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Abstract

The precise measurement of the antineutrino spectra produced by isotope fission in reactors is of great significance for study-
ing neutrino oscillations, refining nuclear databases, and addressing the reactor antineutrino anomaly. In this paper, we report
a method that utilizes a feedforward neural network (FNN) model to decompose the prompt energy spectrum observed in a
short-baseline reactor neutrino experiment and extract the antineutrino spectra produced by the fission of major isotopes such
as 23U, 238U, 3%Pu, and **'Pu in the nuclear reactor. We present two training strategies for the model and compare them with
the traditional y2 minimization method by applying them to the same set of pseudo-data corresponding to a total exposure
of (2.9 X 5 x 1800) GW,;, - tons - days. The results show that the FNN model not only converges faster and better during the
fitting process but also achieves relative errors of less than 1% in the 2 — 8 MeV range in the extracted spectra, outperforming
the y? minimization method. The feasibility and superiority of this method were validated in the study.

Keywords Reactor neutrinos - Isotope antineutrino spectra - Feedforward neural network

1 Introduction

Since the direct discovery of neutrinos by Cowan and Reines
at the Savannah River reactor power plant in 1956 [1], reac-
tor neutrino experiments have played a pivotal role in the
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advancement of neutrino physics. Reactor neutrinos are also
known as reactor antineutrinos because they are composed
exclusively of electron antineutrinos (,). In commercial
pressurized water reactors (PWRs), more than 99.7% of the
reactor neutrinos are emitted from the beta decay branches
of neutron-rich fission products generated by four isotopes:
235y, 238U, 2%Pu, and ?*'Pu. In research reactors utilizing
93% 235 U-enriched fuel, 99.3% of the reactor neutrinos
result from the fission of 23°U. Each isotope releases approxi-
mately six v, per fission along with a corresponding antineu-
trino flux and spectrum. Precise fissile isotope antineutrino
spectra are required for reactor monitoring and safeguarding
applications [2-4] and serve as valuable inputs to reactor
neutrino experiments utilizing the inverse beta decay (IBD)
reaction [5—7] or coherent elastic neutrino-nucleus scattering
(CEVWNS) [8, 9].

Fissile isotope antineutrino spectra and fluxes have been
evaluated several times in the past decades. The method-
ologies employed can be classified into three major catego-
ries comprising summation [10], conversion [11, 12], and
extraction methods [13—15]. The summation method, i.e.,
the ab initio approach, utilizes information on fission prod-
ucts and decays from nuclear databases to calculate and sum
the contributions of all possible beta decay chains to v, [16].
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However, the presence of incomplete or inaccurate informa-
tion in nuclear databases introduces complexities and chal-
lenges in constructing reliable spectral models, ultimately
leading to potentially large and unknown uncertainties in
model predictions. The conversion method relies on the
measured beta spectra of uranium and plutonium. The beta
spectra for thermal-neutron-induced fissions of 2*3U, 23°Pu,
and ?*'Pu have been measured at the Institut Laue—Langevin
High Flux Reactor in the 1980 s [11, 17—-19], while those for
the fast-neutron-induced fission of >*U were measured at
the Heinz Maier-Leibnitz (FRM II) research neutron source
in 2013 [20]. The measured beta spectra for each isotope
are fitted by a set of virtual beta decay branches based on
the allowed beta decay transitions, which are then converted
into antineutrino branches and summed to the corresponding
isotope antineutrino spectra [16, 21]. Although the reduced
dependence on nuclear databases in this method provides
spectral shapes with typical relative uncertainties of a few
percent, the fine structural information in the spectral shapes
is not as rich as that obtained using the summation method.
To address these shortcomings, several antineutrino spec-
trum models have been developed based on the conversion
method or a combination of both methods. One example is
the Huber—Mueller model [16, 21], which provides predic-
tions that roughly agree with earlier experimental data and
is widely accepted in reactor neutrino experiments. How-
ever, measurements from short-baseline reactor neutrino
experiments such as Double Chooz [22], RENO [23], Daya
Bay [13], and NEOS [6] confirmed a ~ 6% deficit in the
measured reactor antineutrino flux and an excess in the 4 — 6
MeV prompt energy range compared to the predictions of
the Huber—Mueller model. These discrepancies, which are,
respectively, known as the “reactor antineutrino anomaly
(RAA)" [12] and “5 MeV excess" or “5 MeV bump" [24,
25], cannot be ignored in the era of precise measurements.
The extraction method, in which the fission isotope antineu-
trino spectrum is inferred from the reconstructed prompt
energy spectrum measured by the detector and independent
of nuclear databases, has become a common approach for
testing various RAA formation hypotheses, including expla-
nations of sterile neutrinos. Using this method, the Daya
Bay experiment [13, 14] extracted the 2>°U and 2*’Pu anti-
neutrino spectra from PWRs, while the PROSPECT [15, 26]
and STEREO [27, 28] experiments extracted the 23U anti-
neutrino spectrum from highly enriched uranium research
reactors. Moreover, it was revealed that the flux deficit was
primarily carried by 2*3U, and the 5 MeV bump had shared
contributions from uranium and plutonium. However, the
extraction of the 233U and ?*'Pu antineutrino spectra was not
satisfactory owing to statistical limitations [14].

The current general practice in experiments for extract-
ing fissile isotope antineutrino spectra involves first unfold-
ing the reconstructed prompt energy spectrum to obtain an
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antineutrino energy spectrum weighted by the IBD cross
section, and then further fitting the unfolded spectrum with
the y? minimization method to extract individual or com-
bined isotope antineutrino spectra [14, 15, 26, 27]. Unfold-
ing is a common technique used in high-energy physics
(HEP) to disentangle detector effects, correct migration
effects, suppress fluctuations, and reconstruct approximate
distributions of quantities. Common methods for unfolding
include singular value decomposition (SVD) [29], Wiener
SVD [30], and Bayesian iterations [31]. In the Daya Bay
experiment, these methods were used to yield consistent
extraction results. Although the Wiener-SVD method pro-
duces the smallest unfolded spectrum mean square error
(MSE) within the energy range of 3 — 6 MeV, it does not
perform as well as the other methods outside this energy
range because of the large statistical fluctuations in the
intrinsic neutrino energy spectrum [14]. To obtain more
precise solutions, the number of bins for the unfolded
spectrum in experiments is typically limited to that of the
intrinsic spectrum [32]. Although this simplifies the sub-
sequent fitting process for extracting the specific fission
isotope antineutrino spectrum, it also suppresses the fine
structure of the spectrum shape.

In our previous study [33], we proposed a machine
learning method in which a convolutional neural network
(CNN) model is employed to extract fission isotope anti-
neutrino spectra from the unfolded prompt energy spec-
trum in a virtual short-baseline reactor neutrino experi-
ment. The analysis results demonstrate that the proposed
CNN model can achieve subpercentage uncertainties in the
extracted >*U and ?*’Pu antineutrino spectra whereas the
238U and ?*'Pu antineutrino spectra need to be constrained
via prior knowledge during the fitting process. In this
study, we extend the method and establish a feedforward
neural network (FNN) model to resolve this extraction
problem. This new method is designed to directly extract
the antineutrino spectra of the four fission isotopes from
the reconstructed prompt energy spectrum without high-
lighting the unfolding process or any constraints on the
spectra while better preserving the fine structure of the
extracted spectra.

The remainder of this paper is organized as follows:
In Sect. 2, we present the antineutrino spectra of the IBD
reactions and the generation of the simulation dataset for
this study. In Sect. 3, we introduce the conceptual and
technical details of the proposed FNN model and its train-
ing strategies. In Sect. 4, we compare the performance of
this new method in extracting fission isotope antineutrino
spectra with that of the benchmark traditional method, that
is, the y*> minimization method, and discuss the obtained
results. Finally, a summary and future outlook are pre-
sented in Sect. 5.
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2 Dataset generation for FNN model

In this study, we constructed a virtual reactor neutrino experi-
ment in a layout comprising a PWR and a detector. To verify
the feasibility of the virtual experiment, we referred to the
Daya Bay [14] and Taishan Antineutrino Observatory (TAO,
also known as JUNO-TAO) [34, 35] experiments, and made
the following assumptions about the experimental parameters:
The reactor is operated for 1800 days at a full thermal power
of 2.9 GW,, with an initial uranium fuel mass of 72 tons. The
detector is loaded with 5 tons of liquid scintillator (LS) with
12% hydrogen by mass, has an energy resolution of 8% at 1
MeV and detection efficiency of 50%, and is situated at a base-
line distance of 30 m. We adopted the Huber—Mueller model
as the foundational theory for the phenomenological prediction
of the IBD yield to generate the simulated sample dataset for
this study. The model selection did not significantly affect the
analysis. We disregarded the contributions of the spent nuclear
fuel and the non-equilibrium effect on the IBD yield [16, 32].

2.1 IBDyield prediction

The Huber—Mueller model is a theoretical framework for pre-
dicting the antineutrino spectra produced by the fission reac-
tions of four isotopes in reactors. Each of these isotopic anti-
neutrino spectrum can be parameterized using the exponent of
a fifth-order polynomial as follows:

6
s)(E,) = exp <Z oclpE’V’_1 ), (D

p=1

where [ = {?3°U, 238U, 2Py, *'Pu}, E, is the 7, energy,
and the a;,s are polynomial coefficients for the isotope /.
The a;, coefficients for °U, >**Pu, and **'Pu were derived
using the conversion method by Huber [21], whereas the
ay, coefficients for 28U were obtained using the summation
method of Mueller et al. [16]. To incorporate the RAA in
this study, we modified the isotopic antineutrino spectrum
in Eq. (1) as follows:

SE,) = s/(E,)rran(E,), )

where rpoa(E,) is the ratio of the RAA between the spec-
tra measured in the Daya Bay experiment [32] and the
Huber—Mueller model prediction. To evaluate rp, 5 (E, ), we
performed cubic spline interpolation within the provided
energy range of 1.8 — 8 MeV and set it uniformly to 1 for
energy values above 8§ MeV.

The antineutrino yield per fission can be expressed as

H(E,.0) =) [OS(E,), 3)
1

where the fission fraction f(¢) represents the relative contri-
bution of the isotope [ to the fission reaction at time ¢. The
event rate of antineutrinos emitted from the reactor core can
be calculated as

AN _ WO
dE,  Zfie

) @

where W(?) is the thermal power of the reactor at time ¢, ¢,
is the mean energy released per fission of the isotope /, and
the values for €, were obtained from Ref. [36].

In the standard three-flavor neutrino oscillation frame-
work, the survival probability P, of V, after propagating a
distance L is given by [37]

P.(L,E,)) = P(V, > V;L,E,)
=1 — cos* 6,5 sin’ (2912) sin’ (A21)
29 2 .2 ®)
—cos” f, sin (2013) sin (A3])
— sin” @, sin’ (20]3) sin’ (A32),
where the 6;s represent the neutrino mixing angles. The
oscillation phases A;; are given by
Amisz 1.267Aml.2j[eV2]L[m]
A L= ~
v AE, E [MeV]

, (6)

where Aml.zj denotes the mass-squared difference between the

two mass eigenstates m, and m;, i.e., Amfj =m’ — m]2

For short-baseline reactor neutrino experiments, con-
sidering that the term involving A,, is negligible and

Am3, ~ Am3,, Eq. (5) can be simplified to

32
Am? L
31
4E, > 0

v

P.(L,E,) ~ 1 —sin*(26,3) sin® <

Unless otherwise specified, sin® 0,3 =(2.20£0.07) x 1072,
AmZ, = (2437 £0.033) x 1073 eV? | and
Am2, = (7.53 +0.18) x 107 ¢V in this study based on the
values from the Particle Data Group (PDG) 2022 [37].

As the v, emitted by the reactor propagate to the LS detec-
tor, some of them engage in IBD reactions with the free tar-
get protons in the LS, which are denoted as v, + p — e* + n.
In this process, the positron e* rapidly deposits its energy
and annihilates the surrounding electron e~ to form two
0.511 MeV gammas, generating a prompt signal. The neu-
tron n scatters within the detector until it is thermalized
and subsequently captured by hydrogen (99%) or carbon
(1%) within ~ 200 ps, thereby releasing a 2.22 or 4.95 MeV
gamma, respectively, and yielding a delayed signal [38].
An IBD event is identified by the prompt-delayed signal
pair during such a brief interval. The measured IBD event
number M, in the k-th reconstructed prompt energy E,.. bin
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observed at a detector within the data acquisition time Tp5q
is therefore given by [5]

Ek+l

rec

o [ [ o

Tpaq  Einr (8)
dN

X d_EvPee(L7 Ev)GIBD(Ev)G(Ev’ Erec)
where N, is the number of free target protons in the LS, ¢ is
the detection efﬁciency of the detector, the IBD threshold
energy Ey,, ~ m, —my, + m, ~ 1.8MeV, o15(E,) is the cross
section of the IBD taken from Ref. [39], and G(E .. E,) is a
normalized Gaussian smearing function, which includes the
energy resolution effect.

To simplify the calculation, we assumed that the detec-
tor has no energy leakage or LS nonlinearity [32]. Thus, the
prompt energy E 0.78 MeV, and E.. is expected

pro ~ - 4 rec

to obey the dlStrlbuthIl G( E,) defined as follows [5]:

rec?

2
E —FE
G(Ev’Erec) = ; €Xp _M > (9)
\/ 2”6Epro 2(5Epm)

The energy resolution 6 is parameterized as
pro

2

og 2
pro pO 2 < p2 >
= +p2 + : (10)
Eo E 1 E

pro pro

where p quantifies the statistical fluctuations in the photons
detected by the detector, p, is predominantly influenced by
residual effects resulting from the spatial nonuniformity and
temporal instability correction of the detector, and p, quan-
tifies the effects associated with the photomultiplier tube
(PMT), notably the PMT dark noise [5, 38].

For simplicity, we set p, = 0.08, p; =0, and p, =0 in
this study for an energy resolution of 8% at 1 MeV in the
detector. Therefore, under full reactor power and classical
fission fractions conditions [32], the detector observes the
energy spectrum of the IBD events (i.e., the reconstructed
prompt energy spectrum) distorted by the RAA in one day,
as shown in Fig. 1, and approximately 7473 IBD events are
recorded.

2.2 Simulated samples and targets in dataset

Considering the significant computational resources and
time required for the integral terms in Eq. (8), Eq. (8) is
typically converted to a discrete summation or matrix mul-
tiplication equivalent form in practical computations. In this
study, the integral form of the reconstructed prompt energy
spectrum is rewritten as an element of the row matrix

@ Springer
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Fig.1 (Color online) Virtual detector observes the reconstructed
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Y
where the subscripts denote the dimensions of the cor-
responding matrices and the number 4 indicates the four
isotopes. N is the number of bins in the reconstructed
prompt energy spectrum while Ny is the number of terms
in the discretized sum for integrati(v)n over E , which is also
the number of bins in the extracted isotopic antineutrino
spectrum. The ranges of E, and E,., are 1.8 — 10 MeV and
0.8 — 10 MeV, respectively. In this study, Ny was set to 80
based on the limit of the virtual detector energy resolution
whereas N was optimized to 401 after balancing model
performance and computational cost. The element X, in X, 4
can be expressed as

N, eW()f,(1")
X, = Z ;AtAEVAEmC,
4xL2 Y, f(t)e

u

12)

where T, in Eq. (8) is divided into N, time units of Az, u
is the time unit index, and AE, and AE,. are the bin widths
of the extracted isotopic antineutrino spectrum and recon-
structed prompt energy spectrum, respectively. In Eq. (12),
W, f;, and ¢, are reactor-related parameters. W and f; vary as
the reactor evolves while €, and the remaining parameters are
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Text Box
Thus, the prompt ener
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constants. X; is therefore referred to as the reactor dynamic
evolution information.
Each row of S, represents the binned antineutrino

spectrum for isotope /, as given by S,(E, ). Both Py, sy, and
ON,, xN,, &re diagonal matrices whose diagonal elements are
given by P (L, E,) and op(E,), respectively. The role of
RNE‘, XNj.__ is to map each E, to a spectrum of E,.. RNEV XN is

therefore also referred to as the detector response matrix
[qu], which is defined as follows:

k k+1
R, =RELEL) =G| EY, %
(13)
k AEre(:
=G| ELEX + ,
\2 rec 2
where g is the index for binning £, g € [1, 2, .-, NEV], and

kell, 2, -, Ng ]. In contexts that do not involve the
oscillation parameters or unfolding, PNEV XNy » ONy XN, and
RNE, XN, €an be pre-multiplied to obtain the matrix
PoR N, XNp._-

The matrix multiplication relation in Eq. (11) provides
the mathematical foundation for constructing the FNN archi-
tecture presented in Sect. 3. Furthermore, X, and M,y _,

respectively, constitute a sample and its associated target in
our dataset, which serve as a feature-label pair for supervised
learning in the FNN model implemented in this study.

As described in Eq. (12), the fission fraction varies
dynamically with burn-up as the reactor operates. In each
reactor core refueling cycle, the cycle burn-up can be cal-
culated as [32]

W-D

Burn-up = —, (14)
Uini

where W, D, and M represent the total thermal power of
the reactor, the number of days since the refueling cycle
started, and the mass of the initial uranium fuel loaded
into the reactor, respectively. The unit for burn-up is
GW,, - day - ton~!. Given that the real-time power output
of the reactor is dynamic and cannot exceed its maximum
capacity of 2.9 GW, for safe operation, we used a random
number generator for a normal distribution with a mean of
2.9 GW, and downward fluctuation of 0.5% to determine
the daily average power output of the virtual reactor [33].
By incorporating the fission fraction evolution data of the
isotopes during a complete burn-up cycle from Ref. [32], we
obtained the evolution of the fission fractions for the four
main isotopes as a function of the operation day, as shown
in Fig. 2.

Under the assumption that the thermal power and fissile
fractions for the four main isotopes of the reactor are con-
stant within each day, we accumulated the exposure over

100
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90 — 24py
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Fig.2 (Color online) Evolution of fissile fractions for the four main
isotopes in the reactor core as a function of operation day, which
includes one complete refueling cycle [32]. The cumulative fission
fraction of the four main isotopes used in this experiment is nor-
malized to unity, and other isotopes contributing less than 0.3% are
excluded from our analysis

each 3-day interval as a sample to create a dataset of 600
simulated samples and their corresponding targets for sub-
sequent analysis.

3 Implementation of FNN model

Machine learning algorithms such as neural network (NN)
models have attracted increasing attention from high-energy
and nuclear physics researchers [33, 40—44]. However, most
of these applications are characterized by black-box models
in which the meaning of the model parameters are challeng-
ing to understand or interpret. In this section, we present a
FNN-based white-box model where each layer and param-
eter has a clear physical or mathematical meaning, thereby
ensuring the interpretability of the model.

3.1 Mathematical foundations of FNN model

The NN is a powerful machine learning model that has
been widely explored and applied across various fields. The
universal approximation theorem [45, 46] implies that any
continuous function can be approximated with arbitrary pre-
cision using an appropriate NN, even if the NN is an FNN
with only one hidden layer containing a sufficient number
of neurons. However, the internal structure and parameters
of the NN in such scenarios often lack physical meaning or
interpretability. This results in black-box models, which are
not fully trusted by high-energy physicists. Therefore, we
designed and implemented a white-box NN model in this

@ Springer



177 Page6of 11

J.Chenetal.

study for converting the mathematical mapping function in
Eq. (11) to a FNN model.

An FNN is typically composed of one to several single-
layer perceptrons, which are considered the fundamental
building units of the FNN and play a vital role in its overall
functionality [47]. Each perceptron in the FNN follows the
computational flow shown in Fig. 3 to process data. Forward
and backward propagation are two phases in the NN training
process that interact to optimize network performance.

During the forward propagation phase, the perceptron
performs computation by computing the dot product of the
input vector X = [x;, x,, ...,xN]T with the weight coefficient
vector W = [wy, W,, ..., wy]T, adding the bias b, and applying
the activation function y to yield the activation result y as
the output. The discrepancy between the output y and target
¥ is then calculated using the loss function L(y, $). Forward
propagation provides the foundation for evaluating network
performance. Backward propagation in turn determines how
the network parameters (weights and bias) are updated to
reduce loss. It can be described as

o, =0, —n X[V, Ly.9) + io,], (15)

b, :b_nvaL(yvj})’ (16)

where w,, and a)L represent the u-th weight coefficient of
the current and subsequent steps, respectively; b and b’ the
biases of the current and subsequent steps, respectively;
and n and A are the learning rate and weight decay rate,
respectively. This iterative update process of the parameters
based on the computed gradients allows the NN to learn and
improve its predictions over time.

To allow matrix multiplication in the perceptrons, the bias
b must be eliminated, i.e., set to zero. The absence of nega-
tive values in our data flow justifies the use of the default
rectified linear unit (ReLU) activation function, which is
defined as y(z) = max{0,z}. This setup also permits the
perceptrons to be chained to perform successive matrix dot
product operations, which is integral to the development of
our FNN model.

As shown in Fig. 4, the architecture of the FNN model
consists of three layers comprising, from left to right, the
input, hidden, and output layers with four, Ny , and Ny

X235y Y1
X238, Y2
X239p,,

YNrec

X241p,

wm = SZXNEV

Input layer Hidden layer Output layer

Fig.4 (Color online) FNN is a white-box model that describes the
mapping relation between the reactor dynamic evolution information
and reconstructed prompt energy spectrum. The architecture of the
FNN model includes an input layer, hidden layer, output layer, and
two sets of weight coefficient matrices W and W®. The weight val-
ues between neurons associated with connections of the same color
form the rows of the weight coefficient matrix

Target
X
1~ wy \ |
X2 \ w, § / l
= = 2 y L(y.y)
%’
Xp — Wu
: w = W-X+ b
= wlx+b Y(z) = max{0, z} y =Y (@)
N
e
XN N = Z WpX, + b
n=1
Inputs Weights Weighted sum and bias Activation Output Loss

Fig.3 (Color online) An example illustration of the structure of a single-layer perceptron along with forward (black flow arrows) and backward

(red flow arrows) propagation
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neurons, respectively. The neurons in adjacent layers are
connected using a fully connected approach; that is, each
neuron in one layer is connected to every neuron in the
subsequent layer with no connections between neurons
within the same layer. The training process of the model
starts from the input layer, at which each neuron receives
the reactor dynamic evolution information corresponding
to its fission isotope. The output of the hidden layer is the
scaled total spectrum [/, ] of antineutrinos emitted by the
reactor. The output layer then provides a predicted recon-
structed prompt energy spectrum [y,]. The two weight
coefficient matrices W and W® correspond to the trans-
poses of the matrices S4xNEv and Po-RNEv XN o respectively.
The matrix W contains the fission isotope antineutrino
spectra to be extracted, which are learned during training.

In contrast, the matrix W is fixed as PoR}, because
EVXNEIACC

it is assumed to be a constant matrix without uncertainties
in this study. The FNN is therefore a supervised learning
model that iteratively refines W) to minimize the discrep-
ancies between its outputs and corresponding targets.

3.2 Training strategy

All the samples generated in Sect. 2.2 were utilized solely
to train the FNN model. The validation and testing pro-
cesses were omitted. This approach was chosen because
our aim is to minimize the loss function during the train-
ing process to determine the optimal W for extracting
the four main isotopic antineutrino spectra. Our focus is
on optimizing spectra extraction performance rather than
evaluating model performance across various datasets, as

Table 1 Configurations of the two training strategies for FNN model

well as on simplifying the process and aligning with our
primary research objective.

The loss function is a fundamental component in deep
learning models. It serves as the criterion for evaluating
how well the model predictions match the actual outcomes
and provides a numerical indicator of model accuracy. The
Combined Neyman—Pearson (CNP) chi square model is a
statistical model frequently employed in HEP experiments
to quantify the error between predicted and measured val-
ues [48]. Based on this model, we define the loss function
for the FNN model as

NEI’CC
) (M, — yk(W(I))]Z

Xene = )
k=1 3/[L + L] a7
M (W)

where M, is the IBD event number in the k-th bin for the
measured reconstructed prompt neutrino energy spectrum
given by Eq. (8) and y, is the corresponding predicted value
output of the model. We used this loss function to guide
the optimization process of W) during the training process
so that the FNN was driven toward increasingly precise
predictions.

After defining the loss function, it is essential to select
a suitable optimizer, learning rate schedule, batch size, and
epoch, among other hyperparameters. Following hyperpa-
rameter tuning using the Optuna framework [49] and
extensive testing, we developed two training strategies
denoted as the short and long epoch strategies to investi-
gate the performance of the FNN model in extracting the
antineutrino spectra of the four fission isotopes from the
reconstructed prompt energy spectrum [50]. As shown in
Table 1, a critical commonality between these two

Strategy Short epoch Long epoch
Epoch 2x10° 2x10°
Optimizer AdamW Adam
Hidden layer partitions [1], (1, 180], (180, 225], (225, 303], (303, 401]

Learning rates for hidden layer [3.4892 x 107%,9.9485 x 1074, 2.754 x 1074,1.8272 x 1074, 0]

Weight decay rates for hidden layer [7.418 x 1073,7.748 x 1073, [0,0,0,0,0]

4.155 x 1073,9.999 x 1073, 0]

Learning rate for output layer 0
Weight decay for output layer 0
Learning rate scheduler

Batch size 30

ReduceLLROnPlateau (factor = 0.32, patience =1 x 10?)

ReduceLROnPla-
teau (factor = 0.32,
patience =1 x 10%)

& epoch > 2 x 10°

The configurations were derived based on our empirical knowledge and optimized using Optuna [49]. The partition numbers correspond to neu-
ron indices in the hidden layer of the FNN model. ReduceLROnPlateau is a Python class that dynamically adjusts the learning rate during deep
learning model training to improve convergence speed and performance [50]
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strategies is the segmentation of the hidden layer in the
FNN model into multiple partitions or parallel hidden lay-
ers. This setup allows distinct learning and weight decay
rates to be assigned to each partition to facilitate differen-
tial performance outcomes. Because the focus in this study
is not on the isotope antineutrino spectra above 8§ MeV,
i.e., in the (303, 401] partition or the matrix Po-RNEV XNy,

we fixed their learning and weight decay rates to zero and
disabled the gradient calculations for the corresponding
weight coefficients. Additionally, we set the initial value
of W based on the Huber—Mueller model.

As indicated by their names, the main distinction between
the short and long epoch strategies lies in the epochs. The
short epoch strategy leverages the AdamW [51] optimizer
with non-zero weight decay rates for faster loss reduction.
In contrast, in the long epoch strategy, the Adam [52] opti-
mizer is applied without weight decay, i.e., the weight decay
rates are set to zero. Superior convergence results were
obtained using the long epoch strategy. The results are pre-
sented and discussed in Sect. 4. As illustrated in Table 1,
these circumstances also led to minor differences in the con-
figurations of the learning rate schedulers. Nonetheless, the
same metric, i.e., the sum of the losses for all samples
denoted as )(% onpe Was monitored in both schedulers.

We also extracted the antineutrino spectra of the four fis-
sion isotopes using the y? minimization method to provide
a comparison and benchmark for the FNN model. We
employed the Minuit2 minimization library from ROOT [53]
to implement this method. ;(% cnp Was used as the objective

function to be minimized to find the best fit. The same data-
set as that for the FNN model was used as the measured
value in this fitting process. In contrast, the predicted value
was derived from Eq. (11) where the S 4N, matrix elements

corresponding to < 8 MeV are the parameters to be fitted and
the remaining elements considered as fixed parameters in the
fitting procedure. We adopted the “Combined" minimizer
algorithm to minimize the objective function with initial fit-
ting values from the Huber—Mueller model and fitting step
sizes of 1% of the order of magnitude of these values. We
set the tolerance for the fitting procedure to 1 X 10730, The
fitting stopped automatically only when the improvement in
the ;(% cnp Value between consecutive iterations fell below

this threshold.

The FNN model was implemented using PyTorch [54], a
Python-based deep learning library that supports both CPU
and GPU platforms and is one of the mainstream tools for
developing and training NN models. A NVIDIA GeForce
RTX 3060 Ti GPU platform was used to deploy the FNN
model, whereas tasks involving Optuna and ROOT were per-
formed on two identical servers, each of which was equipped
with two 28-core Intel(R) Xeon(R) Gold 6330 CPUs @ 2.00
GHz.

@ Springer

4 Results and discussions

To facilitate the discussion and comparative analysis of the
short and long epoch strategies of our FNN model and the
;(2 minimization method, we first consider their performance
in fitting all the samples and reducing the losses. As shown
in Fig. 5, did the loss )(% conp decreased more rapidly in both

FNN strategies, and lower ultimate )(% cnp Values were

obtained compared to those obtained by the > minimization
method. The )é onp Values at the conclusion of the epochs

are 5.51x107°, 542x1071°, and 9.34x107°6,
respectively.

The short epoch strategy can rapidly reduce the loss in the
early stages of training mainly because of the regularization
effects and optimization efficiency due to the combination
of non-zero weight decay rates and the AdamW optimizer.
However, in the later stages of training, the model must be
able to respond to small changes in the loss function for fine
adjustments of the parameters. Weight decay may interfere
with this process and make it challenging for the model to
determine the optimal solution within regions of small loss
function gradients.

Figure 6 shows a comparison of the performance in
extracting the antineutrino spectra of the four isotopes
using these three approaches. The extraction performance
decreases in the order of the long epoch strategy, short epoch
strategy, and x> minimization method. The FNN model
accurately extracted the antineutrino spectra of 2°U, ?**Pu,
and "' Pu in the energy range of 2 — 5 MeV. The FNN model
with the short epoch strategy achieved relative errors of less

108

105

102+

Loss function
-
S

107A F
10—7 k
—— Short-epoch strategy
Long-epoch strategy
—— x? minimization method
10710 L L L L 1 1
10° 10t 102 103 104 10° 100 107

Epoch

Fig.5 (Color online) Evolution of loss function across epochs for
the short and long epoch strategies and the »? minimization method.
The epochs of the first two were manually specified to be 2x10? and
2x10°, respectively, while that of the y2 minimization method was
automatically determined as approximately 4.39x10°
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Fig.6 (Color online) Comparison of the ratios between the four iso-
tope antineutrino spectra extracted using the short and long epoch
strategies in our FNN model and the y? minimization method, and
the assumed true spectra described by Eq. (2)

than 2% in the 5 — 8 MeV range, which decreased to less
than 1% with the long epoch strategy. In comparison, the x>
minimization method achieved relative extraction errors of
less than 2% and 3% for these three isotopes in the respective
energy ranges. For the isotope 238U, both the short epoch
strategy and y* minimization method showed relatively poor
extraction performance compared to that for the other iso-
topes. The maximum extraction relative errors in the 2 — 8
MeV range are approximately 4% and 8%, respectively,
whereas only the long epoch strategy maintained relative
errors of less than 1%.

It is worth noting that although ?*' Pu has a lower average
fission fraction throughout the entire refueling cycle com-
pared to 238U, the extraction performance for the former is
better in all the extraction approaches. This indicates that in
addition to large fission fractions, significant variations are
also crucial for extracting isotopic antineutrino spectra accu-
rately. Greater variations produce better extraction results.
This is further confirmed by the extraction performance for
the 23U and ?*°Pu antineutrino spectra. Therefore, such long
epochs are employed in the long epoch strategy primarily
to enhance the extraction performance for 23¥U. Overall,
regardless of the extraction approach used, the extraction
performance for the isotopic antineutrino spectra in descend-
ing order is as follows: 22U, ?*Pu, 2! Pu, and 23%U.

The above results and discussion reveal that because
of the exceptional capability of NNs in optimizing large-
scale parameters, the FNN model achieved faster and more
effective convergence than the traditional y? minimization
method. Based on PyTorch’s extensive array of optimization
algorithms [55], various model training strategies can be
designed to satisfy the practical requirements for extracting

isotope antineutrino spectra. Moreover, executing spectrum
extraction algorithms on GPU platforms can significantly
increase the inference speed of the process, thereby improv-
ing extraction efficiency.

5 Summary and outlook

In this study, we presented an FNN model designed to infer
and extract the corresponding antineutrino spectra generated
by the fission of 23U, 238U, 23Pu, and ?*' Pu from the recon-
structed prompt energy spectrum measured by the detector
in a reactor neutrino experiment. Using a simulated short-
baseline reactor neutrino experiment with an exposure of
(2.9 x 5 x 1800) GW,,, - tons - days, we demonstrated how
this FNN model establishes a mapping from reactor evolu-
tion information to the reconstructed prompt energy spec-
trum and enables the extraction of antineutrino spectra for
the four isotopes through its training process.

By comparing the extraction effects of the short and long
epoch training strategies for our FNN model with the tradi-
tional y? minimization method, as shown in Fig. 6, we found
that the FNN model converged faster and better, and the
performance of the three approaches for extracting the iso-
tope antineutrino spectra in descending order is as follows:
long epoch strategy, short epoch strategy, and y? minimiza-
tion method. Furthermore, the relative extraction errors of
the antineutrino spectra for the four isotopes are reduced to
less than 1% in the 2 — 8 MeV range of interest by the FNN
model with the long epoch strategy, which is better than
the error of 8% or less obtained using the > minimization
method in the control group. These results show that the
FNN model has considerable potential for extracting fission
isotope antineutrino spectra.

In the near future, TAO will serve as a satellite experi-
ment of JUNO and achieve an energy resolution exceeding
2% at 1 MeV in measuring reactor antineutrinos [34]. Its
primary physics goals include constraining the fine struc-
tures of isotope antineutrino spectra and providing a model-
independent reference spectrum for JUNO and a benchmark
measurement to test nuclear databases. Employing the FNN
model in high-precision experiments such as TAO would
therefore be an excellent match. In addition, depending on
the research objectives, new NN models can be developed
using the methodologies outlined in this study to further
investigate a broader range of physics topics such as unfold-
ing, neutrino oscillation parameter measurements, sterile
neutrino searches, and reactor monitoring. For example, the
unfolded neutrino energy spectrum is represented by the
output of the hidden layers in our FNN model, which can
achieve a relative error of less than 1% in the 2 — 8 MeV
range.
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