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Abstract
Missing values in radionuclide diffusion datasets can undermine the predictive accuracy and robustness of the machine 
learning (ML) models. In this study, regression-based missing data imputation method using a light gradient boosting 
machine (LGBM) algorithm was employed to impute more than 60% of the missing data, establishing a radionuclide dif-
fusion dataset containing 16 input features and 813 instances. The effective diffusion coefficient (De) was predicted using 
ten ML models. The predictive accuracy of the ensemble meta-models, namely LGBM-extreme gradient boosting (XGB) 
and LGBM-categorical boosting (CatB), surpassed that of the other ML models, with R2 values of 0.94. The models were 
applied to predict the De values of EuEDTA− and HCrO4

− in saturated compacted bentonites at compactions ranging from 
1200 to 1800 kg/m3, which were measured using a through-diffusion method. The generalization ability of the LGBM-XGB 
model surpassed that of LGB-CatB in predicting the De of HCrO4

−. Shapley additive explanations identified total porosity 
as the most significant influencing factor. Additionally, the partial dependence plot analysis technique yielded clearer results 
in the univariate correlation analysis. This study provides a regression imputation technique to refine radionuclide diffusion 
datasets, offering deeper insights into analyzing the diffusion mechanism of radionuclides and supporting the safety assess-
ment of the geological disposal of high-level radioactive waste.

Keywords  Machine learning · Radionuclide diffusion · Bentonite · Regression imputation · Missing data · Diffusion 
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1  Introduction

Bentonite is often selected as an engineering barrier 
in a high-level radioactive waste (HLW) repositories 
due to its low hydraulic conductivity, which leads to a 

diffusion-controlled process for radionuclide transport [1–4]. 
The effective diffusion coefficient (De), a critical parameter 
in the safety assessment of repositories, describes the diffu-
sion behavior of radionuclides in porous media [5–7]. Under 
complex disposal conditions, De is affected by the properties 
of radionuclides, such as diffusing species and adsorption 
properties [8]; the characteristics of bentonite, such as com-
paction, pore structure, and physical and chemical properties 
[3, 9, 10]; and the porewater chemistry, such as pH and ionic 
strength [11–14]. Over the few decades, considerable atten-
tion has been devoted to determining the De of radionuclides 
in compacted bentonite [1, 8, 15–17].

Predicting the De of radionuclides is both challenging and 
crucial due to the nonlinear and complex interactions among 
radionuclides, porewater, and bentonite [2, 3]. Machine learn-
ing (ML) models are valuable tools for this task because they 
can manage complex and high-dimensional data. Various ML 
models, such as the light gradient boosting machine (LGBM), 
extreme gradient boosting (XGB), categorical boosting (CatB), 
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support vector machine (SVM), random forest (RF), and artifi-
cial neural networks (ANN), have been applied to predict the 
De of radionuclides in compacted bentonite [18–21]. Radionu-
clide diffusion datasets were compiled from experimental data 
published in the literatures and a radionuclide diffusion data-
base established by the Japan Atomic Energy Agency (JAEA-
DDB). These datasets included numerous input features ranged 
from 3 to 16 and the data size ranged from 293 instances to 
956 instances [19–21]. It is worth mentioning that the JAEA-
DDB collected over 5000 instances from radionuclide diffu-
sion experiments spanning 1982 to 2009 [22]. However, the 
instances increased with decreasing input features, primarily 
due to the missing data, resulting in a potential impact on the 
accuracy and reliability of the ML model explanations.

The issues caused by missing data are a pervasive concern 
in databases [23, 24]. Missing data can lead to suboptimal 
outcomes, reduce predictive performance, and even result in 
misleading conclusions [25, 26]. For instance, the dry density 
and rock capacity factor have been reported as the two most 
influential factors in predicting the De [20, 21]. In contrast, Wu 
et al. (2024) observed that the ion diffusion coefficient in water 
and dry density were the top-two contributors. This discrep-
ancy can be attributed to an insufficient number of instances 
in the datasets used. Therefore, a comprehensive dataset is 
essential to provide a more reliable analysis of the diffusion 
mechanisms.

This study presents a novel, comprehensive radionuclide 
diffusion dataset with micro-mesoscopic features using ML 
models as regression imputation techniques. Firstly, the LGBM 
was employed as a regression-based missing data imputation 
method to impute over 60% of the missing data. Subsequently, 
ten ML models, including three ensemble ML algorithms 
(LGBM-CatB, LGBM-XGB, and LGBM-RF), four decision-
tree algorithms (LGBM, CatB, XGB, and RF), support vec-
tor machine (SVM), and two neural networks (ANN and deep 
neural network (DNN)), were trained, optimized, and tested by 
fivefold cross-validation to predict De values. Finally, through-
diffusion experiments were conducted to measure the diffusion 
parameters of EuEDTA− and HCrO4

− in compacted benton-
ite, including De, rock capacity factor, accessible porosity, total 
porosity, and distribution coefficient, to evaluate the generaliza-
tion of the trained ML models. The goal was to develop predic-
tive models that exhibit high accuracy, strong robustness, and 
clear interpretability for radionuclide diffusion studies, which 
are crucial for the safety assessment of HLW repositories.

2 � Materials and Methods

2.1 � Material

Ba-bentonite was prepared by modifying Gaomiaozi 
(GMZ) bentonite with a BaCl2 solution. The mass 

percentage of BaCl2 in modified bentonite was 5%. The 
detailed procedures for this modification have been previ-
ously described [16]. Wyoming bentonite powder had the 
grain dry density of 2760 kg/m3, montmorillonite con-
tent of 0.85, external surface area of 38 m2/g, and cation 
exchange capacity of 78.7 meq/100 g [27, 28]. Ba-ben-
tonite powder had the grain dry density of 2710 kg/m3, 
montmorillonite content of 0.78, external surface area of 
27.3 m2/g, and cation exchange capacity of 58.7 meq/100 g 
[16].

All the solid chemicals were purchased from 
Aladdin. The pH values of the NaCl solution were 
adjusted to 5.0 ± 0.1 and 7.0 ± 0.1 for EuEDTA− and 
HCrO4

− diffusion experiments, respectively. A stock solu-
tion of EuEDTA− was prepared by dissolving a measured 
amount of EuNO3⋅ 6 H2O in 200 mL of a solution mixed 
with 0.6 mol/L NaCl and 0.01 mol/L EDTA. Similarly, 
a stock solution of HCrO4

− was prepared by dissolving 
a measured amount of K2Cr2O7 in 200 mL of 0.5 mol/L 
NaCl solution. The initial concentrations of HCrO4

− and 
EuEDTA− were 1.8 × 10−3 mol/L and 5.7 × 10−4 mol/L, 
respectively, with corresponding pH values of 5.3 ± 0.1 
and 6.8 ± 0.1 . The uncertainty in the pH was determined 
based on the standard deviation derived from the five 
source solutions for HCrO4

− and EuEDTA−. Excess EDTA 
ensured the complete complexation of Eu(III).

2.2 � Through‑diffusion method

A through-diffusion method was used to measure the dif-
fusion parameters of EuEDTA− and HCrO4

− in compacted 
bentonites. The experiments were operated under ambi-
ent conditions, with pH 5.3 ± 0.1 and a temperature of 
25 ± 3 ◦ C for EuEDTA− diffusion, and pH 6.8 ± 0.1 and a 
temperature of 15 ± 3 ◦ C for HCrO4

− diffusion. The ben-
tonite powder was compacted into cylindrical blocks with 
dry densities in the range of 1200−1800 kg/m3. The pow-
der, with an initial water content of approximately 5%, 
was calculated to weigh between 7.8 and 11.4 g for the 
preparation of the bentonite blocks. During the weigh-
ing process and preparation of bentonite blocks in the 
experimental procedure, approximately 0.3 g of bentonite 
powder was lost. This loss represents the primary source 
of uncertainty in the compacted dry density. Table 1 sum-
marizes the experimental conditions used in diffusion 
experiments. After the compacted bentonite blocks were 
mounted in the diffusion setups, they were saturated for 
five weeks with NaCl solution in the diffusion cells. The 
diffusion experiments lasted 90 days for EuEDTA− and 25 
days for HCrO4

−.
Cr and Eu concentrations were measured using an 

inductively coupled plasma optical emission spectrometer 
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(Optima 7000DV, PerkinElmer, USA). Data processing was 
performed using fitting for diffusion parameters software to 
calculate diffusion parameters such as the De, rock capacity 
factor, distribution coefficient, total porosity, and accessible 
porosity. Further details regarding the experimental setup, 
operational steps, and data processing are available in previ-
ous studies [17, 29].

2.3 � Data

2.3.1 � Data compilation

The datasets were gathered from the JAEA-DDB and 16 
published resources, covering the period from 1982 to 2024. 
The dataset comprised 16 input features and 324 experi-
mental instances, including 304 instances obtained from Wu 
et al. (2024) and 20 experimental instances from three other 
studies [17, 20, 27]. Notably, the absence of pH values in 
514 instances of the JAEA-DDB resulted in a significantly 
reduction in data size. To address this, regression imputation 
techniques using ML models were applied to predict the pH 
values based on a dataset of 324 instances, thereby expand-
ing the dataset to 838 instances.

The dataset included 16 input features, which were cat-
egorized into three groups: (i) porewater properties, com-
prising the ionic strength (I), temperature (T), and pH; (ii) 
bentonite properties, including the montmorillonite content 

(m), external surface area (Aext), dry density ( �d), grain den-
sity ( �s), total porosity ( �tot), and montmorillonite stacking 
number (nc); and (iii) radionuclide properties, encompassing 
the ion diffusion coefficient in water (Dw), molecular weight 
(MW), ion molar conductivity ( � ), ionic radius (r), ionic 
charge (z), distribution coefficient (Kd), and rock capacity 
factor ( �).

2.3.2 � Data preprocessing

The presence of outliers can reduce the predictive accuracy 
of ML models. To address this issue, the Mahalanobis dis-
tance (MD) method was employed to identify and remove 
outliers. The cutoff point ( di ) is given as:

where x represents the object vector, � denotes the mean 
arithmetic vector, and S is the covariance matrix of 
instances. The cutoff point was set to eight to ensure that 
the skewness of all input features was less than 10.

Three datasets were used to enhance the prediction of 
radionuclide diffusion. An overview of the features and 
instances of each dataset is summarized in Table 2. Dataset 
I included 15 input features, with pH as the output feature. 
To ensure the data quality and reduce noise, eight instances 
were removed using the MD method. This process yielded 
Dataset I, comprising 316 instances. The statistical details 
of Dataset I are presented in Table S1 of the supporting 
information. Datasets II and III comprised 16 input features, 
including the basic features (15 input features of Dataset I) 
and pH. The output feature for Datasets II and III was the 
De. Dataset III, comprising 813 instances, was obtained after 
removing 17 instances. It is noteworthy that these datasets 
comprised parameters at the micro-mesoscopic level. Specif-
ically, the montmorillonite stacking number and ionic radius 
were classified as microscopic parameters, whereas the other 
parameters were considered as mesoscopic.

2.3.3 � Imputation methods

Four decision-tree models, namely LGBM, CatB, XGB, and 
RF, were used as regression imputation methods to predict 

(1)di =
√

(x − �) ⋅ S−1 ⋅ (x − �),

Table 1   Overview of the experimental condition for EuEDTA− and 
HCrO4

− diffusion experiments

Experimental conditions Detailed information

Anion EuEDTA− HCrO4
−

Bentonite type Ba-bent Wyoming
Initial concentration ( × 10−3 mol/L) 0.57 ± 0.02 1.80 ± 0.10

Ionic strength (mol/L) 0.6 0.5
Dry density (kg/m3) 1300−1700 1200−1800
pH ( −) 5.3 ± 0.1 6.8 ± 0.1

Temperature (°C) 25 ± 3 15 ± 3

Block dimension (cm) �2.54 × 1.3 �2.54 × 1.2

Volume of source reservoir (mL) 200
Volume of target reservoir (mL) 10

Table 2   Details of the features and instances of datasets



	 J.-L. Tian et al.181  Page 4 of 15

the pH values of Dataset I. LGBM exhibited superior pre-
dictive accuracy compared with the other models. This 
was consistent with the results of our previous study [21]. 
Dataset III was established by incorporating additional 514 
instances with Dataset II using the LGBM for data imputa-
tion. Table S2 of the supporting information summarizes the 
statistical results of the input and output features for Dataset 
III.

2.4 � Methodology

The De values of radionuclides in compacted bentonite 
were predicted using ten ML models, including three 
ensemble ML algorithms (LGBM-CatB, LGBM-XGB, and 
LGBM-RF), four decision-tree algorithms (LGBM, CatB, 
XGB, and RF), SVM, and two neural networks (ANN and 
DNN). Ensemble ML models combine the strengths of 
multiple individual models to enhance overall predictive 
performance and stability, offering a promising solution to 
the challenges of bias and variance in individual models 
[30]. Since LGBM exhibited superior predictive perfor-
mance compared with the other models, it was combined 
with CatB, XGB, and RF to predict the De using a vot-
ing regressor method from the scikit-learn package [20, 
31]. The voting regressor simultaneously applies multiple 
regression models to the same dataset, thereby optimiz-
ing the final output by synthesizing the prediction results 
of each model. During the training process, the system 
can adjust the weight distribution according to the per-
formance of each model. The final prediction result ŷ is 
calculated by:

where yi and �i represent the prediction result and the weight 
corresponding of the i-th model, respectively. This method 
optimized the weight ranges of the base learners within a 
model by initially pruning these ranges according to the gra-
dient of the best base learner performance, thereby acceler-
ating the model optimization [30]. The hyperparameters of 
ML models were tuned using the particle swarm optimiza-
tion (PSO) algorithm. In this algorithm, potential solutions 
to an optimization problem are represented as a swarm of 
particles. Each particle i possesses a position vector xi and a 
velocity vector vi within the search space. During the algo-
rithmic evolution, iterative adjustments are performed on 
both the velocity and position of each particle. Specifically, 
the velocity of each particle is updated according to the indi-
vidual’s best-known position pi and the swarm’s global best 
position gi, as follows:

(2)ŷ =

n
∑

i=1

yi𝜔i,

where � is inertia weight, which influences the particle’s 
velocity based on its previous state. c1 and c2 represent the 
learning factor for individual and social adjustment, respec-
tively. r1 and r2 denote random numbers uniformly distrib-
uted within [0, 1].

Figure 1 illustrates a workflow diagram for develop-
ing ML models to predict the De values of radionuclides 
in various compacted bentonites. This study was organ-
ized into three parts: (i) Dataset augmentation: Missing 
pH values were predicted using decision-tree algorithms, 
thereby refining the radionuclide diffusion dataset. (ii) 
Model training and explanation: Ten ML models were 
employed to train prediction models with high predictive 
accuracy. The diffusion mechanism was analyzed using 
Spearman, Shapley additive explanations (SHAP), and 
partial dependence plots (PDP). (iii) Model application: 
The De values of EuEDTA− and HCrO4

− in compacted 
bentonites were measured using a through-diffusion 
method, which was employed to evaluate the generaliza-
tion capability of the best ML models.

2.5 � Model development and evaluation

The datasets were randomly divided into a training set 
consisting of 80% of the instances and a test set contain-
ing the remaining 20%. Since data processing using loga-
rithmic transformation and min–max normalization exhib-
ited an insignificant impact on the predictive accuracy 
in predicting the De of radionuclides in bentonite [19], 
logarithmic transformation was applied to the features, 
such as the ionic radius, ion diffusion coefficient in water, 
and De, owing to their significantly larger magnitudes 
compared to other features. A fivefold cross-validation 
method was used to reduce the risk of overfitting. There-
fore, the 80% training data was further subdivided into 
a pretraining (80% of the training data) and a validation 
(20% of the remaining training data) datasets to pretrain 
the ML models and optimize the hyperparameters. The 
PSO technique was used to optimize the hyperparameters.

The predictive performance was evaluated by the 
coefficient of determination (R2), and mean square error 
(MSE). These metrics are given as follows:

(3)xk+1
i

(t + 1) = xk
i
(t) + vk+1

i
(t + 1),

(4)
vk+1
i

(t + 1) = �vk
i
(t) + c1r1

(

pk
i
(t) − x�

i
(t)
)

+c2r2
(

gk(t) − xk
i
(t)
)

,
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where logDe,i
exp and logDe,ave

exp are the experimental De and 
average experimental De measured from diffusion experi-
ments, respectively. logDe,i

pred is the predicted De using the 
ML models.

3 � Results and discussion

3.1 � Model development

3.1.1 � Regression imputation for predicting pH

Handling missing data is a crucial step affecting the quality 
and reliability of the data analysis. Various regression impu-
tation techniques have been applied to impute missing data, 
such as ANNs, multivariate imputation by chained equa-
tions, k-nearest neighbors, time-series deep learning models, 
generative broad Bayesian imputation, principal component 
analysis imputation, and simple arithmetic averages. These 
methods have been applied to datasets with missing data 
percentages ranging from 0 to 80% [24, 26, 32–36]. Gener-
ally, three types of missing data mechanisms are recognized: 
missing completely at random, missing at random, and miss-
ing not at random [23]. Each mechanism presents different 
challenges and implications for imputation, highlighting the 

(5)R2 = 1 −

N
∑

i=1

�

logD
exp

e,i
− logD

pred

e,i

�2

N
∑

i=1

�

logD
exp

e,i
− logD

exp
e,ave

�2
,

(6)MSE =
1

N

N
∑

i=1

(

logD
exp

e,i
− logD

pred

e,i

)2

,

importance of identifying the underlying pattern of missing-
ness before selecting an appropriate imputation strategy.

The JAEA-DDB database collected data from the lit-
eratures and reports covering 1982 to 2009. The instances 
have been derived from various diffusion experimental 
methods and numerous researchers. The absence of pH 
values in 514 instances within the JAEA-DDB database 
can be explained that these researches ignored the impor-
tance of pH values in their studies. In the JAEA-DDB 
database, missing data primarily resulted from ignoring 
or inadequately measuring the parameters that related to 
the radionuclide diffusion. The missing mechanism in the 
JAEA-DDB database was assumed to be missing com-
pletely at random, corresponding to a noncontinuous miss-
ingness. Based on the selected 16 input features, more than 
60% of the dataset (514 instances) lacked pH values. Deci-
sion-tree models were employed to predict the missing pH 
values to augment the dataset and enhance the robustness 
of the ML models. Specifically, LGBM, CatB, XGB, and 
RF were employed to predict the pH values of Dataset I.

The predicted performances are summarized in Table 3. 
The LGBM exhibited superior robustness compared with 
the other models. For instance, the R2

cv
 values for the test 

sets were ranked in descending order using a fivefold cross-
validation as follows: LGBM> XGB> CatB > RF. The rank 
of MSEcv values was the opposite of that of the R2

cv
 values 

for the test datasets. Notably, LGBM achieved the highest 
performance metrics among all models, with an MSE of 0.23 
and R2 of 0.92 for the test dataset. The hyperparameters of 
the optimal ML models are listed in Table S3 of the support-
ing information. Therefore, the missing pH values for 514 
instances were predicted using the LGBM model, resulting 
in the establishment of Dataset III with 813 instances.

Figure  2 exhibits the data distribution and charac-
teristics of the relationship between pH and each input 

Fig. 1   (Color online) Workflow 
diagram on building machine 
learning models for predicting 
the effective diffusion coeffi-
cient of radionuclides in various 
compacted bentonites
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feature. Blue and orange represent the data distributions 
of Dataset I and the imputed 514 instances, respectively. 
It clearly demonstrates a nonlinear relationship between 
the pH and each input feature. The predicted pH val-
ues ranged from 5.0 to 9.0, exhibiting a Gaussian type 
distribution.

pH is an important porewater parameter that influences 
both the radionuclide species and surface charge of clay 
[37]. Figure 3 shows the pH dependence on the external sur-
face area and ion molar conductivity, which are associated 
with the bentonite and radionuclide properties, respectively. 
Dataset I exhibits that the pH values ranged from 3.0 to 13.4. 
The predicted pH values are concentrated in the range from 
5.0 to 9.0, suggesting a close adherence to a normal distribu-
tion of porewater for Dataset III.

3.1.2 � Model development for radionuclide diffusion

Ten ML models, namely LGBM-CatB, LGBM-XGB, 
LGBM-RF, LGBM, CatB, XGB, RF, ANN, DNN, and 
SVM, were used to predict the De values of radionuclides 
in compacted bentonite. Figure 4 shows the performance 
metrics of the ML models for the test datasets of Dataset II 
and III using the optimal hyperparameters tuned with PSO 
techniques (Table S4 in the supporting information). The 
performance metrics were assessed using fivefold cross-
validation. The red lines represent the smooth kernel curve 
of the distribution of performance metrics. The black lines 
within and outside the box plots denote the mean values and 
standard deviations of the performance metrics, respectively, 
with a lower standard deviation indicating strong robustness 
of the ML models. The detailed performance metrics for the 
training, validation, and test datasets are listed in Table S5 
of the supporting information.

As the number of instances increased from 316 (Dataset 
II) to 813 (Dataset III), the performance metrics of all ML 
models improved significantly, as evidenced by the higher 
R2
cv

 values, lower MSEcv, and reduced standard deviation. 
These findings indicate that expanding the dataset contrib-
uted to enhanced predictive performance and robustness of 
the ML models. It is noteworthy that the ensemble models 
were established by combining LGBM with other individual 
decision-tree models, primarily due to the relatively high 
training speed of the LGBM algorithm [38]. However, no 
significant difference is observed in the computational effi-
ciencies of the ensemble and single models. The difference 
in running time was approximately five minutes. In the case 
of decision-tree algorithms, gradient boosting (GB) models 
(LGBM, CatB, and XGB) outperformed the RF models. The 
excellent predictive performance of GB models is consistent 
with previous findings in predicting the chloride diffusion 
coefficient in concrete [39]. In addition, the ensemble ML 

models (LGBM-CatB, LGBM-XGB, and LGBM-RF) and 
LGBM surpassed the other ML models, achieving an R2

cv
 

above 0.90. This can be attributed to their ability to harness 
the strengths of various algorithms to thoroughly capture 
potentially complex patterns and errors within the data, 
thereby enhancing the prediction accuracy and robustness 
[30, 40]. For Dataset III, the R2

cv
 values of the ML mod-

els ranked in descending order as follows: LGBM-CatB 
≈ LGBM-XGB > LGBM ≈ LGBM-RF > CatB ≈ XGB> 
ANN> DNN> RF > SVM. Notably, LGBM-CatB surpassed 
LGBM-XGB due to its lower standard deviation, indicat-
ing stronger robustness. SVM exhibited the lowest predic-
tive performance based on Dataset III, with R2

cv
 = 0.75 and 

MSEcv = 0.06. Compared with ensemble models, SVM is a 
relatively simple model. The ensemble models are designed 
to capture more complex patterns and relationships in the 
data through a combination of multiple decision trees. This 
lack of complexity in the SVM limits its ability to general-
ize across different data instances in the dataset. Notably, 
some studies have reported test R2 values below 0.80, such 
as an R2 of 0.74 for predicting the retention rate of Cd in 
biochar [41] and an R2 of 0.76 for predicting alcohol space-
time yield [42]. Therefore, the prediction accuracy of SVM 
remained satisfactory, despite exhibiting a lower predictive 
performance than the other models.

Figure 5 shows the regression plots comparing the experi-
mental and predicted De values for the training (green trian-
gle), validation (red circle), and test (purple square) datasets 
of Datasets II and III, using the LGBM-CatB, LGBM-XGB, 
LGBM, and LGBM-RF algorithms. These algorithms were 
selected owing to their excellent predictive accuracies. The 
plots reveal a close alignment between the experimental and 
predicted De values with the slope line, underscoring the 
effective simulation capability of these ML models for pre-
dicting radionuclide diffusion processes. The performance 
metrics of the best-performing models are shown in Fig. 5. 
Notably, the ML models applied to the test dataset of Data-
set III outperformed those applied to Dataset II. This dis-
parity can be attributed to the augmentation of instances in 
Dataset III, which facilitates the models’ ability to capture 
complex relationships within the data more effectively. For 
Dataset III, the ranking of models was as follows: LGBM-
CatB (R2 = 0.94) ≈ LGBM-XGB (R2 = 0.94) > LGBM (R2 
= 0.92) ≈ LGBM-RF (R2 = 0.92). These results indicate that 
both LGBM-CatB and LGBM-XGB exhibit high predictive 
accuracy.

3.2 � Sensitivity analysis

3.2.1 � Spearman and Shapley additive explanation analyses

ML models can uncover predictive principles through 
analysis techniques that rank the importance of influencing 
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factors in predictions, such as feature importance and SHAP 
analysis [19, 21, 43, 44]. Additionally, Spearman analysis, 
a nonparametric statistical method, assesses the monotonic 
relationship between two variables by correlating ranked 
data. These approaches provided valuable insights into the 
consistency and strength of the relationships within a data-
set. It worthy notes that the reliability of these analytical 
techniques is intrinsically linked to the quality of the data 
used. Increasing the dataset size enhances the depth, broad-
ness, and reliability of the ML models.

Spearman correlation and SHAP analysis techniques were 
employed to analyze the correlation and importance of the 
input features, presenting intuitively global interpretations 

Table 3   Mean performance metric values using five-fold cross-val-
idation and the highest performance metrics for machine learning 
models to predict pH based on Dataset I

Fig. 2   (Color online) Data distribution of features and the relationship between pH and each input feature
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of the ML models (Fig. 6). The features were ranked from 
left to right according to their correlation and contribution to 
the prediction. The Spearman correlation analysis revealed 
that the most influential factor among the 16 input features 
was the ion diffusion coefficient in water for Dataset II, and 
the total porosity for Dataset III . This feature exhibited a 
positive correlation with De (Fig. 6a, b). This is consistent 
with the previous findings [19] and Archie’s law [31, 45].

In the case of Dataset II, the SHAP analysis revealed that 
the most important input features varied across different 
ML models: the compacted dry density for LGBM-CatB, 
ionic radius for LGBM-XGB, and ion diffusion coefficient 
in water for LGBM (Fig. 6c, e, g). Notably, only the SHAP 
results for LGBM were consistent with the Spearman cor-
relation analysis. This discrepancy can be attributed to dif-
ferences in the feature importance assessment and prediction 
mechanisms inherent to each ML algorithm. As the number 
of instances increased from 316 (Dataset II) to 813 (Dataset 
III), both Spearman and SHAP analyses identified the total 
porosity as the primary contributor, which is consistent with 
Archie’s law [31, 45]. The total porosity for radionuclide 
diffusion in compacted bentonite blocks is expressed as a 
percentage of the total interconnected pore space within the 
blocks. A higher total porosity implies greater availability 
of transport pathways. These findings suggest that larger 
datasets may reduce the discrepancies between ML models 
in terms of feature importance assessment and prediction 
mechanisms.

3.2.2 � Partial dependence plots

The dependence of De on the 16 input features has been 
discussed in our previous study [19]. However, some rela-
tionships may remain unclear due to the limited size of the 
dataset. To address this, PDP analysis was performed to 
visually represent the univariate correlations and examine 
the influence of the size of the dataset on these relationships 
(Fig. 7). The histograms and lines correspond to the data 
distribution and correlation with each input feature and the 
PDP. Generally, a more concentrated data distribution gener-
ally leads to more accurate analytical results. These findings 
indicate that Dataset III, which was larger than Dataset II, 
exhibited more continuous PDP curves, suggesting a more 
stable and clear relationship between the features and De.

Figure 7a, b shows that both the rock capacity factor and 
distribution coefficient exhibit a clear positive correlation 
with the prediction for Dataset III. This finding is consistent 
with studies on radionuclides diffusion in crystalline rocks 
[46] and sodium montmorillonite [47]. Consistently, Fig. 7d 
illustrates the positive impact of ionic charge, where cations 
exhibit a higher De than neutral species, and anions display 
lower De values. This is consistent with previous studies, 
which attributed the differences in diffusion mechanisms to 
electrostatic interactions between the radionuclide species 
and charged bentonite surfaces [3]. Specifically, cation dif-
fusion is controlled by surface diffusion effects, whereas ani-
ons diffusion is driven by anionic exclusion effects [47, 48].

Fig. 3   (Color online) Analyzing the dependency of pH on the exter-
nal surface area and ion molar conductivity

Fig. 4   (Color online) Mean performance metric values using fivefold 
cross-validation for machine learning models in the test datasets of 
Dataset II and III
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pH values in the range from 6 to 9 negatively influence 
the prediction for Dataset III, whereas a peak was observed 
at approximately pH 8 for Dataset II (Fig. 7c). The negative 
effect of Dataset III might be more convincing because of 
its larger data size. Figure 7e shows a positive impact on 
the prediction when ion molar conductivity exceeded 0.01 
m2 S/mol for Dataset III. However, the relationships among 
the external surface area, montmorillonite stacking number, 
grain density, and ionic strength remained unclear for both 
Datasets II and III (Fig. 7f–i). This lack of clarity can be 
attributed to data dispersion, despite the larger dataset size.

The case of remaining input features, such as the total 
porosity, ion diffusion coefficient in water, and tempera-
ture, exhibited positive impacts on the prediction, whereas 
the dry density, montmorillonite content, ionic radius, and 
molecular weight showed negative impacts (Fig. 7j–p). The 
positive influences of the total porosity and ion diffusion 
coefficient in water could be explained by Archie’s law [16, 
45], whereas the positive impact of temperature followed 
the Arrhenius equations [49–51]. The detailed explanations 
are provided in our previous studies [19, 21]. It is worth 
mentioning that a negative influence of ionic radius was 
observed at Logr < −9.6 (2.5 Å). This positive relationship 
can be attributed to the limited data for species with ionic 
radius above 2.5 Å. Overall, the univariate correlation results 

visualized using the PDP technique align with the diffusion 
laws observed in the experiments and diffusion mechanisms 
derived from the numerical models. This consistency under-
scores the reliability of the interpretation capabilities of the 
ML models.

3.3 � Diffusion experiments and model application

Anionic radionuclides with long half-life are important for 
the safety evaluation of HLW repositories because of their 
high diffusivities. A through-diffusion method was employed 
to measure the diffusion parameters of EuEDTA− and 
HCrO4

− in compacted bentonites at compacted dry densi-
ties ranged from 1200  to 1800 kg/m3. Their De values were 
predicted using LGBM-CatB and LGBM-XGB to test the 
generalization ability.

3.3.1 � Determination of the diffusion parameters using 
diffusion experiments

Figure 8 shows the breakthrough curves of EuEDTA− and 
the species distribution of EuEDTA complexes. Acum denotes 
the accumulated mass of EuEDTA− and HCrO4

− that pen-
etrated a 1.2 cm thick bentonite block to reach the sam-
ple reservoirs. The data show that the accumulated mass 

Fig. 5   (Color online) Regression plots of experimental versus predicted effective diffusion coefficients based on Datasets II and III: a, e LGBM-
CatB, b, f LGBM-XGB, c, g LGBM, and d, h LGBM-RF
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increased with decreasing dry density, which is consistent 
with the general understanding that lower dry density facili-
tates radionuclide diffusion through porous media [3, 5]. The 
pH was maintained at 5.3 ± 0.1 during the Eu(III) diffusion 
experiments. Simulations using Vision MINTEQ indicated 
that Eu(III) exists as a mixture of species, including Eu3+, 
EuHEDTA(aq), EuEDTA−, and EuCl2+, in 0.6 mol/L NaCl 
solution (Fig. 8c). EuEDTA− was the main species at pH 
above 2.0. It indicates that this study measured the diffusion 
parameters of EuEDTA− in compacted Ba-bentonite.

Table  4 summarizes the diffusion parameters of 
HCrO4

− and EuEDTA−, including De, rock capacity fac-
tor, accessible porosity, total porosity, and distribution coef-
ficient. Both De and distribution coefficient are important 
parameters in the safety assessment of repositories, whereas 
the other parameters play a crucial role in elucidating the dif-
fusion mechanism. The error in the compacted dry density 
measurement was primarily attributed to a loss of approxi-
mately 0.3 g during the preparation of bentonite blocks. Both 
HCrO4

− and EuEDTA− are monovalent anions that cannot 
access the interlayer pores of compacted bentonite [17, 21]. 
The rock capacity factor of HCrO4

− was lower than the total 
porosity, indicating that the accessible porosity was equal 
to the rock capacity factor. This suggests that the predomi-
nant diffusion path of HCrO4

− was through the free pores 

of compacted bentonite. In contrast, EuEDTA− exhibited 
an adsorptive behavior similar to that of simulated trivalent 
actinide complexes, such as AmEDTA− and CmEDTA−, 
with the rock capacity factor being higher than the total 
porosity. The distribution coefficient, Kd, of EuEDTA− was 
calculated as follows:

where the accessible porosity, �acc, was obtained using the 
I− diffusion experiments [19].

All diffusion parameters decreased with increasing dry 
density for both EuEDTA− and HCrO4

−. The distribution 
coefficient of EuEDTA− ranged from 4.2× 10−4 m3/kg to 
6.7 × 10−4 m3/kg, which is lower than the range reported for 
EuEDTA− in hard rock clay (1.3 × 10−3−3.2 × 10−3 m3/kg) 
[52] and for CeEDTA− in compacted Zhisin bentonite (0.8 
× 10−3−1.2 × 10−3 m3/kg) [17] . The distribution coefficient 
of EuEDTA− was lower than that of Eu3+, indicating that 
EDTA facilitated the diffusion of Eu(III), thereby reducing 
the retardation capacity of the bentonite barrier [52, 53]. 
This observation is consistent with the diffusion behavior 
of CeEDTA− and CoEDTA2− [17, 19, 31].

(7)Kd =
� − �acc

�d
,

Fig. 6   (Color online) a, b 
Spearman correlation analysis 
and global interpretations of 
ML models based on Dataset II 
and III: c, d LGBM-CatB, e, f 
LGBM-XGB, and g, h LGBM
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3.3.2 � Model application

The LGBM-CatB and LGBM-XGB models were employed 
to predict the De of HCrO4

− in compacted Wyoming benton-
ite and EuEDTA− in compacted Ba-bentonite, which were 
compared with published diffusion experimental results 
for HCrO4

− and the simulated actinides CeEDTA− and 
CoEDTA2− [17, 19, 21]. Additionally, both models were 
used to predict the De of radionuclide cation 137Cs+ and 
neutral species HTO [8, 54, 55] (Fig.  9). It shows that 
De/Dw decreased with increasing compacted dry density, 
which is consistent with the result of previous studies [3, 
5, 45]. In this study, the Dw value for metal-EDTA com-
plexes was assumed to be 5.0 × 10−10 m2/s [56]. The De 
of EuEDTA− was observed to be higher than those of 
CeEDTA− [17]. and CoEDTA2− [19]. The LGBM-CatB and 
LGBM-XGB models successfully predict De, as evidenced 

by the good agreement with the experimental De values 
(Fig. 9a).

Figure 9b shows that the De of HCrO4
− in compacted 

Wyoming bentonite is lower than that in Anji bentonite 
[19] and GMZ bentonite [21], likely due to the higher 
montmorillonite content. LGBM-CatB slightly under-
estimated De for HCrO4

− in Wyoming bentonite, with 
the predicted De values being 25%−47% lower than the 
experimental De. Although this discrepancy is less pro-
nounced than the predictions for HCrO4

− in GMZ and Anji 
bentonites using LGBM and PSO-LGBM, the difference 
was reported to be 9%−27% [19, 21]. This performance is 
significantly superior to that predicted using Archie’s law, 
according to which the predictive De values were 1.0–1.5 
orders of magnitude higher than the experimental results 
[45].

Figure 9c shows that the predicted De values of 137Cs+ 
are consistent with the experimental results at a compacted 

Fig. 7   (Color online) Partial dependence plot for a the rock capac-
ity factor, b distribution coefficient, c pH, d ionic charge, e ion molar 
conductivity, f external surface area, g montmorillonite stacking num-

ber, h grain density, i ionic strength, j total porosity, k dry density, l 
montmorillonite content, m ion diffusion coefficient in water, n ionic 
radius, o molecular weight, and p temperature
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density of 1400 kg/m3. However, a significant underesti-
mation was observed at a compacted density of 800 kg/
m3, with a difference of approximately four times. This 
can be explained by the limited number of experimental 
data points available for this density in the dataset, which 
comprised only 58 instances, accounting for approximately 
7% of the total dataset. It indicates that additional diffusion 
experiments for 137Cs+ should be conducted at a compact 
density of approximately 800 kg/m3 to facilitate the iden-
tification of diffusion patterns using ML models. Figure 9d 
illustrates that both the LGBM-CatB and LGBM-XGB 
models accurately predict the De of HTO. Under similar 

experimental conditions, the De in Wyoming bentonite 
(red squares) was higher than that in FEBEX bentonite 
(blue pentagrams), primarily because of the lower mont-
morillonite content, with m = 0.85 for Wyoming bentonite 
and m = 0.92 for FEBEX bentonite [54, 55].

Notably, the experimental diffusion data from this study, 
as well as from the 137Cs+ [8] and HTO [54, 55] diffu-
sions, were not included in the test datasets, highlighting 
the strong generalization ability of both LGBM-CatB and 
LGBM-XGB models. The generalization ability of LGBM-
XGB was superior to that of LGBM-CatB, indicating that 
model selection plays a crucial role in accurately predicting 
radionuclide diffusion in complex geological environments. 
Given that HLW repositories have been designed to operate 
for over 10,000 years, the prediction of radionuclide diffu-
sion in bentonite barriers must consider the complex cou-
pling effects among radionuclides, porewater, and bentonite 
under intrinsic disposal conditions. Current diffusion data-
sets remain insufficient for safety assessments of bentonite 
barriers owing to limitations in data size and dimensional-
ity. Therefore, additional diffusion experiments should be 
conducted to enhance the dimensionality and scale of the 
datasets.

4 � Conclusion

A radionuclide diffusion dataset comprising 16 input fea-
tures and 813 instances was developed using regression 
imputation machine learning (ML) methods. Ten ML algo-
rithms were employed to predict the effective diffusion coef-
ficient (De) of radionuclides in compacted bentonite. The 
light gradient boosting machine (LGBM)-extreme gradient 
boosting (XGB) and LGBM-categorical boosting (CatB) 

Fig. 8   (Color online) Relationship between the accumulated mass 
(Acum) and time for a EuEDTA− and b HCrO4

− in saturated com-
pacted bentonites. c Species distribution of Eu(III)-EDTA system in 
aqueous solution

Table 4   Overview of diffusion 
parameters of EuEDTA− and 
HCrO4

− in compacted bentonite

# Data from [19]

�d mbent De Da � �acc �tot Kd

(kg/m3) (g) (× 10−11 m2/s) (× 10−11 m2/s) (−) (−) (−) (× 10−4 m3/kg)

EuEDTA− in Ba-bentonite
1300 ± 45 8.7 ± 0.3 3.6 ± 0.4 3.0 ± 0.3 1.2 ± 0.1 0.33 ± 0.01# 0.52 6.7 ± 0.6
1400 ± 45 9.3 ± 0.3 2.8 ± 0.3 2.6 ± 0.2 1.1 ± 0.1 0.31 ± 0.01# 0.48 5.6 ± 0.6
1500 ± 46 9.8 ± 0.3 2.6 ± 0.3 2.7 ± 0.2 1.0 ± 0.1 0.30 ± 0.01# 0.45 4.7 ± 0.5
1600 ± 46 10.5 ± 0.3 1.8 ± 0.2 1.9 ± 0.1 1.0 ±  0.1 0.26 ± 0.01# 0.41 4.3 ± 0.5
1700 ± 47 11.2 ± 0.3 1.3 ± 0.1 1.5 ± 0.1 0.9 ± 0.1 0.19 ± 0.01# 0.37 4.2 ± 0.3
HCrO4

−in Wyoming bentonite
1200 ± 46 7.8 ± 0.3 6.2 ± 0.6 11.9 ± 0.5 0.52 ± 0.04 0.52 ± 0.04 0.57 −
1300 ± 52 7.7 ± 0.3 3.9 ± 0.3 8.1 ± 0.3 0.48 ± 0.04 0.48 ± 0.04 0.53 −
1500 ± 45 10.0 ± 0.3 2.7 ± 0.2 10.2 ± 0.2 0.26 ± 0.02 0.26 ± 0.02 0.46 −
1600 ± 47 10.2 ± 0.3 1.8 ± 0.1 7.7 ± 0.2 0.23 ± 0.02 0.23 ± 0.02 0.42 −
1800 ± 47 11.4 ± 0.3 0.7 ± 0.1 5.7 ± 0.1 0.12 ± 0.01 0.12 ± 0.01 0.35 −
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algorithms surpassed the other ML models, achieving R2 
values of 0.94 based on the imputed dataset. This improve-
ment indicates that the imputed dataset enabled the ML 
models to achieve high predictive performance and strong 
robustness.

The generalizability of the LGBM-CatB and LGBM-
XGB models was evaluated by applying them to predict 
the De values of EuEDTA− in compacted Ba-bentonite 
and HCrO4

− in compacted Wyoming bentonite. Both mod-
els exhibited excellent predictive accuracy for EuEDTA−, 
whereas LGBM-CatB slightly underestimated De for 
HCrO4

− in Wyoming bentonite, with predicted De values 
25%−47% lower than the experimental De. This indicates 
that the generalization ability of LGBM-XGB surpassed that 
of LGBM-CatB.

It has been widely accepted that the quality and quantity 
of datasets play a crucial role in the predictive performance 
of ML models. However, a significant number of experi-
mental diffusion results were excluded from the diffusion 
datasets due to incomplete or missing data. To address this 
limitation, additional experiments are necessary to com-
prehensively characterize the properties of porewater and 
bentonite. These experiments should include but are not 
limited to mineral composition, elemental, and particle size 
analyses.
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