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Abstract

Missing values in radionuclide diffusion datasets can undermine the predictive accuracy and robustness of the machine
learning (ML) models. In this study, regression-based missing data imputation method using a light gradient boosting
machine (LGBM) algorithm was employed to impute more than 60% of the missing data, establishing a radionuclide dif-
fusion dataset containing 16 input features and 813 instances. The effective diffusion coefficient (D,) was predicted using
ten ML models. The predictive accuracy of the ensemble meta-models, namely LGBM-extreme gradient boosting (XGB)
and LGBM-categorical boosting (CatB), surpassed that of the other ML models, with R* values of 0.94. The models were
applied to predict the D, values of EUEDTA™ and HCrO,™ in saturated compacted bentonites at compactions ranging from
1200 to 1800 kg/m?, which were measured using a through-diffusion method. The generalization ability of the LGBM-XGB
model surpassed that of LGB-CatB in predicting the D, of HCrO,~. Shapley additive explanations identified total porosity
as the most significant influencing factor. Additionally, the partial dependence plot analysis technique yielded clearer results
in the univariate correlation analysis. This study provides a regression imputation technique to refine radionuclide diffusion
datasets, offering deeper insights into analyzing the diffusion mechanism of radionuclides and supporting the safety assess-
ment of the geological disposal of high-level radioactive waste.

Keywords Machine learning - Radionuclide diffusion - Bentonite - Regression imputation - Missing data - Diffusion
experiments

1 Introduction

Bentonite is often selected as an engineering barrier
in a high-level radioactive waste (HLW) repositories
due to its low hydraulic conductivity, which leads to a
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diffusion-controlled process for radionuclide transport [1-4].
The effective diffusion coefficient (D,), a critical parameter
in the safety assessment of repositories, describes the diffu-
sion behavior of radionuclides in porous media [5-7]. Under
complex disposal conditions, D, is affected by the properties
of radionuclides, such as diffusing species and adsorption
properties [8]; the characteristics of bentonite, such as com-
paction, pore structure, and physical and chemical properties
[3,9, 10]; and the porewater chemistry, such as pH and ionic
strength [11-14]. Over the few decades, considerable atten-
tion has been devoted to determining the D, of radionuclides
in compacted bentonite [1, 8, 15-17].

Predicting the D, of radionuclides is both challenging and
crucial due to the nonlinear and complex interactions among
radionuclides, porewater, and bentonite [2, 3]. Machine learn-
ing (ML) models are valuable tools for this task because they
can manage complex and high-dimensional data. Various ML
models, such as the light gradient boosting machine (LGBM),
extreme gradient boosting (XGB), categorical boosting (CatB),
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support vector machine (SVM), random forest (RF), and artifi-
cial neural networks (ANN), have been applied to predict the
D, of radionuclides in compacted bentonite [18-21]. Radionu-
clide diffusion datasets were compiled from experimental data
published in the literatures and a radionuclide diffusion data-
base established by the Japan Atomic Energy Agency (JAEA-
DDB). These datasets included numerous input features ranged
from 3 to 16 and the data size ranged from 293 instances to
956 instances [19-21]. It is worth mentioning that the JAEA-
DDB collected over 5000 instances from radionuclide diffu-
sion experiments spanning 1982 to 2009 [22]. However, the
instances increased with decreasing input features, primarily
due to the missing data, resulting in a potential impact on the
accuracy and reliability of the ML model explanations.

The issues caused by missing data are a pervasive concern
in databases [23, 24]. Missing data can lead to suboptimal
outcomes, reduce predictive performance, and even result in
misleading conclusions [25, 26]. For instance, the dry density
and rock capacity factor have been reported as the two most
influential factors in predicting the D, [20, 21]. In contrast, Wu
et al. (2024) observed that the ion diffusion coefficient in water
and dry density were the top-two contributors. This discrep-
ancy can be attributed to an insufficient number of instances
in the datasets used. Therefore, a comprehensive dataset is
essential to provide a more reliable analysis of the diffusion
mechanisms.

This study presents a novel, comprehensive radionuclide
diffusion dataset with micro-mesoscopic features using ML
models as regression imputation techniques. Firstly, the LGBM
was employed as a regression-based missing data imputation
method to impute over 60% of the missing data. Subsequently,
ten ML models, including three ensemble ML algorithms
(LGBM-CatB, LGBM-XGB, and LGBM-RF), four decision-
tree algorithms (LGBM, CatB, XGB, and RF), support vec-
tor machine (SVM), and two neural networks (ANN and deep
neural network (DNN)), were trained, optimized, and tested by
fivefold cross-validation to predict D, values. Finally, through-
diffusion experiments were conducted to measure the diffusion
parameters of EUEDTA™ and HCrO,~ in compacted benton-
ite, including D,, rock capacity factor, accessible porosity, total
porosity, and distribution coefficient, to evaluate the generaliza-
tion of the trained ML models. The goal was to develop predic-
tive models that exhibit high accuracy, strong robustness, and
clear interpretability for radionuclide diffusion studies, which
are crucial for the safety assessment of HLW repositories.

2 Materials and Methods
2.1 Material

Ba-bentonite was prepared by modifying Gaomiaozi
(GMZ) bentonite with a BaCl, solution. The mass
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percentage of BaCl, in modified bentonite was 5%. The
detailed procedures for this modification have been previ-
ously described [16]. Wyoming bentonite powder had the
grain dry density of 2760 kg/m?®, montmorillonite con-
tent of 0.85, external surface area of 38 mz/g, and cation
exchange capacity of 78.7 meq/100 g [27, 28]. Ba-ben-
tonite powder had the grain dry density of 2710 kg/m?,
montmorillonite content of 0.78, external surface area of
27.3 m?/g, and cation exchange capacity of 58.7 meq/100 g
[16].

All the solid chemicals were purchased from
Aladdin. The pH values of the NaCl solution were
adjusted to 5.0+0.1 and 7.0 +0.1 for EuEDTA™ and
HCrO,~ diffusion experiments, respectively. A stock solu-
tion of EUEDTA™ was prepared by dissolving a measured
amount of EuNOj;. 6 H,O in 200 mL of a solution mixed
with 0.6 mol/L NaCl and 0.01 mol/L EDTA. Similarly,
a stock solution of HCrO,~ was prepared by dissolving
a measured amount of K,Cr,0, in 200 mL of 0.5 mol/L
NaCl solution. The initial concentrations of HCrO,~ and
EuEDTA™ were 1.8 x 107 mol/L and 5.7 X 10™* mol/L,
respectively, with corresponding pH values of 5.3 + 0.1
and 6.8 + 0.1. The uncertainty in the pH was determined
based on the standard deviation derived from the five
source solutions for HCrO,~ and EuEDTA™. Excess EDTA
ensured the complete complexation of Eu(IIl).

2.2 Through-diffusion method

A through-diffusion method was used to measure the dif-
fusion parameters of EUEDTA™ and HCrO,~ in compacted
bentonites. The experiments were operated under ambi-
ent conditions, with pH 5.3 +0.1 and a temperature of
25 + 3°C for EuEDTA™ diffusion, and pH 6.8 + 0.1 and a
temperature of 15 + 3 °C for HCrO,~ diffusion. The ben-
tonite powder was compacted into cylindrical blocks with
dry densities in the range of 1200—1800 kg/m>. The pow-
der, with an initial water content of approximately 5%,
was calculated to weigh between 7.8 and 11.4 g for the
preparation of the bentonite blocks. During the weigh-
ing process and preparation of bentonite blocks in the
experimental procedure, approximately 0.3 g of bentonite
powder was lost. This loss represents the primary source
of uncertainty in the compacted dry density. Table 1 sum-
marizes the experimental conditions used in diffusion
experiments. After the compacted bentonite blocks were
mounted in the diffusion setups, they were saturated for
five weeks with NaCl solution in the diffusion cells. The
diffusion experiments lasted 90 days for EUEDTA™ and 25
days for HCrO,".

Cr and Eu concentrations were measured using an
inductively coupled plasma optical emission spectrometer
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Table 1 Overview of the experimental condition for EUEDTA™ and
HCrO," diffusion experiments

Experimental conditions Detailed information

Anion EuEDTA™ HCrO,~
Bentonite type Ba-bent Wyoming
Initial concentration (X 1073 mol/L) 0.57 +0.02 1.80 +0.10
Tonic strength (mol/L) 0.6 0.5

Dry density (kg/m>) 1300—1700 1200-1800
pH (0 53+0.1 6.8 +0.1
Temperature (°C) 25+3 15+3
Block dimension (cm) D254x1.3 D254 x1.2
Volume of source reservoir (mL) 200

Volume of target reservoir (mL) 10

(Optima 7000DV, PerkinElmer, USA). Data processing was
performed using fitting for diffusion parameters software to
calculate diffusion parameters such as the D,, rock capacity
factor, distribution coefficient, total porosity, and accessible
porosity. Further details regarding the experimental setup,
operational steps, and data processing are available in previ-
ous studies [17, 29].

2.3 Data
2.3.1 Data compilation

The datasets were gathered from the JAEA-DDB and 16
published resources, covering the period from 1982 to 2024.
The dataset comprised 16 input features and 324 experi-
mental instances, including 304 instances obtained from Wu
et al. (2024) and 20 experimental instances from three other
studies [17, 20, 27]. Notably, the absence of pH values in
514 instances of the JAEA-DDB resulted in a significantly
reduction in data size. To address this, regression imputation
techniques using ML models were applied to predict the pH
values based on a dataset of 324 instances, thereby expand-
ing the dataset to 838 instances.

The dataset included 16 input features, which were cat-
egorized into three groups: (i) porewater properties, com-
prising the ionic strength (/), temperature (7), and pH; (ii)
bentonite properties, including the montmorillonite content

Table 2 Details of the features and instances of datasets

(m), external surface area (A,,,), dry density (p,), grain den-
sity (p,), total porosity (g,,), and montmorillonite stacking
number (n,); and (iii) radionuclide properties, encompassing
the ion diffusion coefficient in water (D,,), molecular weight
(MW), ion molar conductivity (4), ionic radius (r), ionic
charge (z), distribution coefficient (K,), and rock capacity
factor ().

2.3.2 Data preprocessing

The presence of outliers can reduce the predictive accuracy
of ML models. To address this issue, the Mahalanobis dis-
tance (MD) method was employed to identify and remove
outliers. The cutoff point (d;) is given as:

di=V(x—p) S (x—p), 1)

where x represents the object vector, y denotes the mean
arithmetic vector, and S is the covariance matrix of
instances. The cutoff point was set to eight to ensure that
the skewness of all input features was less than 10.

Three datasets were used to enhance the prediction of
radionuclide diffusion. An overview of the features and
instances of each dataset is summarized in Table 2. Dataset
I included 15 input features, with pH as the output feature.
To ensure the data quality and reduce noise, eight instances
were removed using the MD method. This process yielded
Dataset I, comprising 316 instances. The statistical details
of Dataset I are presented in Table S1 of the supporting
information. Datasets II and III comprised 16 input features,
including the basic features (15 input features of Dataset I)
and pH. The output feature for Datasets II and III was the
D.. Dataset III, comprising 813 instances, was obtained after
removing 17 instances. It is noteworthy that these datasets
comprised parameters at the micro-mesoscopic level. Specif-
ically, the montmorillonite stacking number and ionic radius
were classified as microscopic parameters, whereas the other
parameters were considered as mesoscopic.

2.3.3 Imputation methods

Four decision-tree models, namely LGBM, CatB, XGB, and
RF, were used as regression imputation methods to predict

Dataset Input feature

Input numberQutput featureInstance number

Basic features:
Datssati (1) Porcwatf:r: LT.
(ii) Bentonite: m, Acx, Pas Pss Eots Ne-
(iii) Radionuclides: Dy, r, z, A\, MW, K, .

Dataset Il Basic features and pH

Dataset Link
316
https://doi.org/10.57760/sciencedb.j00186.00710
316
813
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the pH values of Dataset I. LGBM exhibited superior pre-
dictive accuracy compared with the other models. This
was consistent with the results of our previous study [21].
Dataset III was established by incorporating additional 514
instances with Dataset II using the LGBM for data imputa-
tion. Table S2 of the supporting information summarizes the
statistical results of the input and output features for Dataset
111

2.4 Methodology

The D, values of radionuclides in compacted bentonite
were predicted using ten ML models, including three
ensemble ML algorithms (LGBM-CatB, LGBM-XGB, and
LGBM-RF), four decision-tree algorithms (LGBM, CatB,
XGB, and RF), SVM, and two neural networks (ANN and
DNN). Ensemble ML models combine the strengths of
multiple individual models to enhance overall predictive
performance and stability, offering a promising solution to
the challenges of bias and variance in individual models
[30]. Since LGBM exhibited superior predictive perfor-
mance compared with the other models, it was combined
with CatB, XGB, and RF to predict the D, using a vot-
ing regressor method from the scikit-learn package [20,
31]. The voting regressor simultaneously applies multiple
regression models to the same dataset, thereby optimiz-
ing the final output by synthesizing the prediction results
of each model. During the training process, the system
can adjust the weight distribution according to the per-
formance of each model. The final prediction result y is
calculated by:

y= yio, ©)
i=1

where y; and w;, represent the prediction result and the weight
corresponding of the i-th model, respectively. This method
optimized the weight ranges of the base learners within a
model by initially pruning these ranges according to the gra-
dient of the best base learner performance, thereby acceler-
ating the model optimization [30]. The hyperparameters of
ML models were tuned using the particle swarm optimiza-
tion (PSO) algorithm. In this algorithm, potential solutions
to an optimization problem are represented as a swarm of
particles. Each particle i possesses a position vector x; and a
velocity vector v; within the search space. During the algo-
rithmic evolution, iterative adjustments are performed on
both the velocity and position of each particle. Specifically,
the velocity of each particle is updated according to the indi-
vidual’s best-known position p; and the swarm’s global best
position g;, as follows:
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ter, (gk(f) - xf-c(l)),

where w is inertia weight, which influences the particle’s
velocity based on its previous state. ¢, and ¢, represent the
learning factor for individual and social adjustment, respec-
tively. r; and r, denote random numbers uniformly distrib-
uted within [0, 1].

Figure 1 illustrates a workflow diagram for develop-
ing ML models to predict the D, values of radionuclides
in various compacted bentonites. This study was organ-
ized into three parts: (i) Dataset augmentation: Missing
pH values were predicted using decision-tree algorithms,
thereby refining the radionuclide diffusion dataset. (ii)
Model training and explanation: Ten ML models were
employed to train prediction models with high predictive
accuracy. The diffusion mechanism was analyzed using
Spearman, Shapley additive explanations (SHAP), and
partial dependence plots (PDP). (iii) Model application:
The D, values of EUEDTA™ and HCrO,~ in compacted
bentonites were measured using a through-diffusion
method, which was employed to evaluate the generaliza-
tion capability of the best ML models.

2.5 Model development and evaluation

The datasets were randomly divided into a training set
consisting of 80% of the instances and a test set contain-
ing the remaining 20%. Since data processing using loga-
rithmic transformation and min—max normalization exhib-
ited an insignificant impact on the predictive accuracy
in predicting the D, of radionuclides in bentonite [19],
logarithmic transformation was applied to the features,
such as the ionic radius, ion diffusion coefficient in water,
and D,, owing to their significantly larger magnitudes
compared to other features. A fivefold cross-validation
method was used to reduce the risk of overfitting. There-
fore, the 80% training data was further subdivided into
a pretraining (80% of the training data) and a validation
(20% of the remaining training data) datasets to pretrain
the ML models and optimize the hyperparameters. The
PSO technique was used to optimize the hyperparameters.

The predictive performance was evaluated by the
coefficient of determination (R?), and mean square error
(MSE). These metrics are given as follows:



Prediction of radionuclide diffusion enabled by missing data imputation and ensemble machine...

Page50f15 181

M=

2
<log DP —log Dgrl.ed >
R =1- : )
2
<log D —log D )

=

Il
-

N
2
MSE =+ Y (log D3P~ log DI ) ©)
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where logD, ;*** and logD, ,,.”*" are the experimental D, and
average experimental D, measured from diffusion experi-
ments, respectively. logDe’ipred is the predicted D, using the
ML models.

3 Results and discussion
3.1 Model development
3.1.1 Regression imputation for predicting pH

Handling missing data is a crucial step affecting the quality
and reliability of the data analysis. Various regression impu-
tation techniques have been applied to impute missing data,
such as ANNs, multivariate imputation by chained equa-
tions, k-nearest neighbors, time-series deep learning models,
generative broad Bayesian imputation, principal component
analysis imputation, and simple arithmetic averages. These
methods have been applied to datasets with missing data
percentages ranging from 0 to 80% [24, 26, 32-36]. Gener-
ally, three types of missing data mechanisms are recognized:
missing completely at random, missing at random, and miss-
ing not at random [23]. Each mechanism presents different
challenges and implications for imputation, highlighting the

Fig.1 (Color online) Workflow

diagram on building machine
learning models for predicting
the effective diffusion coeffi-
cient of radionuclides in various
compacted bentonites

Four ML models

Dataset I: 316 instances
(15 input Output: pH)

Dataset I11: 813 instances E E
(16 input Output: D,) 4

importance of identifying the underlying pattern of missing-
ness before selecting an appropriate imputation strategy.
The JAEA-DDB database collected data from the lit-
eratures and reports covering 1982 to 2009. The instances
have been derived from various diffusion experimental
methods and numerous researchers. The absence of pH
values in 514 instances within the JAEA-DDB database
can be explained that these researches ignored the impor-
tance of pH values in their studies. In the JAEA-DDB
database, missing data primarily resulted from ignoring
or inadequately measuring the parameters that related to
the radionuclide diffusion. The missing mechanism in the
JAEA-DDB database was assumed to be missing com-
pletely at random, corresponding to a noncontinuous miss-
ingness. Based on the selected 16 input features, more than
60% of the dataset (514 instances) lacked pH values. Deci-
sion-tree models were employed to predict the missing pH
values to augment the dataset and enhance the robustness
of the ML models. Specifically, LGBM, CatB, XGB, and
RF were employed to predict the pH values of Dataset I.
The predicted performances are summarized in Table 3.
The LGBM exhibited superior robustness compared with
the other models. For instance, the Rgv values for the test
sets were ranked in descending order using a fivefold cross-
validation as follows: LGBM> XGB> CatB > RF. The rank
of MSE,, values was the opposite of that of the R? values
for the test datasets. Notably, LGBM achieved the highest
performance metrics among all models, with an MSE of 0.23
and R? of 0.92 for the test dataset. The hyperparameters of
the optimal ML models are listed in Table S3 of the support-
ing information. Therefore, the missing pH values for 514
instances were predicted using the LGBM model, resulting
in the establishment of Dataset III with 813 instances.
Figure 2 exhibits the data distribution and charac-
teristics of the relationship between pH and each input

Dataset I1: 316

(6 mput OUipuE DY VS Dataset I11: 813

i { Ten ML models
E T s Interpretability analysis ~ i--------- v
RF ' E ) E Spearman SHAP analysis PDP analysis E '

1/ iii: Model Application
Through-diffusion method:
10 unseen instances

Generalization ability validation
LGBM-CatB LGBM-XGB
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feature. Blue and orange represent the data distributions
of Dataset I and the imputed 514 instances, respectively.
It clearly demonstrates a nonlinear relationship between
the pH and each input feature. The predicted pH val-
ues ranged from 5.0 to 9.0, exhibiting a Gaussian type
distribution.

pH is an important porewater parameter that influences
both the radionuclide species and surface charge of clay
[37]. Figure 3 shows the pH dependence on the external sur-
face area and ion molar conductivity, which are associated
with the bentonite and radionuclide properties, respectively.
Dataset I exhibits that the pH values ranged from 3.0 to 13.4.
The predicted pH values are concentrated in the range from
5.0 t0 9.0, suggesting a close adherence to a normal distribu-
tion of porewater for Dataset II1.

3.1.2 Model development for radionuclide diffusion

Ten ML models, namely LGBM-CatB, LGBM-XGB,
LGBM-RF, LGBM, CatB, XGB, RF, ANN, DNN, and
SVM, were used to predict the D, values of radionuclides
in compacted bentonite. Figure 4 shows the performance
metrics of the ML models for the test datasets of Dataset 11
and III using the optimal hyperparameters tuned with PSO
techniques (Table S4 in the supporting information). The
performance metrics were assessed using fivefold cross-
validation. The red lines represent the smooth kernel curve
of the distribution of performance metrics. The black lines
within and outside the box plots denote the mean values and
standard deviations of the performance metrics, respectively,
with a lower standard deviation indicating strong robustness
of the ML models. The detailed performance metrics for the
training, validation, and test datasets are listed in Table S5
of the supporting information.

As the number of instances increased from 316 (Dataset
II) to 813 (Dataset III), the performance metrics of all ML
models improved significantly, as evidenced by the higher
Rgv values, lower MSE,,, and reduced standard deviation.
These findings indicate that expanding the dataset contrib-
uted to enhanced predictive performance and robustness of
the ML models. It is noteworthy that the ensemble models
were established by combining LGBM with other individual
decision-tree models, primarily due to the relatively high
training speed of the LGBM algorithm [38]. However, no
significant difference is observed in the computational effi-
ciencies of the ensemble and single models. The difference
in running time was approximately five minutes. In the case
of decision-tree algorithms, gradient boosting (GB) models
(LGBM, CatB, and XGB) outperformed the RF models. The
excellent predictive performance of GB models is consistent
with previous findings in predicting the chloride diffusion
coefficient in concrete [39]. In addition, the ensemble ML
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models (LGBM-CatB, LGBM-XGB, and LGBM-RF) and
LGBM surpassed the other ML models, achieving an RZV
above 0.90. This can be attributed to their ability to harness
the strengths of various algorithms to thoroughly capture
potentially complex patterns and errors within the data,
thereby enhancing the prediction accuracy and robustness
[30, 40]. For Dataset III, the sz values of the ML mod-
els ranked in descending order as follows: LGBM-CatB
~ LGBM-XGB > LGBM ~ LGBM-RF > CatB ~ XGB>
ANN> DNN> RF > SVM. Notably, LGBM-CatB surpassed
LGBM-XGB due to its lower standard deviation, indicat-
ing stronger robustness. SVM exhibited the lowest predic-
tive performance based on Dataset III, with sz =0.75 and
MSE,, = 0.06. Compared with ensemble models, SVM is a
relatively simple model. The ensemble models are designed
to capture more complex patterns and relationships in the
data through a combination of multiple decision trees. This
lack of complexity in the SVM limits its ability to general-
ize across different data instances in the dataset. Notably,
some studies have reported test R? values below 0.80, such
as an R* of 0.74 for predicting the retention rate of Cd in
biochar [41] and an R? of 0.76 for predicting alcohol space-
time yield [42]. Therefore, the prediction accuracy of SVM
remained satisfactory, despite exhibiting a lower predictive
performance than the other models.

Figure 5 shows the regression plots comparing the experi-
mental and predicted D, values for the training (green trian-
gle), validation (red circle), and test (purple square) datasets
of Datasets II and III, using the LGBM-CatB, LGBM-XGB,
LGBM, and LGBM-REF algorithms. These algorithms were
selected owing to their excellent predictive accuracies. The
plots reveal a close alignment between the experimental and
predicted D, values with the slope line, underscoring the
effective simulation capability of these ML models for pre-
dicting radionuclide diffusion processes. The performance
metrics of the best-performing models are shown in Fig. 5.
Notably, the ML models applied to the test dataset of Data-
set IIT outperformed those applied to Dataset II. This dis-
parity can be attributed to the augmentation of instances in
Dataset III, which facilitates the models’ ability to capture
complex relationships within the data more effectively. For
Dataset III, the ranking of models was as follows: LGBM-
CatB (R? = 0.94) ~ LGBM-XGB (R*> = 0.94) > LGBM (R?
=0.92) ~ LGBM-RF (R? = 0.92). These results indicate that
both LGBM-CatB and LGBM-XGB exhibit high predictive
accuracy.

3.2 Sensitivity analysis
3.2.1 Spearman and Shapley additive explanation analyses

ML models can uncover predictive principles through
analysis techniques that rank the importance of influencing
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Table 3 Mean performance metric values using five-fold cross-val-
idation and the highest performance metrics for machine learning

factors in predictions, such as feature importance and SHAP

models to predict pH based on Dataset I

Best performance
R* MSE
Training 0.9 0.0 0.99 0.01

Validation 0.87 032  0.90 0.07

Algorithms  Datasets H.f,, MSE,, -

ST T Training ~ 090 ~ 027 ~0.90" " 026 ~°
RF Validation 0.77  0.61  0.79 0.67
Test 0.77 038 0.80 0.32

700 1400 2100
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T ?‘[ﬂ’i“ll' l‘ -
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analysis [19, 21, 43, 44]. Additionally, Spearman analysis,
a nonparametric statistical method, assesses the monotonic
relationship between two variables by correlating ranked
data. These approaches provided valuable insights into the
consistency and strength of the relationships within a data-
set. It worthy notes that the reliability of these analytical
techniques is intrinsically linked to the quality of the data
used. Increasing the dataset size enhances the depth, broad-
ness, and reliability of the ML models.

Spearman correlation and SHAP analysis techniques were
employed to analyze the correlation and importance of the
input features, presenting intuitively global interpretations

30 60 90 2700 2800 2 2900
Aext (mZ/g) Ps (kg/m’)

025 050 0.75 0 3000 6000 9000
ot (_) a(_)

A Dataset I (316 inatances)
© Missing data (514 instances)

Histogram of data point
distribution

—— Kerneal smooth curve

Fig.2 (Color online) Data distribution of features and the relationship between pH and each input feature
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Dataset I (316 instances)

15 A Missing data (514 instances)
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Fig.3 (Color online) Analyzing the dependency of pH on the exter-
nal surface area and ion molar conductivity

of the ML models (Fig. 6). The features were ranked from
left to right according to their correlation and contribution to
the prediction. The Spearman correlation analysis revealed
that the most influential factor among the 16 input features
was the ion diffusion coefficient in water for Dataset II, and
the total porosity for Dataset III . This feature exhibited a
positive correlation with D, (Fig. 6a, b). This is consistent
with the previous findings [19] and Archie’s law [31, 45].

In the case of Dataset II, the SHAP analysis revealed that
the most important input features varied across different
ML models: the compacted dry density for LGBM-CatB,
ionic radius for LGBM-XGB, and ion diffusion coefficient
in water for LGBM (Fig. 6c, e, g). Notably, only the SHAP
results for LGBM were consistent with the Spearman cor-
relation analysis. This discrepancy can be attributed to dif-
ferences in the feature importance assessment and prediction
mechanisms inherent to each ML algorithm. As the number
of instances increased from 316 (Dataset II) to 813 (Dataset
IIT), both Spearman and SHAP analyses identified the total
porosity as the primary contributor, which is consistent with
Archie’s law [31, 45]. The total porosity for radionuclide
diffusion in compacted bentonite blocks is expressed as a
percentage of the total interconnected pore space within the
blocks. A higher total porosity implies greater availability
of transport pathways. These findings suggest that larger
datasets may reduce the discrepancies between ML models
in terms of feature importance assessment and prediction
mechanisms.
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Fig.4 (Color online) Mean performance metric values using fivefold
cross-validation for machine learning models in the test datasets of
Dataset II and III

3.2.2 Partial dependence plots

The dependence of D, on the 16 input features has been
discussed in our previous study [19]. However, some rela-
tionships may remain unclear due to the limited size of the
dataset. To address this, PDP analysis was performed to
visually represent the univariate correlations and examine
the influence of the size of the dataset on these relationships
(Fig. 7). The histograms and lines correspond to the data
distribution and correlation with each input feature and the
PDP. Generally, a more concentrated data distribution gener-
ally leads to more accurate analytical results. These findings
indicate that Dataset III, which was larger than Dataset II,
exhibited more continuous PDP curves, suggesting a more
stable and clear relationship between the features and D,.
Figure 7a, b shows that both the rock capacity factor and
distribution coefficient exhibit a clear positive correlation
with the prediction for Dataset III. This finding is consistent
with studies on radionuclides diffusion in crystalline rocks
[46] and sodium montmorillonite [47]. Consistently, Fig. 7d
illustrates the positive impact of ionic charge, where cations
exhibit a higher D, than neutral species, and anions display
lower D, values. This is consistent with previous studies,
which attributed the differences in diffusion mechanisms to
electrostatic interactions between the radionuclide species
and charged bentonite surfaces [3]. Specifically, cation dif-
fusion is controlled by surface diffusion effects, whereas ani-
ons diffusion is driven by anionic exclusion effects [47, 48].
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pH values in the range from 6 to 9 negatively influence
the prediction for Dataset III, whereas a peak was observed
at approximately pH 8 for Dataset II (Fig. 7c). The negative
effect of Dataset III might be more convincing because of
its larger data size. Figure 7e shows a positive impact on
the prediction when ion molar conductivity exceeded 0.01
m? S/mol for Dataset III. However, the relationships among
the external surface area, montmorillonite stacking number,
grain density, and ionic strength remained unclear for both
Datasets II and III (Fig. 7f—i). This lack of clarity can be
attributed to data dispersion, despite the larger dataset size.

The case of remaining input features, such as the total
porosity, ion diffusion coefficient in water, and tempera-
ture, exhibited positive impacts on the prediction, whereas
the dry density, montmorillonite content, ionic radius, and
molecular weight showed negative impacts (Fig. 7j—p). The
positive influences of the total porosity and ion diffusion
coefficient in water could be explained by Archie’s law [16,
45], whereas the positive impact of temperature followed
the Arrhenius equations [49-51]. The detailed explanations
are provided in our previous studies [19, 21]. It is worth
mentioning that a negative influence of ionic radius was
observed at Logr < —9.6 (2.5 A). This positive relationship
can be attributed to the limited data for species with ionic
radius above 2.5 A. Overall, the univariate correlation results

A Training dataset
a

© Validation dataset

visualized using the PDP technique align with the diffusion
laws observed in the experiments and diffusion mechanisms
derived from the numerical models. This consistency under-
scores the reliability of the interpretation capabilities of the
ML models.

3.3 Diffusion experiments and model application

Anionic radionuclides with long half-life are important for
the safety evaluation of HLW repositories because of their
high diffusivities. A through-diffusion method was employed
to measure the diffusion parameters of EUEDTA™ and
HCrO,™ in compacted bentonites at compacted dry densi-
ties ranged from 1200 to 1800 kg/m?. Their D, values were
predicted using LGBM-CatB and LGBM-XGB to test the
generalization ability.

3.3.1 Determination of the diffusion parameters using
diffusion experiments

Figure 8 shows the breakthrough curves of EUEDTA™ and
the species distribution of EUEDTA complexes. A, denotes
the accumulated mass of EUEDTA™ and HCrO,™ that pen-
etrated a 1.2 cm thick bentonite block to reach the sam-
ple reservoirs. The data show that the accumulated mass

I Test dataset
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increased with decreasing dry density, which is consistent
with the general understanding that lower dry density facili-
tates radionuclide diffusion through porous media [3, 5]. The
pH was maintained at 5.3 + 0.1 during the Eu(III) diffusion
experiments. Simulations using Vision MINTEQ indicated
that Eu(IIl) exists as a mixture of species, including Eu’t,
EuHEDTA(aq), EUEDTA™, and EuC1?*, in 0.6 mol/L NaCl
solution (Fig. 8c). EUEDTA™ was the main species at pH
above 2.0. It indicates that this study measured the diffusion
parameters of EUEDTA™ in compacted Ba-bentonite.
Table 4 summarizes the diffusion parameters of
HCrO,~ and EuEDTA", including D,, rock capacity fac-
tor, accessible porosity, total porosity, and distribution coef-
ficient. Both D, and distribution coefficient are important
parameters in the safety assessment of repositories, whereas
the other parameters play a crucial role in elucidating the dif-
fusion mechanism. The error in the compacted dry density
measurement was primarily attributed to a loss of approxi-
mately 0.3 g during the preparation of bentonite blocks. Both
HCrO,~ and EUEDTA™ are monovalent anions that cannot
access the interlayer pores of compacted bentonite [17, 21].
The rock capacity factor of HCrO,~ was lower than the total
porosity, indicating that the accessible porosity was equal
to the rock capacity factor. This suggests that the predomi-
nant diffusion path of HCrO,~ was through the free pores

Fig.6 (Color online) a, b

Dataset II (316 instances)

of compacted bentonite. In contrast, EUEDTA™ exhibited
an adsorptive behavior similar to that of simulated trivalent
actinide complexes, such as AmMEDTA™ and CmEDTA™,
with the rock capacity factor being higher than the total
porosity. The distribution coefficient, K, of EUEDTA™ was
calculated as follows:
a—¢
Kd — acce ,

Pd ™

where the accessible porosity, €
I” diffusion experiments [19].

All diffusion parameters decreased with increasing dry
density for both ELEDTA™ and HCrO,~. The distribution
coefficient of EuEDTA™ ranged from 4.2x 10™* m*/kg to
6.7 x 10~ m%/kg, which is lower than the range reported for
EuEDTA™ in hard rock clay (1.3 x 107°=3.2 x 107> m%/kg)
[52] and for CeEDTA™ in compacted Zhisin bentonite (0.8
% 1073-1.2x 107> m¥/kg) [17] . The distribution coefficient
of EuEDTA™ was lower than that of Eu’*, indicating that
EDTA facilitated the diffusion of Eu(Ill), thereby reducing
the retardation capacity of the bentonite barrier [52, 53].
This observation is consistent with the diffusion behavior
of CeEDTA™ and CoEDTA? [17, 19, 31].
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Dataset II (316 instances)

Dataset III (813 instances)
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Fig.7 (Color online) Partial dependence plot for a the rock capac-
ity factor, b distribution coefficient, ¢ pH, d ionic charge, e ion molar
conductivity, f external surface area, g montmorillonite stacking num-

3.3.2 Model application

The LGBM-CatB and LGBM-XGB models were employed
to predict the D, of HCrO,~ in compacted Wyoming benton-
ite and EuEDTA™ in compacted Ba-bentonite, which were
compared with published diffusion experimental results
for HCrO,~ and the simulated actinides CeEDTA™ and
CoEDTA?™ [17, 19, 21]. Additionally, both models were
used to predict the D, of radionuclide cation '*’Cs* and
neutral species HTO [8, 54, 55] (Fig. 9). It shows that
D /D,, decreased with increasing compacted dry density,
which is consistent with the result of previous studies [3,
5, 45]. In this study, the D, value for metal-EDTA com-
plexes was assumed to be 5.0 X 1071% m?%/s [56]. The D,
of EuEDTA™ was observed to be higher than those of
CeEDTA™ [17]. and CoEDTA?™ [19]. The LGBM-CatB and
LGBM-XGB models successfully predict D,, as evidenced

ber, h grain density, i ionic strength, j total porosity, k dry density, 1
montmorillonite content, m ion diffusion coefficient in water, n ionic
radius, 0 molecular weight, and p temperature

by the good agreement with the experimental D, values
(Fig. 9a).

Figure 9b shows that the D, of HCrO,™ in compacted
Wyoming bentonite is lower than that in Anji bentonite
[19] and GMZ bentonite [21], likely due to the higher
montmorillonite content. LGBM-CatB slightly under-
estimated D, for HCrO,” in Wyoming bentonite, with
the predicted D, values being 25%—47% lower than the
experimental D.. Although this discrepancy is less pro-
nounced than the predictions for HCrO,~ in GMZ and Anji
bentonites using LGBM and PSO-LGBM, the difference
was reported to be 9%—27% [19, 21]. This performance is
significantly superior to that predicted using Archie’s law,
according to which the predictive D, values were 1.0-1.5
orders of magnitude higher than the experimental results
[45].

Figure 9c shows that the predicted D, values of '¥’Cs™
are consistent with the experimental results at a compacted
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density of 1400 kg/m>. However, a significant underesti-
mation was observed at a compacted density of 800 kg/
m?, with a difference of approximately four times. This
can be explained by the limited number of experimental
data points available for this density in the dataset, which
comprised only 58 instances, accounting for approximately
7% of the total dataset. It indicates that additional diffusion
experiments for '*’Cs* should be conducted at a compact
density of approximately 800 kg/m? to facilitate the iden-
tification of diffusion patterns using ML models. Figure 9d
illustrates that both the LGBM-CatB and LGBM-XGB
models accurately predict the D, of HTO. Under similar

0 py=1200kg/m® & p,;=1300 kg/m® ¢ p;=1400 kg/m* © p,;= 1500 kg/m*
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Fig.8 (Color online) Relationship between the accumulated mass
(A and time for a EuEDTA™ and b HCrO,™ in saturated com-
pacted bentonites. ¢ Species distribution of Eu(II)-EDTA system in
aqueous solution

experimental conditions, the D, in Wyoming bentonite
(red squares) was higher than that in FEBEX bentonite
(blue pentagrams), primarily because of the lower mont-
morillonite content, with m = 0.85 for Wyoming bentonite
and m = 0.92 for FEBEX bentonite [54, 55].

Notably, the experimental diffusion data from this study,
as well as from the 3’Cs* [8] and HTO [54, 55] diffu-
sions, were not included in the test datasets, highlighting
the strong generalization ability of both LGBM-CatB and
LGBM-XGB models. The generalization ability of LGBM-
XGB was superior to that of LGBM-CatB, indicating that
model selection plays a crucial role in accurately predicting
radionuclide diffusion in complex geological environments.
Given that HLW repositories have been designed to operate
for over 10,000 years, the prediction of radionuclide diffu-
sion in bentonite barriers must consider the complex cou-
pling effects among radionuclides, porewater, and bentonite
under intrinsic disposal conditions. Current diffusion data-
sets remain insufficient for safety assessments of bentonite
barriers owing to limitations in data size and dimensional-
ity. Therefore, additional diffusion experiments should be
conducted to enhance the dimensionality and scale of the
datasets.

4 Conclusion

A radionuclide diffusion dataset comprising 16 input fea-
tures and 813 instances was developed using regression
imputation machine learning (ML) methods. Ten ML algo-
rithms were employed to predict the effective diffusion coef-
ficient (D,) of radionuclides in compacted bentonite. The
light gradient boosting machine (LGBM)-extreme gradient
boosting (XGB) and LGBM-categorical boosting (CatB)

Table 4 Overview of diffusion
parameters of EUEDTA™ and Pa 3 Moent be 1 b, o ¢ Eace fo K 3
HCrO,~ in compacted bentonite (kg/mr) © (X 107" m7s) (x 107" ms) (-) ) (=) (x107" m7kg)
EuEDTA™ in Ba-bentonite
1300 £45 87+03 3.6+04 30+£03 12+0.1 0.33 +0.01% 0.52 6.7+0.6
1400 £45 93+03 28+03 26+0.2 1.1+0.1 0.31 +0.01% 0.48 5.6+0.6
1500 £46 98+03 2.6+03 2.7+0.2 1.0+£0.1 0.30 + 0.01% 0.45 4.7+0.5
1600 £46 105+03 1.8+02 1.9+0.1 1.0+ 0.1 026+0.01" 041 43+0.5
1700 £47 11.2+03 13+0.1 1.5+0.1 09+0.1 0.19 +0.01% 0.37 42+0.3
HCrO, in Wyoming bentonite
1200 £46 7.8 £03 62+06 11.9+0.5 0.52+0.04 052+0.04 057 -
130052 7.7+03 3903 81+£03 048 +0.04 048 +£0.04 053 -
1500 £45 10.0+£03 2.7+02 102+0.2 026 +£0.02 026+0.02 046 -
1600 +47 102+03 1.8+0.1 7.7+0.2 023+0.02 023+0.02 042 -
1800 +47 11.4+0.3 0.7+0.1 5.7+0.1 0.12+0.01 0.12+0.01 035 -

#Data from [19]
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Fig.9 (Color online) Generalization ability validation of LGBM-
CatB and LGBM-XGB: a M-EDTA¢#* diffusion, b HCrO,~ diffu-
sion, ¢ ¥7Cs* diffusion, and d HTO diffusion

algorithms surpassed the other ML models, achieving R>
values of 0.94 based on the imputed dataset. This improve-
ment indicates that the imputed dataset enabled the ML
models to achieve high predictive performance and strong
robustness.

The generalizability of the LGBM-CatB and LGBM-
XGB models was evaluated by applying them to predict
the D, values of EUEDTA™ in compacted Ba-bentonite
and HCrO,~ in compacted Wyoming bentonite. Both mod-
els exhibited excellent predictive accuracy for EUEDTA™,
whereas LGBM-CatB slightly underestimated D, for
HCrO,  in Wyoming bentonite, with predicted D, values
25%—47% lower than the experimental D,. This indicates
that the generalization ability of LGBM-XGB surpassed that
of LGBM-CatB.

It has been widely accepted that the quality and quantity
of datasets play a crucial role in the predictive performance
of ML models. However, a significant number of experi-
mental diffusion results were excluded from the diffusion
datasets due to incomplete or missing data. To address this
limitation, additional experiments are necessary to com-
prehensively characterize the properties of porewater and
bentonite. These experiments should include but are not
limited to mineral composition, elemental, and particle size
analyses.
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