underlying breakup mechanism.

4 � Summary

In this study, we investigated the complete fusion reactions 
of weakly bound nuclei using machine learning methods. A 
BNN was constructed based on 475 existing experimental 

Fig. 2   (Color online) Suppression factors obtained from the BNN 
model (open symbols) and experimental data (full symbols) for 
fusion systems listed in Table 1. The reaction systems induced by 6Li, 
7Li, 9Be, and 10 B are represented by circles, triangles, squares, and 
stars, respectively. The horizontal dashed lines are the eye-guidance 
reference lines

Fig. 3   (Color online) Relationship between the suppression factors 
and the neutron (a), proton (b), and mass (c) numbers of the target 
nuclei for projectile nuclei 6 Li (orange circles), 7 Li (blue triangles), 
and 9 Be (red stars). The symbols denote the mean suppression fac-
tor whereas the dashed error bars indicate the distribution range. The 
black symbols denote the corresponding experimental suppression 
factors. The magic numbers are located by the vertical dotted lines. 
The solid lines guide the eye. (See the text for more details.)



Predictions of complete fusion cross‑sections of 6,7Li, 9Be, and 10 B using a Bayesian neural… Page 5 of 7  194

complete fusion data points induced by 6,7Li, 9Be, and 10 B. 
This model characterizes five input parameters (projectile 
and target information, and colliding energy), double hid-
den layers (16 + 16 neural units), and one output parameter 
(CF cross-section). The CF cross-sections predicted by this 
model exhibited excellent agreement with the experimental 
data, demonstrating the high-quality predictive capabilities 
of the model.

The suppression factors, defined as the ratio of the CF 
cross-sections predicted by BNN model to those calculated 
by a single-barrier penetration model at above-barrier ener-
gies, were systematically analyzed for weakly bound projec-
tiles 6,7 Li and 9 Be with the target nuclei along the � stability 
line. The dependence behavior of the suppression effect was 
predicted across various mass target regions, particularly for 
relatively light-mass targets. For 9Be, the suppression fac-
tors exhibited a marked sensitivity to the target nucleus, and 
no apparent systematic behavior was observed in either the 
heavy- or light-mass target regions. For 6 Li and 7Li, the BNN 
model predicted less suppression in relatively light-mass tar-
gets compared to that observed for heavy-mass targets. Fur-
thermore, the dependence in the light-mass target region was 
exactly opposite to that in the heavy-mass target region. These 

conclusions require further experimental and theoretical vali-
dation, as well as mechanistic explanations.
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