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Abstract
The precise measurement of the antineutrino spectra produced by isotope fission in reactors is of great significance for study-
ing neutrino oscillations, refining nuclear databases, and addressing the reactor antineutrino anomaly. In this paper, we report 
a method that utilizes a feedforward neural network (FNN) model to decompose the prompt energy spectrum observed in a 
short-baseline reactor neutrino experiment and extract the antineutrino spectra produced by the fission of major isotopes such 
as 235 U, 238 U, 239Pu, and 241 Pu in the nuclear reactor. We present two training strategies for the model and compare them with 
the traditional �2 minimization method by applying them to the same set of pseudo-data corresponding to a total exposure 
of (2.9 × 5 × 1800) GWth ⋅ tons ⋅ days . The results show that the FNN model not only converges faster and better during the 
fitting process but also achieves relative errors of less than 1% in the 2 − 8 MeV range in the extracted spectra, outperforming 
the �2 minimization method. The feasibility and superiority of this method were validated in the study.
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1  Introduction

Since the direct discovery of neutrinos by Cowan and Reines 
at the Savannah River reactor power plant in 1956 [1], reac-
tor neutrino experiments have played a pivotal role in the 

advancement of neutrino physics. Reactor neutrinos are also 
known as reactor antineutrinos because they are composed 
exclusively of electron antineutrinos ( ̄𝜈e ). In commercial 
pressurized water reactors (PWRs), more than 99.7% of the 
reactor neutrinos are emitted from the beta decay branches 
of neutron-rich fission products generated by four isotopes: 
235 U, 238 U, 239Pu, and 241Pu. In research reactors utilizing 
93% 235 U-enriched fuel, 99.3% of the reactor neutrinos 
result from the fission of 235 U. Each isotope releases approxi-
mately six 𝜈̄e per fission along with a corresponding antineu-
trino flux and spectrum. Precise fissile isotope antineutrino 
spectra are required for reactor monitoring and safeguarding 
applications [2–4] and serve as valuable inputs to reactor 
neutrino experiments utilizing the inverse beta decay (IBD) 
reaction [5–7] or coherent elastic neutrino-nucleus scattering 
(CE�NS) [8, 9].

Fissile isotope antineutrino spectra and fluxes have been 
evaluated several times in the past decades. The method-
ologies employed can be classified into three major catego-
ries comprising summation [10], conversion [11, 12], and 
extraction methods [13–15]. The summation method, i.e., 
the ab initio approach, utilizes information on fission prod-
ucts and decays from nuclear databases to calculate and sum 
the contributions of all possible beta decay chains to 𝜈̄e [16]. 
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However, the presence of incomplete or inaccurate informa-
tion in nuclear databases introduces complexities and chal-
lenges in constructing reliable spectral models, ultimately 
leading to potentially large and unknown uncertainties in 
model predictions. The conversion method relies on the 
measured beta spectra of uranium and plutonium. The beta 
spectra for thermal-neutron-induced fissions of 235 U, 239Pu, 
and 241 Pu have been measured at the Institut Laue–Langevin 
High Flux Reactor in the 1980 s [11, 17–19], while those for 
the fast-neutron-induced fission of 238 U were measured at 
the Heinz Maier-Leibnitz (FRM II) research neutron source 
in 2013 [20]. The measured beta spectra for each isotope 
are fitted by a set of virtual beta decay branches based on 
the allowed beta decay transitions, which are then converted 
into antineutrino branches and summed to the corresponding 
isotope antineutrino spectra [16, 21]. Although the reduced 
dependence on nuclear databases in this method provides 
spectral shapes with typical relative uncertainties of a few 
percent, the fine structural information in the spectral shapes 
is not as rich as that obtained using the summation method. 
To address these shortcomings, several antineutrino spec-
trum models have been developed based on the conversion 
method or a combination of both methods. One example is 
the Huber–Mueller model [16, 21], which provides predic-
tions that roughly agree with earlier experimental data and 
is widely accepted in reactor neutrino experiments. How-
ever, measurements from short-baseline reactor neutrino 
experiments such as Double Chooz [22], RENO [23], Daya 
Bay [13], and NEOS [6] confirmed a ∼ 6% deficit in the 
measured reactor antineutrino flux and an excess in the 4 − 6 
MeV prompt energy range compared to the predictions of 
the Huber–Mueller model. These discrepancies, which are, 
respectively, known as the “reactor antineutrino anomaly 
(RAA)" [12] and “5 MeV excess" or “5 MeV bump" [24, 
25], cannot be ignored in the era of precise measurements. 
The extraction method, in which the fission isotope antineu-
trino spectrum is inferred from the reconstructed prompt 
energy spectrum measured by the detector and independent 
of nuclear databases, has become a common approach for 
testing various RAA formation hypotheses, including expla-
nations of sterile neutrinos. Using this method, the Daya 
Bay experiment [13, 14] extracted the 235 U and 239 Pu anti-
neutrino spectra from PWRs, while the PROSPECT [15, 26] 
and STEREO [27, 28] experiments extracted the 235 U anti-
neutrino spectrum from highly enriched uranium research 
reactors. Moreover, it was revealed that the flux deficit was 
primarily carried by 235 U, and the 5 MeV bump had shared 
contributions from uranium and plutonium. However, the 
extraction of the 238 U and 241 Pu antineutrino spectra was not 
satisfactory owing to statistical limitations [14].

The current general practice in experiments for extract-
ing fissile isotope antineutrino spectra involves first unfold-
ing the reconstructed prompt energy spectrum to obtain an 

antineutrino energy spectrum weighted by the IBD cross 
section, and then further fitting the unfolded spectrum with 
the �2 minimization method to extract individual or com-
bined isotope antineutrino spectra [14, 15, 26, 27]. Unfold-
ing is a common technique used in high-energy physics 
(HEP) to disentangle detector effects, correct migration 
effects, suppress fluctuations, and reconstruct approximate 
distributions of quantities. Common methods for unfolding 
include singular value decomposition (SVD) [29], Wiener 
SVD [30], and Bayesian iterations [31]. In the Daya Bay 
experiment, these methods were used to yield consistent 
extraction results. Although the Wiener-SVD method pro-
duces the smallest unfolded spectrum mean square error 
(MSE) within the energy range of 3 − 6 MeV, it does not 
perform as well as the other methods outside this energy 
range because of the large statistical fluctuations in the 
intrinsic neutrino energy spectrum [14]. To obtain more 
precise solutions, the number of bins for the unfolded 
spectrum in experiments is typically limited to that of the 
intrinsic spectrum [32]. Although this simplifies the sub-
sequent fitting process for extracting the specific fission 
isotope antineutrino spectrum, it also suppresses the fine 
structure of the spectrum shape.

In our previous study [33], we proposed a machine 
learning method in which a convolutional neural network 
(CNN) model is employed to extract fission isotope anti-
neutrino spectra from the unfolded prompt energy spec-
trum in a virtual short-baseline reactor neutrino experi-
ment. The analysis results demonstrate that the proposed 
CNN model can achieve subpercentage uncertainties in the 
extracted 235 U and 239 Pu antineutrino spectra whereas the 
238 U and 241 Pu antineutrino spectra need to be constrained 
via prior knowledge during the fitting process. In this 
study, we extend the method and establish a feedforward 
neural network (FNN) model to resolve this extraction 
problem. This new method is designed to directly extract 
the antineutrino spectra of the four fission isotopes from 
the reconstructed prompt energy spectrum without high-
lighting the unfolding process or any constraints on the 
spectra while better preserving the fine structure of the 
extracted spectra.

The remainder of this paper is organized as follows: 
In Sect. 2, we present the antineutrino spectra of the IBD 
reactions and the generation of the simulation dataset for 
this study. In Sect. 3, we introduce the conceptual and 
technical details of the proposed FNN model and its train-
ing strategies. In Sect. 4, we compare the performance of 
this new method in extracting fission isotope antineutrino 
spectra with that of the benchmark traditional method, that 
is, the �2 minimization method, and discuss the obtained 
results. Finally, a summary and future outlook are pre-
sented in Sect. 5.
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2 � Dataset generation for FNN model

In this study, we constructed a virtual reactor neutrino experi-
ment in a layout comprising a PWR and a detector. To verify 
the feasibility of the virtual experiment, we referred to the 
Daya Bay [14] and Taishan Antineutrino Observatory (TAO, 
also known as JUNO-TAO) [34, 35] experiments, and made 
the following assumptions about the experimental parameters: 
The reactor is operated for 1800 days at a full thermal power 
of 2.9 GWth with an initial uranium fuel mass of 72 tons. The 
detector is loaded with 5 tons of liquid scintillator (LS) with 
12% hydrogen by mass, has an energy resolution of 8% at 1 
MeV and detection efficiency of 50%, and is situated at a base-
line distance of 30 m. We adopted the Huber–Mueller model 
as the foundational theory for the phenomenological prediction 
of the IBD yield to generate the simulated sample dataset for 
this study. The model selection did not significantly affect the 
analysis. We disregarded the contributions of the spent nuclear 
fuel and the non-equilibrium effect on the IBD yield [16, 32].

2.1 � IBD yield prediction

The Huber–Mueller model is a theoretical framework for pre-
dicting the antineutrino spectra produced by the fission reac-
tions of four isotopes in reactors. Each of these isotopic anti-
neutrino spectrum can be parameterized using the exponent of 
a fifth-order polynomial as follows:

where l = {235U, 238U, 239Pu, 241Pu} , E
�
 is the 𝜈̄e energy, 

and the �lp s are polynomial coefficients for the isotope l. 
The �lp coefficients for 235 U, 239Pu, and 241 Pu were derived 
using the conversion method by Huber [21], whereas the 
�lp coefficients for 238 U were obtained using the summation 
method of Mueller et al. [16]. To incorporate the RAA in 
this study, we modified the isotopic antineutrino spectrum 
in Eq. (1) as follows:

where rRAA(E�
) is the ratio of the RAA between the spec-

tra measured in the Daya Bay experiment  [32] and the 
Huber–Mueller model prediction. To evaluate rRAA(E�

) , we 
performed cubic spline interpolation within the provided 
energy range of 1.8 − 8 MeV and set it uniformly to 1 for 
energy values above 8 MeV.

The antineutrino yield per fission can be expressed as

(1)sl(E�
) = exp

(
6∑

p=1

�lpE
p−1
�

)
,

(2)Sl(E�
) = sl(E�

)rRAA(E�
),

(3)�(E
�
, t) =

∑
l

fl(t)Sl(E�
),

where the fission fraction fl(t) represents the relative contri-
bution of the isotope l to the fission reaction at time t. The 
event rate of antineutrinos emitted from the reactor core can 
be calculated as

where W(t) is the thermal power of the reactor at time t, �l 
is the mean energy released per fission of the isotope l, and 
the values for �l were obtained from Ref. [36].

In the standard three-flavor neutrino oscillation frame-
work, the survival probability Pee of 𝜈̄e after propagating a 
distance L is given by [37]

where the �ij s represent the neutrino mixing angles. The 
oscillation phases Δij are given by

where Δm2
ij
 denotes the mass-squared difference between the 

two mass eigenstates mi and mj , i.e., Δm2
ij
≡ m2

i
− m2

j
.

For short-baseline reactor neutrino experiments, con-
sidering that the term involving Δ21 is negligible and 
Δm2

31
≈ Δm2

32
 , Eq. (5) can be simplified to

Unless otherwise specified, sin2 �13 = (2.20 ± 0.07) × 10−2 , 
Δm2

32
= (2.437 ± 0.033) × 10−3 eV2   ,  a n d 

Δm2
21

= (7.53 ± 0.18) × 10−5 eV2 in this study based on the 
values from the Particle Data Group (PDG) 2022 [37].

As the 𝜈̄e emitted by the reactor propagate to the LS detec-
tor, some of them engage in IBD reactions with the free tar-
get protons in the LS, which are denoted as 𝜈̄e + p → e+ + n . 
In this process, the positron e+ rapidly deposits its energy 
and annihilates the surrounding electron e− to form two 
0.511 MeV gammas, generating a prompt signal. The neu-
tron n scatters within the detector until it is thermalized 
and subsequently captured by hydrogen (99%) or carbon 
(1%) within ∼ 200 μs , thereby releasing a 2.22 or 4.95 MeV 
gamma, respectively, and yielding a delayed signal [38]. 
An IBD event is identified by the prompt-delayed signal 
pair during such a brief interval. The measured IBD event 
number Mk in the k-th reconstructed prompt energy Erec bin 

(4)
dN

dE
�

=
W(t)∑
l

fl(t)�l
�(E

�
, t),

(5)

Pee

(
L,E

𝜈

)
= P

(
𝜈̄e → 𝜈̄e;L,E𝜈

)

= 1 − cos4 𝜃13 sin
2
(
2𝜃12

)
sin2

(
Δ21

)

− cos2 𝜃12 sin
2
(
2𝜃13

)
sin2

(
Δ31

)

− sin2 𝜃12 sin
2
(
2𝜃13

)
sin2

(
Δ32

)
,

(6)Δij =
Δm2

ij
L

4E
�

≃
1.267Δm2

ij
[eV2]L[m]

E
�
[MeV]

,

(7)Pee

(
L,E

�

)
≈ 1 − sin2(2�13) sin

2

(
Δm2

31
L

4E
�

)
.



	 J. Chen et al.177  Page 4 of 11

observed at a detector within the data acquisition time TDAQ 
is therefore given by [5]

where Np is the number of free target protons in the LS, � is 
the detection efficiency of the detector, the IBD threshold 
energy Ethr ∼ mn − mp + me ∼ 1.8 MeV, �IBD(E�

) is the cross 
section of the IBD taken from Ref. [39], and G(Erec,E�

) is a 
normalized Gaussian smearing function, which includes the 
energy resolution effect.

To simplify the calculation, we assumed that the detec-
tor has no energy leakage or LS nonlinearity [32]. Thus, the 
prompt energy Epro ∼ E

�
− 0.78 MeV, and Erec is expected 

to obey the distribution G(Erec,E�
) defined as follows [5]:

The energy resolution �Epro
 is parameterized as

where p0 quantifies the statistical fluctuations in the photons 
detected by the detector, p1 is predominantly influenced by 
residual effects resulting from the spatial nonuniformity and 
temporal instability correction of the detector, and p2 quan-
tifies the effects associated with the photomultiplier tube 
(PMT), notably the PMT dark noise [5, 38].

For simplicity, we set p0 = 0.08 , p1 = 0 , and p2 = 0 in 
this study for an energy resolution of 8% at 1 MeV in the 
detector. Therefore, under full reactor power and classical 
fission fractions conditions [32], the detector observes the 
energy spectrum of the IBD events (i.e., the reconstructed 
prompt energy spectrum) distorted by the RAA in one day, 
as shown in Fig. 1, and approximately 7473 IBD events are 
recorded.

2.2 � Simulated samples and targets in dataset

Considering the significant computational resources and 
time required for the integral terms in Eq. (8), Eq. (8) is 
typically converted to a discrete summation or matrix mul-
tiplication equivalent form in practical computations. In this 
study, the integral form of the reconstructed prompt energy 
spectrum is rewritten as an element of the row matrix 

(8)
Mk =

Np�

4�L2

Ek+1
rec

∫
Ek
rec

dErec ∫
TDAQ

dt ∫
Ethr

dE
�

×
dN

dE
�

Pee(L,E�
)�IBD(E�

)G(E
�
,Erec)

(9)G(E
�
,Erec) ≃

1√
2��Epro

exp

⎧⎪⎨⎪⎩
−

�
Epro − Erec

�2
2(�Epro

)2

⎫⎪⎬⎪⎭
,.

(10)
�Epro

Epro

=

�����
�

p0√
Epro

�2

+ p2
1
+

�
p2

Epro

�2

,

M1×NErec
 , which is given in Eq. (11). Each element of the 

matrix represents the measured IBD event number in the 
corresponding energy bin.

where the subscripts denote the dimensions of the cor-
responding matrices and the number 4 indicates the four 
isotopes. NErec

 is the number of bins in the reconstructed 
prompt energy spectrum while NE

�

 is the number of terms 
in the discretized sum for integration over E

�
 , which is also 

the number of bins in the extracted isotopic antineutrino 
spectrum. The ranges of E

�
 and Erec are 1.8 − 10 MeV and 

0.8 − 10 MeV, respectively. In this study, NErec
 was set to 80 

based on the limit of the virtual detector energy resolution 
whereas NE

�

 was optimized to 401 after balancing model 
performance and computational cost. The element Xl in X1×4 
can be expressed as

where TDAQ in Eq. (8) is divided into Nt time units of Δt , u 
is the time unit index, and ΔE

�
 and ΔErec are the bin widths 

of the extracted isotopic antineutrino spectrum and recon-
structed prompt energy spectrum, respectively. In Eq. (12), 
W, fl , and �l are reactor-related parameters. W and fl vary as 
the reactor evolves while �l and the remaining parameters are 

(11)

M1×NErec
= X1×4 ⋅ S4×NE�

⋅ PNE�
×NE�

⋅ �NE�
×NE�

⋅ RNE�
×NErec

= X1×4 ⋅ S4×NE�
⋅ P�RNE�

×NErec
,

(12)Xl =

Nt�
u

Np�W(tu)fl(t
u)

4�L2
∑

l fl(t
u)�l

ΔtΔE
�
ΔErec,

Fig. 1   (Color online) Virtual detector observes the reconstructed 
prompt energy spectrum distorted by the RAA with an exposure of 
(2.9 × 5 × 1) GWth ⋅ tons ⋅ day . The insert shows the cross section 
of the IBD reaction  [39] and the four isotope antineutrino spectra 
obtained by modifying the Huber–Mueller model according to Eq. (2)

gary
Text Box
Thus, the prompt ener



Extraction of fissile isotope antineutrino spectra using feedforward neural network﻿	 Page 5 of 11  177

constants. Xl is therefore referred to as the reactor dynamic 
evolution information.

Each row of S4×NE�
 represents the binned antineutrino 

spectrum for isotope l, as given by Sl(E�
) . Both PNE�

×NE�
 and 

�NE�
×NE�

 are diagonal matrices whose diagonal elements are 
given by Pee(L,E�

) and �IBD(E�
) , respectively. The role of 

RNE�
×NErec

 is to map each E
�
 to a spectrum of Erec . RNE�

×NErec
 is 

therefore also referred to as the detector response matrix 
[ Rqk ], which is defined as follows:

where q is the index for binning E
�
 , q ∈ [1, 2, ⋯ , NE

�

] , and 
k ∈ [1, 2, ⋯ , NErec

] . In contexts that do not involve the 
oscillation parameters or unfolding, PNE�

×NE�
 , �NE�

×NE�
 , and 

RNE�
×NErec

 can be pre-multiplied to obtain the matrix 
P�RNE�

×NErec
.

The matrix multiplication relation in Eq. (11) provides 
the mathematical foundation for constructing the FNN archi-
tecture presented in Sect. 3. Furthermore, X1×4 and M1×NErec

 , 
respectively, constitute a sample and its associated target in 
our dataset, which serve as a feature-label pair for supervised 
learning in the FNN model implemented in this study.

As described in Eq.  (12), the fission fraction varies 
dynamically with burn-up as the reactor operates. In each 
reactor core refueling cycle, the cycle burn-up can be cal-
culated as [32]

where W, D, and MUini represent the total thermal power of 
the reactor, the number of days since the refueling cycle 
started, and the mass of the initial uranium fuel loaded 
into the reactor, respectively. The unit for burn-up is 
GWth ⋅ day ⋅ ton

−1 . Given that the real-time power output 
of the reactor is dynamic and cannot exceed its maximum 
capacity of 2.9 GWth for safe operation, we used a random 
number generator for a normal distribution with a mean of 
2.9 GWth and downward fluctuation of 0.5% to determine 
the daily average power output of the virtual reactor [33]. 
By incorporating the fission fraction evolution data of the 
isotopes during a complete burn-up cycle from Ref. [32], we 
obtained the evolution of the fission fractions for the four 
main isotopes as a function of the operation day, as shown 
in Fig. 2.

Under the assumption that the thermal power and fissile 
fractions for the four main isotopes of the reactor are con-
stant within each day, we accumulated the exposure over 

(13)
Rqk = R(Eq

�
,Ek

rec
) = G

(
Eq
�
,
Ek
rec

+ Ek+1
rec

2

)

= G

(
Eq
�
,Ek

rec
+

ΔErec

2

)
,

(14)Burn-up =
W ⋅ D

MUini

,

each 3-day interval as a sample to create a dataset of 600 
simulated samples and their corresponding targets for sub-
sequent analysis.

3 � Implementation of FNN model

Machine learning algorithms such as neural network (NN) 
models have attracted increasing attention from high-energy 
and nuclear physics researchers [33, 40–44]. However, most 
of these applications are characterized by black-box models 
in which the meaning of the model parameters are challeng-
ing to understand or interpret. In this section, we present a 
FNN-based white-box model where each layer and param-
eter has a clear physical or mathematical meaning, thereby 
ensuring the interpretability of the model.

3.1 � Mathematical foundations of FNN model

The NN is a powerful machine learning model that has 
been widely explored and applied across various fields. The 
universal approximation theorem [45, 46] implies that any 
continuous function can be approximated with arbitrary pre-
cision using an appropriate NN, even if the NN is an FNN 
with only one hidden layer containing a sufficient number 
of neurons. However, the internal structure and parameters 
of the NN in such scenarios often lack physical meaning or 
interpretability. This results in black-box models, which are 
not fully trusted by high-energy physicists. Therefore, we 
designed and implemented a white-box NN model in this 

Fig. 2   (Color online) Evolution of fissile fractions for the four main 
isotopes in the reactor core as a function of operation day, which 
includes one complete refueling cycle  [32]. The cumulative fission 
fraction of the four main isotopes used in this experiment is nor-
malized to unity, and other isotopes contributing less than 0.3% are 
excluded from our analysis
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study for converting the mathematical mapping function in 
Eq. (11) to a FNN model.

An FNN is typically composed of one to several single-
layer perceptrons, which are considered the fundamental 
building units of the FNN and play a vital role in its overall 
functionality [47]. Each perceptron in the FNN follows the 
computational flow shown in Fig. 3 to process data. Forward 
and backward propagation are two phases in the NN training 
process that interact to optimize network performance.

During the forward propagation phase, the perceptron 
performs computation by computing the dot product of the 
input vector �⃗x = [x1, x2, ..., xN]

T with the weight coefficient 
vector ��⃗w = [w1,w2, ...,wN]

T , adding the bias b, and applying 
the activation function � to yield the activation result y as 
the output. The discrepancy between the output y and target 
ŷ is then calculated using the loss function L(y, ŷ) . Forward 
propagation provides the foundation for evaluating network 
performance. Backward propagation in turn determines how 
the network parameters (weights and bias) are updated to 
reduce loss. It can be described as

where �
�
 and �′

�
 represent the �-th weight coefficient of 

the current and subsequent steps, respectively; b and b′ the 
biases of the current and subsequent steps, respectively; 
and � and � are the learning rate and weight decay rate, 
respectively. This iterative update process of the parameters 
based on the computed gradients allows the NN to learn and 
improve its predictions over time.

(15)𝜔
�
𝜇
=𝜔

𝜇
− 𝜂 × [∇

𝜔
𝜇

L(y, ŷ) + 𝜆𝜔
𝜇
],

(16)b� =b − 𝜂 × ∇bL(y, ŷ),

To allow matrix multiplication in the perceptrons, the bias 
b must be eliminated, i.e., set to zero. The absence of nega-
tive values in our data flow justifies the use of the default 
rectified linear unit (ReLU) activation function, which is 
defined as �(z) = max{0, z} . This setup also permits the 
perceptrons to be chained to perform successive matrix dot 
product operations, which is integral to the development of 
our FNN model.

As shown in Fig. 4, the architecture of the FNN model 
consists of three layers comprising, from left to right, the 
input, hidden, and output layers with four, NE

�

 , and NErec
 

Fig. 3   (Color online) An example illustration of the structure of a single-layer perceptron along with forward (black flow arrows) and backward 
(red flow arrows) propagation

Fig. 4   (Color online) FNN is a white-box model that describes the 
mapping relation between the reactor dynamic evolution information 
and reconstructed prompt energy spectrum. The architecture of the 
FNN model includes an input layer, hidden layer, output layer, and 
two sets of weight coefficient matrices W (1) and W (2) . The weight val-
ues between neurons associated with connections of the same color 
form the rows of the weight coefficient matrix
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neurons, respectively. The neurons in adjacent layers are 
connected using a fully connected approach; that is, each 
neuron in one layer is connected to every neuron in the 
subsequent layer with no connections between neurons 
within the same layer. The training process of the model 
starts from the input layer, at which each neuron receives 
the reactor dynamic evolution information corresponding 
to its fission isotope. The output of the hidden layer is the 
scaled total spectrum [ hq ] of antineutrinos emitted by the 
reactor. The output layer then provides a predicted recon-
structed prompt energy spectrum [ yk ]. The two weight 
coefficient matrices W (1) and W (2) correspond to the trans-
poses of the matrices S4×NE�

 and P�RNE�
×NErec

 , respectively. 
The matrix W (1) contains the fission isotope antineutrino 
spectra to be extracted, which are learned during training. 
In contrast, the matrix W (2) is fixed as P�RT

NE�
×NErec

 because 
it is assumed to be a constant matrix without uncertainties 
in this study. The FNN is therefore a supervised learning 
model that iteratively refines W (1) to minimize the discrep-
ancies between its outputs and corresponding targets.

3.2 � Training strategy

All the samples generated in Sect. 2.2 were utilized solely 
to train the FNN model. The validation and testing pro-
cesses were omitted. This approach was chosen because 
our aim is to minimize the loss function during the train-
ing process to determine the optimal W (1) for extracting 
the four main isotopic antineutrino spectra. Our focus is 
on optimizing spectra extraction performance rather than 
evaluating model performance across various datasets, as 

well as on simplifying the process and aligning with our 
primary research objective.

The loss function is a fundamental component in deep 
learning models. It serves as the criterion for evaluating 
how well the model predictions match the actual outcomes 
and provides a numerical indicator of model accuracy. The 
Combined Neyman–Pearson (CNP) chi square model is a 
statistical model frequently employed in HEP experiments 
to quantify the error between predicted and measured val-
ues [48]. Based on this model, we define the loss function 
for the FNN model as

where Mk is the IBD event number in the k-th bin for the 
measured reconstructed prompt neutrino energy spectrum 
given by Eq. (8) and yk is the corresponding predicted value 
output of the model. We used this loss function to guide 
the optimization process of W (1) during the training process 
so that the FNN was driven toward increasingly precise 
predictions.

After defining the loss function, it is essential to select 
a suitable optimizer, learning rate schedule, batch size, and 
epoch, among other hyperparameters. Following hyperpa-
rameter tuning using the Optuna framework  [49] and 
extensive testing, we developed two training strategies 
denoted as the short and long epoch strategies to investi-
gate the performance of the FNN model in extracting the 
antineutrino spectra of the four fission isotopes from the 
reconstructed prompt energy spectrum [50]. As shown in 
Table  1, a critical commonality between these two 

(17)�
2
CNP

=

NErec∑
k=1

[Mk − yk(W
(1))]2

3

/[
1

Mk

+
2

yk(W
(1))

] ,

Table 1   Configurations of the two training strategies for FNN model

The configurations were derived based on our empirical knowledge and optimized using Optuna [49]. The partition numbers correspond to neu-
ron indices in the hidden layer of the FNN model. ReduceLROnPlateau is a Python class that dynamically adjusts the learning rate during deep 
learning model training to improve convergence speed and performance [50]

Strategy Short epoch Long epoch

Epoch 2 × 103 2 × 106

Optimizer AdamW Adam
Hidden layer partitions [1], (1, 180], (180, 225], (225, 303], (303, 401]
Learning rates for hidden layer [3.4892 × 10−4 , 9.9485 × 10−4 , 2.754 × 10−4 , 1.8272 × 10−4 , 0]
Weight decay rates for hidden layer [7.418 × 10−3 , 7.748 × 10−3,

4.155 × 10−3 , 9.999 × 10−3 , 0]
[0, 0, 0, 0, 0]

Learning rate for output layer 0
Weight decay for output layer 0
Learning rate scheduler ReduceLROnPlateau ( factor = 0.32 , patience =1 × 102) ReduceLROnPla-

teau ( factor = 0.32 , 
patience =1 × 104)

& epoch ≥ 2 × 105

Batch size 30
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strategies is the segmentation of the hidden layer in the 
FNN model into multiple partitions or parallel hidden lay-
ers. This setup allows distinct learning and weight decay 
rates to be assigned to each partition to facilitate differen-
tial performance outcomes. Because the focus in this study 
is not on the isotope antineutrino spectra above 8 MeV, 
i.e., in the (303, 401] partition or the matrix P�RNE�

×NErec
 , 

we fixed their learning and weight decay rates to zero and 
disabled the gradient calculations for the corresponding 
weight coefficients. Additionally, we set the initial value 
of W (1) based on the Huber–Mueller model.

As indicated by their names, the main distinction between 
the short and long epoch strategies lies in the epochs. The 
short epoch strategy leverages the AdamW [51] optimizer 
with non-zero weight decay rates for faster loss reduction. 
In contrast, in the long epoch strategy, the Adam [52] opti-
mizer is applied without weight decay, i.e., the weight decay 
rates are set to zero. Superior convergence results were 
obtained using the long epoch strategy. The results are pre-
sented and discussed in Sect. 4. As illustrated in Table 1, 
these circumstances also led to minor differences in the con-
figurations of the learning rate schedulers. Nonetheless, the 
same metric, i.e., the sum of the losses for all samples 
denoted as �2∑

CNP
 , was monitored in both schedulers.

We also extracted the antineutrino spectra of the four fis-
sion isotopes using the �2 minimization method to provide 
a comparison and benchmark for the FNN model. We 
employed the Minuit2 minimization library from ROOT [53] 
to implement this method. �2∑

CNP
 was used as the objective 

function to be minimized to find the best fit. The same data-
set as that for the FNN model was used as the measured 
value in this fitting process. In contrast, the predicted value 
was derived from Eq. (11) where the S4×NE�

 matrix elements 
corresponding to ≤ 8 MeV are the parameters to be fitted and 
the remaining elements considered as fixed parameters in the 
fitting procedure. We adopted the “Combined" minimizer 
algorithm to minimize the objective function with initial fit-
ting values from the Huber–Mueller model and fitting step 
sizes of 1% of the order of magnitude of these values. We 
set the tolerance for the fitting procedure to 1 × 10−30 . The 
fitting stopped automatically only when the improvement in 
the �2∑

CNP
 value between consecutive iterations fell below 

this threshold.
The FNN model was implemented using PyTorch [54], a 

Python-based deep learning library that supports both CPU 
and GPU platforms and is one of the mainstream tools for 
developing and training NN models. A NVIDIA GeForce 
RTX 3060 Ti GPU platform was used to deploy the FNN 
model, whereas tasks involving Optuna and ROOT were per-
formed on two identical servers, each of which was equipped 
with two 28-core Intel(R) Xeon(R) Gold 6330 CPUs @ 2.00 
GHz.

4 � Results and discussions

To facilitate the discussion and comparative analysis of the 
short and long epoch strategies of our FNN model and the 
�
2 minimization method, we first consider their performance 

in fitting all the samples and reducing the losses. As shown 
in Fig. 5, did the loss �2∑

CNP
 decreased more rapidly in both 

FNN strategies, and lower ultimate �2∑
CNP

 values were 
obtained compared to those obtained by the �2 minimization 
method. The �2∑

CNP
 values at the conclusion of the epochs 

a r e  5.51 × 10−6  ,  5.42 × 10−10  ,  a n d  9.34 × 10−6  , 
respectively.

The short epoch strategy can rapidly reduce the loss in the 
early stages of training mainly because of the regularization 
effects and optimization efficiency due to the combination 
of non-zero weight decay rates and the AdamW optimizer. 
However, in the later stages of training, the model must be 
able to respond to small changes in the loss function for fine 
adjustments of the parameters. Weight decay may interfere 
with this process and make it challenging for the model to 
determine the optimal solution within regions of small loss 
function gradients.

Figure  6 shows a comparison of the performance in 
extracting the antineutrino spectra of the four isotopes 
using these three approaches. The extraction performance 
decreases in the order of the long epoch strategy, short epoch 
strategy, and �2 minimization method. The FNN model 
accurately extracted the antineutrino spectra of 235U , 239Pu , 
and 241Pu in the energy range of 2 − 5 MeV. The FNN model 
with the short epoch strategy achieved relative errors of less 

Fig. 5   (Color online) Evolution of loss function across epochs for 
the short and long epoch strategies and the �2 minimization method. 
The epochs of the first two were manually specified to be 2×103 and 
2×106, respectively, while that of the �2 minimization method was 
automatically determined as approximately 4.39×105



Extraction of fissile isotope antineutrino spectra using feedforward neural network﻿	 Page 9 of 11  177

than 2% in the 5 − 8 MeV range, which decreased to less 
than 1% with the long epoch strategy. In comparison, the �2 
minimization method achieved relative extraction errors of 
less than 2% and 3% for these three isotopes in the respective 
energy ranges. For the isotope 238U , both the short epoch 
strategy and �2 minimization method showed relatively poor 
extraction performance compared to that for the other iso-
topes. The maximum extraction relative errors in the 2 − 8 
MeV range are approximately 4% and 8%, respectively, 
whereas only the long epoch strategy maintained relative 
errors of less than 1%.

It is worth noting that although 241Pu has a lower average 
fission fraction throughout the entire refueling cycle com-
pared to 238U , the extraction performance for the former is 
better in all the extraction approaches. This indicates that in 
addition to large fission fractions, significant variations are 
also crucial for extracting isotopic antineutrino spectra accu-
rately. Greater variations produce better extraction results. 
This is further confirmed by the extraction performance for 
the 235U and 239Pu antineutrino spectra. Therefore, such long 
epochs are employed in the long epoch strategy primarily 
to enhance the extraction performance for 238U . Overall, 
regardless of the extraction approach used, the extraction 
performance for the isotopic antineutrino spectra in descend-
ing order is as follows: 235U , 239Pu , 241Pu , and 238U.

The above results and discussion reveal that because 
of the exceptional capability of NNs in optimizing large-
scale parameters, the FNN model achieved faster and more 
effective convergence than the traditional �2 minimization 
method. Based on PyTorch’s extensive array of optimization 
algorithms [55], various model training strategies can be 
designed to satisfy the practical requirements for extracting 

isotope antineutrino spectra. Moreover, executing spectrum 
extraction algorithms on GPU platforms can significantly 
increase the inference speed of the process, thereby improv-
ing extraction efficiency.

5 � Summary and outlook

In this study, we presented an FNN model designed to infer 
and extract the corresponding antineutrino spectra generated 
by the fission of 235U , 238U , 239Pu , and 241Pu from the recon-
structed prompt energy spectrum measured by the detector 
in a reactor neutrino experiment. Using a simulated short-
baseline reactor neutrino experiment with an exposure of 
(2.9 × 5 × 1800) GWth ⋅ tons ⋅ days , we demonstrated how 
this FNN model establishes a mapping from reactor evolu-
tion information to the reconstructed prompt energy spec-
trum and enables the extraction of antineutrino spectra for 
the four isotopes through its training process.

By comparing the extraction effects of the short and long 
epoch training strategies for our FNN model with the tradi-
tional �2 minimization method, as shown in Fig. 6, we found 
that the FNN model converged faster and better, and the 
performance of the three approaches for extracting the iso-
tope antineutrino spectra in descending order is as follows: 
long epoch strategy, short epoch strategy, and �2 minimiza-
tion method. Furthermore, the relative extraction errors of 
the antineutrino spectra for the four isotopes are reduced to 
less than 1% in the 2 − 8 MeV range of interest by the FNN 
model with the long epoch strategy, which is better than 
the error of 8% or less obtained using the �2 minimization 
method in the control group. These results show that the 
FNN model has considerable potential for extracting fission 
isotope antineutrino spectra.

In the near future, TAO will serve as a satellite experi-
ment of JUNO and achieve an energy resolution exceeding 
2% at 1 MeV in measuring reactor antineutrinos [34]. Its 
primary physics goals include constraining the fine struc-
tures of isotope antineutrino spectra and providing a model-
independent reference spectrum for JUNO and a benchmark 
measurement to test nuclear databases. Employing the FNN 
model in high-precision experiments such as TAO would 
therefore be an excellent match. In addition, depending on 
the research objectives, new NN models can be developed 
using the methodologies outlined in this study to further 
investigate a broader range of physics topics such as unfold-
ing, neutrino oscillation parameter measurements, sterile 
neutrino searches, and reactor monitoring. For example, the 
unfolded neutrino energy spectrum is represented by the 
output of the hidden layers in our FNN model, which can 
achieve a relative error of less than 1% in the 2 − 8 MeV 
range.

Fig. 6   (Color online) Comparison of the ratios between the four iso-
tope antineutrino spectra extracted using the short and long epoch 
strategies in our FNN model and the �2 minimization method, and 
the assumed true spectra described by Eq. (2)
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