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Abstract
With the significant development of high-intensity hadron (proton and heavy ion) accelerator facilities, the space charge 
effect has become a major limiting factor for increasing beam intensity because it can drive particle resonance, forming 
beam halos and causing beam quality degradation or even beam loss. In studies on space charge, the particle-core model 
(PCM) has been widely adopted to describe halo particle formation. In this paper, we generalize the conventional PCM to 
include dispersion to investigate the physical mechanism of the beam halo in high-intensity synchrotrons. In particular, a 
“1:1 parametric resonance” driven by the combined effects of space charge and dispersion is identified. A large dispersion 
is proven to have a damping effect on the 2:1 parametric resonance. The analysis based on the generalized PCM agrees with 
particle-in-cell simulations. A beam halo with large mismatch oscillations is also discussed.

Keywords  Particle core model · Space charge · Beam halo

1  Introduction

In recent years, an increasing number of high-intensity pro-
ton or heavy-ion accelerators have been proposed, are under 
construction, or have begun operate worldwide for various 
scientific and industrial applications. For such high-intensity 
accelerators, studies on the mechanism of intense beams and 
the control of beam losses are of key importance for machine 

design and operation. One of the most important contribu-
tors to beam quality degradation is the formation of a beam 
halo driven by space charge [1–13]. The main driven source 
of the beam halo is parametric resonance, which causes 
severe beam losses (see, for example, [14–16]). Uncontrolled 
beam losses can cause severe consequences such as the 
residual activation of beam pipes, quenching of supercon-
ducting magnets, vacuum degradation, and radiation dam-
age to insulation materials [17–20]. One of the most widely 
employed approaches for studying beam halos is the particle-
core model (PCM) [21–30]. Compared with particle-in-cell 
(PIC) simulations, the PCM method is an analytical tool for 
investigating beam dynamics, particularly for the mechanism 
of beam halo formation, without requiring much particle 
tracking, which can be time-consuming. In this model, the 
dynamic behavior of an intense beam core is described by 
the evolution of the beam envelopes [31, 32]. The motion of 
a single particle is affected by the space charge of beam–core 
mismatch oscillations [33–38]. This becomes more com-
plicated for high-intensity hadron synchrotrons, where the 
combined effect of space charge and dispersion plays a role 
in the motion of circulating beams [39–43]. To analyze beam 
halo formation in circular machines, the conventional PCM 
method must be generalized to include dispersion.
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In this paper, we investigate the dynamics of halo particles 
in the presence of both moderate and strong space charge, 
where 2:1 and higher-order resonances or even chaos exist. 
Furthermore, based on the generalization of the conventional 
PCM method to a case with the dispersion effect for high-
intensity synchrotrons, a novel “1:1 parametric resonance” 
driven by the dispersion mode is identified. We also explain 
the damping effect observed by Ikegami et al. [39] from the 
perspective of the oscillation modes. For beams with large 
mismatch oscillations, we discuss the high- and low-order 
resonances driven by the high- and low-order beam-core oscil-
lation modes.

The remainder of this paper is organized as follows. 
Following this introduction, we briefly discuss the funda-
mentals of the PCM method in Sect. 2. The single-particle 
dynamics of round and elliptical beams are investigated in 
Sect. 3. In Sect. 4, we generalize the PCM method to include 
dispersion, and the 1:1 parametric resonance driven by the 
dispersion mode is discussed in detail. An analysis of the 
high-order modes in the large beam mismatch oscillation 
is presented in Sect. 5. Finally, the summary is presented 
in Sect. 6.

2 � Fundamentals

In the PCM, beams are assumed to have a uniform spatial 
density in the transverse plane (KV distribution) because the 
dynamics of a single particle are insensitive to the details 
of the beam-core distribution. An envelope approach is 
employed to describe the mismatch oscillations of the beam 
core. Beam halo formation is driven by the space charge 
interaction between the collective envelope oscillation 
modes and single particles.

2.1 � Beam‑core oscillations

Let us begin with a coasting beam propagating through a 
uniformly focusing structure. Such a structure can be used 
to describe the average dynamic behavior of beams in an 
alternating gradient focusing channel [31] (i.e., the smooth 
approximation method). For simplicity, henceforth, we 
neglect any impedance effects caused by the beam pipe and 
all the chromatic terms. We adopt x and y to represent the 
transverse degrees of freedom in the horizontal and vertical 
directions, respectively, and s the longitudinal coordinate. 
The “pseudo”-Hamiltonian of the beam envelope oscillation 
in such a transport system is
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where �x,y represents the RMS transverse beam size (for KV 
beams, the total transverse beam size is 2�x,y ). The deriva-
tives �px,py are the conjugate variables d�x,y∕ds = �px,py . 
�x,0 and �y,0 are the external transverse focusing gradients 
in x and y, respectively. �x and �y are the transverse RMS 
emittances. Ksc is the space charge perveance defined by 
Ksc = 2NLrc∕(�

2�3) , where NL is the number of particles 
per unit length, rc is the classical proton radius, and � and � 
are relativistic factors. The RMS envelope equations can be 
derived from the envelope Hamiltonian in Eq. (1):

Under constant focusing, obtaining the matched RMS beam 
sizes �x,m and �y,m via the corresponding algebraic equation 
set is straightforward:

Here, we use the subscript “ m ” to denote the matched case.
The envelope equations in Eq.  (2), which are typically 

employed to describe the oscillatory motion of the beam 
core, can be converted into a dimensionless form with a set 
of dimensionless variables, defined by

and the dimensionless parameters

Here, Δ�2
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= Ksc∕[2�x,m(�x,m + �y,m)] represents the space 

charge tuning depression in the matched case. Clearly, for 
constant focusing, the dimensionless matched beam sizes 
𝜎̂x,m = 1, 𝜎̂y,m = r.

The corresponding dimensionless form of the Hamilto-
nian in Eq. (1) and envelope equations in Eq. (2) can be, 
respectively, expressed as
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and

In practice, beams are not fully matched because of magnetic 
errors or the misalignment of lattice elements; hence, {𝜎̂x, 𝜎̂y} 
differs slightly from the matched solution {𝜎̂x,m, 𝜎̂y,m} , which 
is referred to as a beam-coherent mismatch oscillation. In 
the PCM, such mismatch oscillations provide the energy 
transferred from the beam core to single particles via space 
charge, forming halo particles when resonance occurs. A 
mismatched beam traveling in a constant-focusing channel 
can often be expressed as small perturbations ( �, � , �p, �p ) on 
the matched solutions:

Substituting Eq. (8) into Eq. (6), we can obtain the Hamil-
tonian for an envelope with perturbations:

By performing Taylor expansion and maintaining the linear 
term, from Eq. (9), we can obtain the equations of motion for 
the envelope perturbations in matrix form (further discus-
sion in Appendix A):

with the coefficients
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As the coefficient matrix in Eq. (10) is symmetric, it can be 
decomposed via A = U ⋅ diag{k2

b
, k2

q
} ⋅ UT , where U is the 

eigenvector matrix of A. Here, kb and kq represent the wave-
numbers of the “breathing mode” and “quadrupole mode,” 
respectively. The general solutions to Eq.  (10) can be 
expressed as

with the coefficients

where the two initial values �1 = �(0), �2 = �(0) . Here, 
we use � defined in Eq. (4) as the independent variable, 
and the mismatch of the monument does not consider 
( �p(0) = �p(0) = 0 ) such that Eq. (12) does not include the 
“sin” term. The envelope oscillation patterns depend on the 
initial values. For example, a pure breathing mode exists 
with �(0) = −(U21∕ U22)�(0) and a pure quadrupole mode 
with �(0) = −(U11∕ U12)�(0) . Generally, beam-core oscil-
lations can be characterized by a superposition of the two 
modes.

2.2 � Single‑particle motion with space charge 
of beam cores

In the presence of space charge, the horizontal motion of 
a test particle is governed by

when the particle is inside the beam core ( |x| < 2𝜎x ), and

when the particle is outside the beam core ( |x| > 2𝜎x ). Here, 
x is the horizontal displacement from the center of the beam 
core. Using the dimensionless parameters defined in Eqs. (4) 
and (5), we can convert the equation of particle motion in 
Eqs. (14) and (15) into
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and

Here, the dimensionless horizontal displacement is defined 
as x̂ = x∕2𝜎x,m . Equations (16) and (17) show that when the 
test particle travels inside and outside the beam core, the 
wavenumbers of the particles are different because of the 
varying space charge strength.

For particles inside the beam core, the wavenumber 
becomes minimum: Substituting Eqs.  (8) and (12) into 
Eq. (16), we obtain

with minimum number of waves

where f (�) is a function that describes the oscillation of the 
beam core.

We can observe that kp,min depends only on the space charge 
depression �x.

However, when the test particle is far from the beam core, 
the space charge can be neglected ( �x = 0 ), and Eq. (17) 
becomes

At this zero space charge limit, the wavenumber reaches its 
maximum,

Generally, for a single particle traveling outside the beam 
core, 

√
1 − �x ≤ kp ≤ 1.

In the PCM , particles move periodically inside and out-
side the beam core. In particular, when the wavenumbers of 
a test particle and beam core satisfy
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where kb and kq are the wavenumbers of the “breathing 
mode” and “quadrupole mode,” the 2:1 parametric reso-
nance occurs and forms a beam halo [37].

To illustrate this, we plot the wavenumbers as func-
tions of the beam current (in units of the normalized space 
charge tune depression �x defined in Eq. 5) by solving 
Eqs.  (16) and (17) for two representative cases: round 
and elliptical beams. In Fig. 1, the blue dashed lines rep-
resent the two limits of the single-particle wavenumber 
kp,min =

√
1 − �x  and kp,max = 1 , whereas the solid lines 

represent half of the wavenumbers for breathing mode kb∕2 
and quadrupole mode kq∕2.

F igu re   1a  shows  t ha t  fo r  round  beams , 
kp,min < kq∕2, kb∕2 < kp,max always holds as the beam cur-
rent increases from the zero space charge limit ( �x = 0 ) 
to the extreme space charge limit ( �x = 1.0 ), indicating 
that both envelope modes can resonate with the test par-
ticle and drive the 2:1 parametric resonance. In compari-
son, for the elliptical beams shown in Fig. 1b, we obtain 
kp,min < kq∕2, kb∕2 < kp,max when 𝜇x > 0.39 , which implies 
that the breathing mode can drive the 2:1 parametric reso-
nance in the range of 𝜇x > 0.39 . For 𝜇x < 0.39 , we have 
kp,min < kq∕2 < kp,max and kb∕2 > kp,max . In this case, the 
2:1 parametric resonance can only be driven by the quad-
rupole mode.

Fig. 1   (Color online) Half wavenumber of the breathing mode kb∕2 
(in red) and the quadrupole mode kq∕2 (in yellow) versus the beam 
current in the unit of �

x
 for round (upper panel) and elliptical beams 

(lower panel). The maximum ( kp,max ) and minimum ( kp,min ) wave-
numbers of single particles are also plotted for comparison
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3 � Resonance and chaos in the beam halo

In the presence of space charge, the motion of the parti-
cles around the beam core is periodic. When resonance 
occurs, the particles can absorb energy from the beam core 
and experience a much larger contour, forming halo parti-
cles. Furthermore, particles exhibit chaotic behavior with 
the superposition of different modes under a strong space 
charge. In this section, the 2:1 and higher-order parametric 
resonances and chaos in the beam halo formation are inves-
tigated in detail.

3.1 � Round beams in the breathing mode

Let us consider a round beam traveling in a symmetric focus-
ing channel with initial equal mismatch perturbations on x 
and y, for example �(0) = �(0) = 0.05 , to excite a breath-
ing mode on the beam (i.e., an in-phase pattern and 5% 
mismatch; the quadruple mode is absent here). We select 
four single particles with different initial (dimensionless) 
horizontal displacements, x̂1 < 1.0 < x̂2 < x̂3 < x̂4 (shown 
in Fig. 2; the dimensionless beam-core radius is 1), and the 
momentum is zero. By numerically solving Eqs. (16) and 
(17), we plot the particle motion is on a Poincaré map for 
the two representative cases in Fig. 2. The moderate space 
charge �x = 0.1 and strong space charge �x = 0.8 are dis-
cussed in detail below.

First , we analyze the moderate space charge case 
�x = 0.1 . For the two test particles with initial positions x̂1 
and x̂2 , the motions of the particles take the form of regu-
lar ellipses on the Poincaré map in Fig. 2a. In comparison, 
the third particle with initial position x̂3 experiences a large 
excursion (red trajectory), indicating that resonance appears. 
In this case, energy is transferred from the beam core to the 
particle, driving the particle to reach the largest displace-
ment x̂3,max.

The “lock” of the wavenumber of the third particle in 
Fig. 2b is a typical characteristic of the parametric reso-
nance. Within the resonance island (red contour in Fig. 2a), 
the wavenumber is equal to half of the wavenumber of the 

breathing mode ( k = kb∕2 ) in Fig. 2b. In comparison, the 
wavenumber increases outside the resonance region with a 
larger initial position ( ̂x4 in Fig. 2a, for example) when para-
metric resonance is absent. The lock on the half wavenumber 
indicates the occurrence of a 2:1 parametric resonance.

PIC simulations were conducted using the PyORBIT 
code to support the above numerical results and analysis. In 
the simulation, a constant-focusing channel with 16 “equal 
cells” was employed. The main parameters used in the simu-
lation are summarized in Table 1. The space charge solver 
is based on the fast Fourier transform (FFT) method [44]. 

Table 1   Main parameters used 
in the simulation

Parameters Round beam Elliptical beam

Length per cell (m) 14.2 14.2
Phase advance in x (deg) 108 100
Phase advance in y (deg) 108 112
RMS emit. in x (mm⋅mrad) 30 30
RMS emit. in y (mm⋅mrad) 30 30
Beam intensity (particle numbers) 1.18 × 1010 ( �

x
= 0.1) 1.07 × 1010 ( �

x
= 0.1)

20.0 × 1010 ( �
x
= 0.8) 7.05 × 1010 ( �

x
= 0.5)

17.5 × 1010 ( �
x
= 0.8)

Fig. 2   (Color online) Motion of single particles with different ini-
tial positions in the presence of the breathing mode with moderate 
( �

x
= 0.1 , left column a, b and c) and strong space charge ( �

x
= 0.8 , 

right column d, e and f). The Poincaré sections are shown in a and d; 
the wavenumber of single particle (normalized to the breathing mode) 
as a function of initial positions is shown in b and e; and the maxi-
mum displacement of single particle as a function of initial displace-
ment is shown in c and f compared with the simulation results (red 
dotted lines)
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The simulation results for the maximum displacement of the 
particles as a function of the initial displacement at �x = 0.1 
are shown in Fig. 2c. The simulation results were in good 
agreement with the numerical solutions.

Second, with an enhanced space charge ( �x = 0.8 ), the 
motion of single particles becomes more complicated, as 
shown in Fig.  2d–f (right). Compared with the moder-
ate space charge case ( �x = 0.1 ), three small islands are 
observed in addition to the 2:1 resonance island in Fig. 2d. 
A closer examination of Fig. 2e reveals that in the region of 
1.080 < x̂ < 1.085 , the wavenumber is locked at k = (1∕3)kb , 
indicating a 3:1 parametric resonance. Compared with the 
2:1 resonance case, the small areas of the three islands 
indicate that the 3:1 resonance is much weaker. (The cor-
responding narrow stopband is shown in purple in Fig. 2e.)

PIC simulations with �x = 0.8 were also performed. 
As shown in Fig. 2d, the particles were trapped within the 
2:1 resonance island (shown as red dots). The purple dots 
around the three islands indicate that the particles gathered 
around the 3:1 resonance island because of the weak 3:1 
resonance. The simulation results for the maximum particle 
displacement are shown in Fig. 2f. These results agreed with 
the numerical calculations.

An interesting question may be raised as to whether the 
4:1 parametric resonance exists and contributes to the beam 
halo for a strong space charge with �x = 0.8 . As shown in 
Fig. 3, we obtain kb∕4 < kp,min when �x = 0.8 , indicating that 
a 4:1 or higher parametric resonance cannot be excited. In 
comparison, the condition kp,min < kb∕3 < 3kb∕8 < kp,max is 
satisfied when �x = 0.8 , which supports the occurrence of 
the 3:1 and 8:3 resonance islands shown in Fig. 2.

3.2 � Round beams with mixed modes

In this subsection, we consider a round beam perturbed 
with �(0) ≠ �(0) , which can simultaneously drive both the 
breathing and quadrupole modes. The motion of single 
particles affected by the space charge of the two modes is 
obtained and plotted on a Poincaré map in Fig. 4, which 
shows that both modes can drive the 2:1 parametric reso-
nance when the wavenumber of the test particle k satisfies 
k = kq∕2 and k = kb∕2 , respectively.

Furthermore, a chaotic phenomenon appears in the 
mixed modes, as indicated by the black region in Fig. 4a 
and d. In contrast to the characteristic “lock of the wave-
number” of the parametric resonance, when chaos occurs, 
the wavenumber of the test particle is random, as shown 
in Fig. 4b and e.

PIC simulations were performed for the mixed modes, 
and the results are indicated in Fig. 4c and f using red dots. 
With a moderate space charge ( �x = 0.1 ), the simulation 
results for the maximum displacements agreed with the 
numerical calculations.

Note that the disagreement between the simulation 
result and numerical calculation becomes observable in 
the strong space charge case, as shown in Figs. 2f and 4f. 

Fig. 3   (Color online) One third ( kb∕3 ), one quarter ( kb∕4 ), and 8:3 
( 3kb∕8 ) of the wavenumber of the breathing mode versus beam cur-
rent in the unit of �

x
 for round beams. The maximum ( kp,max ) and 

minimum ( kp,min ) wavenumber of single particles is also plotted for 
comparison

Fig. 4   (Color online) Motion of single particles with different initial 
positions in the presence of mixed mode with moderate ( �

x
= 0.1 , left 

column a, b, and c) and strong space charge ( �
x
= 0.8 , right column 

d, e, and f). The Poincaré sections are shown in a and d; the wave-
numbers of single particles as functions of initial positions are shown 
in b and e; and the maximum displacements of single particles as 
functions of initial displacement are shown in c and f, compared with 
the simulation results (red dotted lines)
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We attribute this to the disturbance of the uniform particle 
distribution during self-consistent particle tracking, result-
ing in different wavenumbers of single particles from the 
PCM.

3.3 � Elliptical beams

In the following, we discuss the case of elliptical beams, 
i.e., r ≠ 1 . The wavenumbers as functions of the normalized 
space charge tune depression �x are numerically obtained 
and shown in Fig. 1b, where η = 1.25 and r = 0.9 . For a 
moderate space charge ( �x = 0.1 ), only the quadrupole mode 
can induce the 2:1 resonance.

The motions of single particles affected by the space 
charge of the two modes in the elliptical beams are obtained 
and plotted on a Poincaré map in Fig. 5. The character-
istic “lock of the wavenumber” is shown in Fig. 5b. For 
�x ≥ 0.5 , two resonance islands appear, as shown in Fig. 5d 
and g, which are driven by the quadrupole and breathing 
modes, respectively. The locks of the two modes are shown 
in Fig. 5e and h. Furthermore, Fig. 5d and g shows that as 
space charge increases, the two resonance islands approach 
each other. With strong space charge ( �x = 0.8 ), as shown 

in Fig. 5g, the 2:1 resonance islands of the breathing and 
quadrupole modes are closer to each other, which causes 
chaotic phenomena around the two adjacent resonant islands 
(shown as black dots).

PIC simulations were performed for the mixed modes in 
elliptical beams using the parameters listed in Table 1. The 
simulation results for the maximum displacements are shown 
in Fig. 5c, f, and i using red points. The simulation results were 
in good agreement with the numerical calculations.

4 � Beam halo formation in high‑intensity 
synchrotrons

In this section, we investigate beam halo formation driven 
by the resonant interaction between single particles and 
the beam core in high-intensity synchrotrons, in which the 
combined effect of space charge and dispersion has been 
considered [39–43]. Hence, the conventional PCM is gen-
eralized to include dispersion. Note that the mechanism of 
the beam halo formation discussed here differs from space 
charge structural resonances, which are driven by high-order 
terms in the space charge potential [45–50].

4.1 � Generalized PCM with dispersion

For beams traveling in a constant-focusing bending chan-
nel, the transverse beam dynamics can be described by the 
envelope equation set with the dispersion function, given 
by [2, 51]

which can be derived from the dispersion-modified envelope 
Hamiltonian:

with

(24)

d2

ds2
�x + �2

x,0
�x −

Ksc

2X(X + Y)
�x −

�2
dx

�3
x

= 0,

d2

ds2
�y + �2

y,0
�y −

Ksc

2Y(X + Y)
�y −

�2
dy

�3
y

= 0,

d2

ds2
D� + �2

x,0
D� −

Ksc

2X(X + Y)
D� =

�p

�
,

(25)Henv,d =
1

2
(�2

px
+ �2

py
+ D2

p�
) + Venv,d(�x, �y,D�)

(26)

Venv,d(�x, �y,D�) =
1

2
�2
x,0
�2
x
+

1

2
�2
y,0
�2
y

−
Ksc

2
ln (X + Y)

+
�2
dx

2�2
x

+
�2
dy

2�2
y

−
�pD�

�
.

Fig. 5   (Color online) Motion of single particles with different initial 
positions under the mixed mode with moderate ( �

x
= 0.1 , left column 

a, b and c), enhanced ( �
x
= 0.5 , center column d, e, and f) and strong 

space charge ( �
x
= 0.8 , right column g, h, and i). The Poincaré sec-

tions are shown in a, d, and g; the wavenumbers of single particles as 
functions of initial positions are shown in b, e, and h; and the maxi-
mum displacements of single particles as functions of initial displace-
ment are shown in c, f, and i, compared with the simulation results 
(red dotted lines)



	 J.-Y. Du et al.225  Page 8 of 18

Here, X =
√

�2
x
+ D2

�
 is the total RMS horizontal beam size, 

where �x is the betatron beam size, and D� is the “dispersion 
beam size,” defined as D� ≡ Dx�p . Dp� is the derivative of 
D� , with Dp� ≡ dD�∕ds . Y = �y is the RMS vertical beam 
size because the dispersion effect is considered here only on 
x. The subscript “d” denotes the case with dispersion. A 
matched equation set with dispersion is

where Xm , Ym , and D�,m are the matched solutions.
Based on the dimensionless parameters defined in Eq. (4), 

the Hamiltonian in Eq. (25) can be rewritten as

where 𝜎̂x and 𝜎̂y are the normalized betatron beam sizes, and 
� is the focusing ratio defined in Eq. (5). The dimensionless 
variables related to the dispersion in Eq. (28) are defined as

and

H e r e ,  sin � = �x,m∕Xm  i s  t h e  b e t a t ro n  r a t i o , 
and  cos � = D�,m∕Xm  i s  t he  d i spe r s ion  ra t io . 
Δ�2

x,d
= Ksc∕[2Xm(Xm + �y,m)] represents the space charge 

tune depression in the presence of dispersion.
We further introduce the “dispersion strength” 

Λ ≡ D
(0)

�,m
∕�

(0)
x,m to characterize the ratio of dispersion motion 

to betatron motion in zero-current beam case. Here, the 
superscript “(0)” denotes the absence of space charge, and 
�x,m = �

(0)
x,m∕

4
√
1 − �x and D�,m = D

(0)

�,m
∕(1 − �x) . For typical 

(27)

�2
x,0
�x,m −

Ksc

2Xm(Xm + Ym)
�x,m −

�2
dx

�3
x

= 0,

�2
y,0
�y,m −

Ksc

2Ym(Xm + Ym)
�y,m −

�2
dy

�3
y

= 0,

�2
x,0
D�,m −

Ksc

2Xm(Xm + Ym)
D�,m =

�p

�
,

(28)

Ĥd,env =
1

2
(𝜎̂2

px
+ 𝜎̂2

py
+ D̂2

p𝛿
) +

1

2
(𝜎̂2

x
+ 𝜂2𝜎̂2

y
+ D̂2

𝛿
)

−
𝜇x,d(1 + R)

sin 𝜃2
ln(X̂ + Ŷ) +

1 − 𝜇x,d

2

1

𝜎̂2
x

+
𝜀2
r,d
(1 − 𝜇x,d)

2

1

𝜎̂2
y

+ (1 − 𝜇x,d)
cos 𝜃

sin 𝜃
D̂𝛿 ,

(29)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

X̂ = X∕𝜎x,m
Ŷ = Y∕𝜎x,m
D̂𝛿 = D𝛿∕𝜎x,m
R = Ym∕Xm

sin 𝜃 = 𝜎x,m∕Xm

cos 𝜃 = D𝛿,m∕Xm

(30)
{

�r,d = �dy∕�dx
�x,d = Δ�2

x,d
∕�2

x,0
.

synchrotrons such as the CSNS RCS [52, 53], the energy 
spread is frequently less than 1% , and we obtain 0 < Λ < 1.0.

The dimensionless form of the dispersion-modified enve-
lope equation set can be obtained from the Hamiltonian in 
Eq. (28) as follows:

From Eq. (31), we obtain the matched beam sizes 𝜎̂x,m = 1 , 
𝜎̂y,m = r , D̂𝛿,m = cot 𝜃 , and X̂m = csc 𝜃 . Substituting the mis-
match perturbations

into the dispersion-modified envelope set of Eq. (31) (“d” is 
the perturbation on the dispersion), we obtain (more details 
in AppendixB)

with the coefficients

The coefficients in Eq. (34) can be expressed as a real sym-
metric matrix B = {bij} . Similar to the treatment described 
in Sect. 2, we obtain B = Ud ⋅ diag{k

2
b
, k2

q
, k2

d
} ⋅ UT

d
 . Com-

pared with Eq. (10), the dispersion mode kd can be identi-
fied [2]. The general solution to Eq. (33) takes the form

(31)

d2

d𝜏2
𝜎̂x + 𝜎̂x −

𝜇x,d(1 + R)𝜎̂x

X̂(X̂ + Ŷ) sin 𝜃2
−

1 − 𝜇x,d

𝜎̂3
x

= 0,

d2

d𝜏2
𝜎̂y + 𝜂2𝜎̂y −

𝜇x,d(1 + R)σ̂y

Ŷ(X̂ + Ŷ) sin 𝜃2
−

𝜀2
r,d
(1 − 𝜇x,d)

𝜎̂3
y

= 0,

d2

d𝜏2
D̂𝛿 + D̂𝛿 −

𝜇x,d(1 + R)D̂𝛿

X̂(X̂ + Ŷ) sin 𝜃2
− (1 − 𝜇x,d)

cos 𝜃

sin 𝜃
= 0.

(32)
𝜎̂x = 1 + 𝜉

𝜎̂y = r + 𝜁

D̂𝛿 = cot 𝜃 + d

(33)
d2

d�2

⎛⎜⎜⎝

�

�

d

⎞⎟⎟⎠
= −

⎛⎜⎜⎝

b0 b1 b2
b1 b3 b4
b2 b4 b5

⎞⎟⎟⎠

⎛⎜⎜⎝

�

�

d

⎞⎟⎟⎠

(34)

b0 = 4(1 − �x,d) +
R + 2

R + 1
�x,d sin �

2,

b1 =
1

R + 1
�x,d sin �,

b2 =
R + 2

R + 1
�x,d sin � cos �,

b3 = 4(�2 −
�x,d

R
) +

2R + 1

R + 1

�x,d

R
,

b4 =
1

R + 1
�x,d cos �,

b5 = (1 − �x,d) +
R + 2

R + 1
�x,d cos �

2.

(35)

� = D11 cos (kb�) + D12 cos (kq�) + D13 cos (kd�),

� = D21 cos (kb�) + D22 cos (kq�) + D23 cos (kd�),

d = D31 cos (kb�) + D32 cos (kq�) + D33 cos (kd�).
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Here, Dij =
∑3

k=1
Ud,ijU

T
d,jk

�k
 , with �1 = �(0), �2 = �(0), �3 = d(0)

.
However, in the presence of space charge and disper-

sion, the motion of a single particle is governed by

when the particle is inside the beam core ( |x̂d| < X̂ sin 𝜃 ) and

when the particle is outside the beam core ( |x̂d| > X̂ sin 𝜃 ). 
Here, x̂d = x∕(2Xm) and 𝛿 = 𝛿∕𝜎p denote the ratio of the 
momentum spread between the single particle and beam 
core. Clearly, for �p = 0 , Λ = 0 and sin � = 1 , R = r . In this 
case, Eqs.(36) and (37) are equivalent to Eqs.(16) and (17).

An interesting question may be raised: Can the dis-
persion mode excite the 2:1 parametric resonance and 
induce a beam halo, as in the case of the two envelope 
modes discussed in Sec. 3? To analyze this problem, we 
plot the (half) wavenumber of the dispersion mode and 
the two envelope modes in Fig. 6, where the correspond-
ing parameters are Λ = 0.2, � = 1.0,R = 0.978 , and 
Λ = 1.0, � = 1.0,R = 0.688 . Figure 6 shows that the half 
wavenumber of the dispersion mode is always below the 
lower limit of the test particle, indicating that the dispersion 
mode cannot induce a 2:1 resonance. Moreover, by inspect-
ing the figure, we observe kp,min < kd < kp,max , implying the 
dispersion mode can generate a “1:1” parametric resonance 
on single particles.

In the following, we first demonstrate the mechanism 
of the 1:1 parametric resonance under the combined effect 
of dispersion and space charge and then show the damp-
ing effect on the beam halo formation owing to the moving 
stably fixed point (SFP) of single particles.

4.2 � Dispersion‑induced 1:1 parametric resonance

First, we consider the case of pure modes, in which only one 
of the breathing, quadrupole, or dispersion modes exists in 
the beam-core oscillation pattern. This can be achieved by 
setting the coefficients Dij = 0 in Eq. (35).

The parametric resonances for the beam halo formation 
in the presence of space charge and dispersion can be ana-
lyzed using the dispersion-modified PCM in Eqs. (31), (36), 
and (37). As shown in Fig. (7), two resonant islands are 

(36)

d2x̂d

d𝜏2
+ x̂d =

𝜇d,x(1 + R)

sin 𝜃2

x̂d

X̂(X̂ + Ŷ)

+
𝛿

2
(1 − 𝜇d,x) cos 𝜃

(37)

d2x̂d

d𝜏2
+ x̂d =

𝜇d,x(1 + R)x̂d

x̂2
d
+ |x̂d|

√
x̂2
d
+ (Ŷ2 − X̂2) sin 𝜃2

+
𝛿

2
(1 − 𝜇d,x) cos 𝜃

observed in panels (a) and (b), indicating the occurrence of 
a 2:1 resonance driven by the (pure) breathing and (pure) 
quadrupole modes. In the presence of the dispersion mode, 
a “crescent moon” island is observed, as shown in panel (c). 
Compared with the resonant islands in panels (a) and (b), 
only one island exists in panel (c), which is identified as the 
1:1 resonance induced by the dispersion mode.

To better illustrate the 1:1 resonance, we plot the Poincaré 
section and normalized wavenumber of single particles in 
Fig. 8 (i.e., enlarged plot in Fig. 7c). We observe that in the 
“crescent moon" island, the wavenumber of single particle 
is locked and equal to wavenumber of the dispersion mode 
(marked as the yellow shaded area in Fig. 8b). This is a clear 
proof to support the “crescent moon" island in the Poincaré 
section is a 1:1 parametric resonance driven by the disper-
sion mode.

Next, we analyze the mixed mode, in which the breathing, 
quadrupole, and dispersion modes exist simultaneously. As 
shown in Fig. 7d, driven by the mixed modes, the 2:1 reso-
nance driven by the two envelope modes and the 1:1 reso-
nance induced by the dispersion mode exist. Furthermore, 
chaos is observed around the resonant islands. Panel (e) pre-
sents the corresponding wavenumbers of the three modes. 
Similar to the results shown in Fig. 4 in Sect. 3, the locking 
of the wavenumbers indicates the 2:1 and 1:1 parametric 

Fig. 6   (Color online) Half wavenumber of the breathing mode kb∕2 
(in red), quadrupole mode kq∕2 (yellow), dispersion mode kd∕2 
(green), and wavenumber of the dispersion mode kd (black) ver-
sus beam current in the unit of �

x
 in the presence of dispersion with 

Λ = 0.2 (upper) and Λ = 1.0 (lower). The maximum ( kp,max ) and min-
imum ( 

∑b

a
kp,min ) wavenumbers of single particles are also plotted for 

comparison
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resonances, which agrees with the resonant islands in panel 
(d). When chaos occurs, the wavenumber becomes random.

PIC simulations were conducted using the parameters of 
the Λ = 0.2 case, as shown in Table 2. The simulation results 
are shown in Fig. 7f. The simulation results of maximum 
displacements were in good agreement with the numerical 
calculations using the generalized PCM with dispersion.

4.3 � Alleviation of the beam halo using strong 
dispersion

4.3.1 � Motion of single particles with zero momentum 
deviation

We assume single particles with zero momentum devia-
tion for the synchronous particles ( ̂𝛿 = 0 ) in high-intensity 
synchrotrons. As shown in Fig. 6, for a large dispersion 
( Λ = 1.0 ), kq∕2 < kp,min holds when 𝜇x < 0.66 , indicating 
that the quadrupole mode cannot excite the 2:1 resonance 
in this region. In comparison, for the breathing mode, we 
obtain kb∕2 > kp,min and thus can trigger the 2:1 resonance.

The Poincaré sections of single particles with 𝛿 = 0 for 
the pure mode case with different dispersion strengths are 
shown in Fig. 9. Figure 9a and d shows that the areas of the 
2:1 resonance islands driven by the breathing mode decrease 
with increasing dispersion strength. A similar phenomenon 
is observed in Fig. 9b and e: With an enhanced dispersion 
strength Λ = 1.0 , the 2:1 resonance driven by the quadrupole 
mode disappears. We attribute this result to the fact that 
the dispersion effect can reduce the 2:1 resonance. Second, 
no resonance islands are observed in Fig. 9c and f, imply-
ing that the dispersion mode cannot induce a 2:1 resonance, 
which agrees with the analysis from Fig. 6.

The Poincaré sections for the mixed mode case are 
shown in Fig. 10. The chaos existed around the resonance 
islands driven by mixed modes. Compared with Fig. 10a, 
we observe the chaos in Fig. 10d weakens as the dispersion 

Fig. 7   (Color online) Poincaré sections of single particles with 
𝛿 = 3.0 affected by the breathing mode a, quadrupole mode b, dis-
persion mode c, and mixed modes d, with Λ = 0.2 and �

x
= 0.1 . The 

wavenumbers of single particles for mixed modes as functions of ini-
tial positions are shown in e; the maximum displacement of single 
particle as a function of initial displacement is shown in f, compared 
with the simulation results (red dotted lines)

Fig. 8   (Color online) Poincaré section of single particles with 𝛿 = 3.0 
affected by the dispersion mode a with Λ = 0.2 and �

x
= 0.1 ; the 

wavenumber (normalized to the dispersion mode) of single particles 
as a function of initial positions is shown in b 

Table 2   Main parameters used in the simulation

Parameters Λ = 0.2 case Λ = 1.0 case

Length per cell (m) 14.2 14.2
Phase advance in x 

(deg)
108 108

Phase advance in y 
(deg)

108 108

Bending radius (m) 36.3 36.3
RMS momen. spread 

(%)
0.192 0.96

RMS emit. in x (mm⋅

mrad)
30 30

RMS emit. in y (mm⋅

mrad)
30 30

Intensity (particle 
numbers)

1.22 × 1010 ( �
x
= 0.1) 2.17 × 1010 ( �

x
= 0.1)
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strength increases ( Λ = 1.0 ). The wavenumbers of single 
particles with different initial positions are shown in in 
Fig. 10b and e, where the red and gray shadows represent 
the resonance and chaos, respectively. PIC simulations were 
performed for Λ = 0.2 and Λ = 1.0 using the parameters 
listed in Table 2. The simulation results for the maximum 
displacements are shown in Fig. 10c and f. The simulation 
results were in good agreement with the PCM calculations.

4.3.2 � Motion of single particles with large momentum 
deviation

For the single particles with large momentum deviation, the 
SFP can “move” out of the beam core in the presence of the 
dispersion effect. As an example, we plot four SFPs with 
different momentum deviations in phase space in the panel 
(a) of Fig. 11. We set Λ = 1.0 for the beam core. We observe 
that with 𝛿 = 3.0 and 4.0 (marked as S3 and S4 ), the two SFPs 
are located outside the beam core.

For a more illustrative discussion, the scanning of the 
maximum excursion of an edge particle is shown in Fig. 12. 
The scan is performed by varying the dispersion strength 
of the beam core Λ and the momentum deviation ratio of 

Fig. 9   (Color online) Poincaré section of single particles with 𝛿 = 0.0 
affected by the breathing mode a and d, the quadrupole mode b and 
e, and the dispersion mode c and f, with Λ = 0.2 (left column) and 
Λ = 1.0 (right column) under the fixed space charge strength �

x
= 0.1

Fig. 10   (Color online) Motion of zero-momentum-deviation single 
particles ( ̂𝛿 = 0.0 ) with different initial positions in the presence of 
mixed mode with moderate ( Λ = 0.2 , left column a, b and c) and 
strong dispersion ( Λ = 1.0 , right column d, e and f) under the fixed 
space charge tune depression �

x
= 0.1 . The Poincaré sections are 

shown in a and d; the wavenumber of single particle as a function of 
initial positions is shown in b and e; and the maximum displacement 
of single particle as a function of initial displacement is shown in c 
and f, compared with the simulation results (red dotted lines)

Fig. 11   (Color online) a Example with Λ = 1.0,�
x
= 0.1 of the 

moving SFP at four different positions (inside the beam core S1, S2 , 
and outside the beam core S3, S4 ) with increasing momentum devia-
tions of single particles ( ̂𝛿 = 1.0, 2.0, 3.0, 4.0 ); b example with 
Λ = 1.0,�

x
= 0.1 of four single particles with their initial positions 

at the edge of the beam core and different momentum deviations 
𝛿 = 1.0, 2.0, 3.0, 4.0 . The trajectories of the two particles inside the 
beam core (in red and green), with their maximum displacements M1 
and M2 overlapping. The trajectories of the other two particles outside 
the beam core (in yellow and blue), with their maximum displace-
ments M3 and M4
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the single particle 𝛿 . Here, the edge particles are defined 
that their initial positions are set to “sit” on the edge of the 
beam core, i.e., x̂d(0) = 1 . For different 𝛿 and Λ values, the 
edge particles have different maximum excursions, x̂max . 
The advantage of using edge particles is that, (shown in 
Fig. 11b), for the edge particles with x̂max = 1 , the SFPs are 
located inside the beam core, shown as the region “inner 
SFP” in Fig. 12; for the edge particles with x̂max > 1 , shown 
as the region “outer SFP” in Fig. 12.

Figure 12 shows that, for single particles with SFPs inside 
the beam core, the condition kp,min =

√
1 − �x is always sat-

isfied. For SFPs outside the beam core ( ̂xmax > 1 ), we obtain 
kp,min >

√
1 − 𝜇x . For a sufficiently large 𝛿 , kp,min > kb∕2 . In 

this case, the 2:1 resonance cannot be driven by the breath-
ing mode. In other words, the large off-momentum devia-
tions of a single particle can dampen the 2:1 resonance. To 
show this more clearly, the motions of single particles with 
𝛿 = 3.0 , affected by the breathing, quadruple, and disper-
sion modes are shown in Fig. 13a–c, respectively. The 2:1 
resonances driven by the breathing and quadrupole modes 
are dampened because of the large momentum deviation 𝛿 , 
and only the 1:1 resonance driven by the dispersion mode 
can be observed. Panel (d) shows the mixed case. Only the 
1:1 resonance caused by the dispersion mode exists. The 
locking of the wavenumber is presented in panel (e), where 
the condition k = kd is satisfied, indicating that the 1:1 reso-
nance is a parametric resonance.

PIC simulations were conducted using the parameters 
listed for Λ = 1.0 , as shown in Table 2, and the simulation 
results are shown in Fig. 13f. The simulation results of the 

maximum displacements agreed closely with the numerical 
calculations based on the dispersion-modified PCM.

5 � High‑order mode in large mismatch 
oscillations

The analysis of the beam halo formation in the preceding 
sections is based on perturbation theory, where single-par-
ticle oscillations with small amplitudes are considered and 
high-order terms are neglected. In this section, we investi-
gate single-particle motion driven by the mismatch oscil-
lation of the beam core with a large amplitude, in which 
high-order oscillation modes are considered. An interesting 
question is whether these high-order oscillation modes can 
induce a beam halo. Note that high-order modes in the large 
mismatch discussed here should be distinguished from the 
high-order resonances of the low-order modes. For example, 
the 8:3 resonance shown in Fig. 2 is an eighth-order reso-
nance driven by low-order (breathing) modes.

For simplicity, we consider a round beam traveling in 
a symmetrical focusing channel. In this case, the envelope 
equation for the beam core (Eq. (7)) can be expressed as

Fig. 12   (Color online) Scan of the maximum motion of the “edge 
particles” ( ̂xmax ) with varying momentum deviations ( ̂𝛿 ) and dis-
persion strength ( Λ ), under the fixed space charge tune depression 
�
x
= 0.1 . Black line denotes the boundary between the area of inner 

SFPs ( xmax = 1 ), and the area of outer SFPs ( xmax > 1)

Fig. 13   (Color online) Poincaré sections of single particles with 
𝛿 = 3.0 affected by the breathing mode a, quadrupole mode b, dis-
persion mode c and mixed modes d, respectively, with Λ = 1.0 and 
�
x
= 0.1 . The wavenumbers (normalized to the dispersion mode) of 

single particles for mixed modes as a function of initial positions are 
shown in e; the maximum displacement of single particle as a func-
tion of initial displacement is shown in f, compared with the simula-
tion results (red dotted lines)
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The solution to Eq. (38) can be expressed as a triangular 
series:

where 2Ω represents the wavenumber of the breathing mode 
(here, we use 2Ω to replace kb for convenience of derivation), 
and 2nΩ ( n > 1 ) denotes the wavenumbers of the high-order 
modes.

However, the equations of motion for single particles 
in Eqs. (16) and (17) can be approximated using a cubic 
term [26]:

Substituting Eq. (39) into Eq. (40), we obtain the Hamilto-
nian of a single particle with large mismatch oscillations in 
the beam core:

 with the parameters �2 = 1 − � , hi = −2�ai∕(1 − �) and 
� = �∕4 . Using the generating function,

We can convert the Hamiltonian in Eq. (41) into

where ĤL,0 and ĤL,n (n > 0) represent the Hamiltonians of 
the single-particle motion for the lowest-order (breathing) 
and high-order modes, respectively. The average Hamilto-
nian ĤL,n over a mismatched oscillation period T = 2�∕Ω is

(38)d2𝜎̂

d𝜏2
+ 𝜎̂ −

𝜇

𝜎̂
−

1 − 𝜇

𝜎̂3
= 0.

(39)𝜎̂ = 1 + a1 cos 2Ω𝜏 + a2 cos 4Ω𝜏 + ... + an cos 2nΩ𝜏,

(40)
d2x̂

d𝜏2
+ x̂ − 𝜇

(
x̂

𝜎̂2
−

x̂3

4

)
= 0.

(41)HL =
p̂2
x

2
+

𝜔2x̂2

2

(
1 +

∑n

i=1
hi cos 2iΩ𝜏

)
+ 𝛼

x̂4

4
,

(42)F2(x̂,P, 𝜏) =
x̂P

cosΩ𝜏
−
(
P2

2𝜔
+ 𝜔

x̂2

2

)
tanΩ𝜏,

(43)ĤL = ĤL,0 + ĤL,1 + ... + ĤL,n,

(44)⟨ĤL,n⟩ = 0 (n > 0)

which indicates that the contribution of the higher-order 
modes over one oscillation period to the 2:1 resonance is 
zero (more details are given in Appendix C). Consequently, 
higher-order modes cannot excite the 2:1 resonance.

For example, we numerically solve Eq. (38) with the 
initial condition 𝜎̂(0) = 0.6 (i.e., 40% mismatch). The 
numerical results of the beam envelope oscillation is ana-
lyzed using FFT, and the frequency (wavenumber) spec-
trum is shown in Fig. 14. High-order modes (up to sixth 
order) are observed, which are caused by a large mismatch 
(40%). The wavenumber (frequency) of the higher modes 
( nkb ) is a multiple of the fundamental mode ( kb ). The 
amplitudes of the modes decreased with increasing mode 
order.

The Poincaré section and corresponding wavenumbers 
of single particles with different initial positions under 
40% mismatch are calculated using Eqs. (38) and (40), as 
shown in Fig. 15a and b, respectively. Within the 2:1 reso-
nance islands, we obtain k = kb∕2 , indicating it is driven 
by the lowest-order (breathing) mode. No 2:1 resonances 
driven by higher-order modes are observed, which agrees 
with the analysis based on the Hamiltonian in Eq. (44).

A PIC simulation was conducted based on the param-
eters of the “round beam” shown in Table 1. In the simula-
tion, an initial KV distribution of 200,000 macroparticles 

Fig. 14   (Color online) Frequency spectrum of the beam envelope 
oscillations with large mismatch

Fig. 15   (Color online) Motion of single particles with different initial 
positions in the presence of large mismatch with strong space charge 
tune depression �

x
= 0.8 . The Poincaré sections are shown in a; the 

wavenumber of single particle as a function of initial positions is 
shown in b; and the contour of the Poincaré section is shown in c, 
compared with the simulation results (red dotted lines)
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was tracked for 500 turns, and the results are shown in 
Fig. 15c. A “peanut” shape of the halo particle distribution 
was observed in the simulation result, agreeing with the 
contour of the Poincaré section, which was numerically 
calculated using Eqs. (16), (17), and (38).

Based on closer observation in Fig. 15a, we observe the 
chaotic regions exist around the resonance islands (black). 
The physical mechanism of chaos formation can be ana-
lyzed as follows. To clarify the flow of the following text, 
we distinguish two types of particle-core resonances: 

1.	 Low-order particle-core resonances driven by high-
order beam oscillation modes (be proved not existing in 
Eq. (44));

2.	 High-order particle-core resonances driven by low-order 
beam oscillation modes.

In the former case, high-order modes cannot induce low-
order resonances, as discussed using Eq. (44). To analyze 
the latter case, we use a perturbation method with a large 
mismatch of 40% ( �(0) = �(0) = 0.4 in Eq. (10)) to maintain 

only the breathing mode in the system and neglect higher-
order modes because they do not contribute to the reso-
nances. Thus, it is convenient to plot the Poincaré section, 
as shown in Fig. 16. Figure 16a and b shows that several 
high-order resonance islands exist: the 3:1 resonance (yel-
low), 4:1 resonance (orange), skew 4:1 resonance (brown), 
7:2 resonance (green), and 8:3 resonance (purple). The lock 
of the wavenumber of the modes for high-order resonance 
was calculated and is shown in panel (c) of Fig. 16.

A detailed observation in Fig. 16 shows that the chaos 
region can be divided into inner and outer regions. The 
“outer chaos” is caused by the mixture of the 2:1 resonance 
and the higher-order resonance, such as the 3:1 (yellow) and 
8:3 (purple) resonances. In comparison, the “inner chaos” 
is closer to the beam core and much weaker. We attribute it 
to the fact that the inner chaos is caused by the mixture of 
high-order resonances, the 4:1 and the “skew” 4:1 as shown 
in Fig. 16. The outer chaos is driven by the lowest-order 
(2:1) resonances and is thus much stronger.

6 � Summary

We have analyzed beam halo formation driven by the para-
metric resonance between single particles and the beam core 
in high-intensity synchrotrons. In the absence of dispersion, 
we observe several high-order resonances in addition to the 
2:1 resonance. Moreover, chaos exists with a mixture of 
parametric resonances and can be weakened by the asym-
metry of elliptical beams. In the presence of the combined 
effect of space charge and dispersion, we find that the dis-
persion mode can drive the 1:1 parametric resonance and 
discussed its physical mechanism in detail. In addition, we 
demonstrated that the beam halo can be alleviated by a large 
dispersion. For large mismatch oscillations, we proved that 
higher-order modes exist; however, they are unable to drive 
2:1 parametric resonance.

We expect that the 1:1 parametric resonance will have 
implications for the design and operation of high-intensity 
synchrotrons. Furthermore, the role of synchrotron motion 
in beam halo formation warrants further investigation.

Appednix A: Equations of motion 
for the envelope perturbation

For the Hamiltonian of the envelope with perturbations in 
Eq. (9) in Sect. 2,Fig. 16   (Color online) Motion of single particles with different ini-

tial positions under the breathing mode with a strong space charge 
tune depression �

x
= 0.8 . The Poincaré sections are shown in a; the 

enlarged plot of a is shown in b, including the 3:1 resonance (yellow), 
the 4:1 resonance (orange), the skew 4:1 resonance (brown), the 7:2 
resonance (green), and the 8:3 resonance (purple); and the wavenum-
bers of single particles as functions of initial positions are shown in 
(c)
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The Hamiltonian’s equation of motion is

 Here, (�, �p) and (� , �p) are pairs of dimensionless conjugate 
variables. After neglecting the higher-order items, we obtain 
from Eq. (A2)

and

 where we use the following relation:

Equations (A3) and (A4) are the equations of motion for the 
envelope perturbations in Eq. (10) in Sect. 2.

Appednix B: Equations of motion 
for the envelope perturbation 
with dispersion

The Hamiltonian of the envelope with the dispersion in 
Eq. (28) in Sect. 4 is

(A1)

Ĥper =
1

2

[
(𝜎̂px,m + 𝜉p)

2 + (𝜎̂py,m + 𝜁p)
2

+ (1 + 𝜉)2 + 𝜂2(r + 𝜁)2
]

− 𝜇x(1 + r) ln(1 + r + 𝜉 + 𝜁)

+
1 − 𝜇x

2(1 + 𝜉)2
+

𝜀2
r
(1 − 𝜇x)

2(r + 𝜁)2
.

(A2)

d𝜉

d𝜏
=

𝜕Ĥ

𝜕𝜉p

d𝜉p

d𝜏
= −

𝜕Ĥ

𝜕𝜉

d𝜁

d𝜏
=

𝜕Ĥ

𝜕𝜁p

d𝜁p

d𝜏
= −

𝜕Ĥ

𝜕𝜁
.

(A3)

d2𝜉

d𝜏2
= −

𝜕Ĥ

𝜕𝜉

= −

[
1 + 𝜉 −

𝜇x

1 + (𝜉 + 𝜁)∕(1 + r)

− (1 − 𝜇x)
1

(1 + 𝜉)3

]

≈ −

[
4(1 − 𝜇x) +

2 + r

1 + r
𝜇x

]
𝜉 −

𝜇x

1 + r
𝜁 ,

(A4)

d2𝜁

d𝜏2
= −

𝜕Ĥ

𝜕𝜁

≈ −

[
4(𝜂2 −

𝜇x

r
) +

1 + 2r

r(1 + r)
𝜇x

]
𝜁 −

𝜇x

1 + r
𝜉

(A5)
�2
r

r3
=

r�2 − �x

1 − �x

.

We define the perturbative variables (here, the subscript ‘ d ’ 
in �x,d and �r,d of Eq. (28) is neglected for simplicity) as 
follows:

By substituting the perturbative variables in Eqs. (B2) into 
Eq. (B1), we obtain the Hamiltonian of the envelope with 
perturbations:

 which consists of the “kinetic energy” term

 and “potential” term

The equations of motion for envelope perturbations with 
dispersion can be expressed as

(B1)

Ĥenv =
1

2
(𝜎̂2

px
+ 𝜎̂2

py
+ D̂2

p𝛿
) +

1

2
(𝜎̂2

x
+ 𝜂2𝜎̂2

y
+ D̂2

𝛿
)

−
𝜇x(1 + R)

sin 𝜃2
ln(X̂ + Ŷ)

+
1 − 𝜇x

2

1

𝜎̂2
x

+
𝜀2
r
(1 − 𝜇x)

2

1

𝜎̂2
y

+ (1 − 𝜇x)
cos 𝜃

sin 𝜃
D̂𝛿

=
1

2
(𝜎̂2

px
+ 𝜎̂2

py
+ D̂2

p𝛿
) + V(𝜎̂x, 𝜎̂y, D̂𝛿).

(B2)

𝜎̂x = 1 + 𝜉

𝜎̂px = 𝜎̂px,m + 𝜉p

𝜎̂y = r + 𝜁

𝜎̂py = 𝜎̂py,m + 𝜁p

D̂𝛿 = cot 𝜃 + d𝛿

D̂p𝛿 = D̂p𝛿,m + dp𝛿 .

(B3)Ĥ(𝜉, 𝜉p, 𝜁 , 𝜁p, d𝛿 , dp𝛿) = P(𝜉p, 𝜁p, dp𝛿) + V(𝜉, 𝜁 , d𝛿)

(B4)
P(𝜉p, 𝜁p, dp𝛿) =

1

2
[(𝜎̂px,m + 𝜉p)

2

+ (𝜎̂py,m + 𝜁p)
2 + (D̂p𝛿,m + dp𝛿)

2
],

(B5)

V(�, � , d�) =
1

2
[(1 + �)2 + (r + �)2 + (cot � + d�)

2]

−
�x(1 + R)

sin �2
ln
[√

(1 + �)2 + (cot � + d�)
2 + r + �

]

+
1 − �x

2

1

(1 + �)2
+

�2
r
(1 − �x)

2

1

(r + �)2

+ (1 − �x)
cos �

sin �
(cot � + d�).

(B6)
d2𝜉

d𝜏2
= −

𝜕V̂

𝜕𝜉
≈ −(b0𝜉 + b1𝜁 + b2d𝛿)

(B7)
d2𝜁

d𝜏2
= −

𝜕V̂

𝜕𝜁
≈ −(b1𝜉 + b3𝜁 + b4d𝛿)
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 with the parameters

which is Eq. (33) in Sec. 4.

Appednix C: Calculation of the higher‑order 
mode contributions

The Hamiltonian for the lowest- and higher-order modes in 
Eq. (43) is

For the Hamiltonian of the lowest-order mode ĤL,0 , by tak-
ing the average over one perturbation oscillation period, we 
obtain

(B8)
d2d𝛿

d𝜏2
= −

𝜕V̂

𝜕d𝛿
≈ −(b2𝜉 + b4𝜁 + b5d𝛿)

(B9)

b0 = 4(1 − �x) +
R + 2

R + 1
�x sin �

2

b1 =
1

R + 1
�x sin �

b2 =
R + 2

R + 1
�x sin � cos �

b3 = 4(�2 −
�x

R
) +

2R + 1

R + 1

�x

R

b4 =
1

R + 1
�x cos �

b5 = (1 − �x) +
R + 2

R + 1
�x cos �

2,

(C1)

ĤL,0 =
1

2

(
1 −

Ω

𝜔

)
P2 +

𝜔2

2

(
1 −

Ω

𝜔

)
Q2

−
𝜔2h1

2

(
Q cosΩ𝜏 +

P

𝜔
sinΩ𝜏

)2

cos 2Ω𝜏

+
𝛼

4

(
Q cosΩ𝜏 +

P

𝜔
sinΩ𝜏

)4

(C2)

ĤL,n = −
𝜔2hn+1

2

(
Q cosΩ𝜏 +

P

𝜔
sinΩ𝜏

)2

cos 2(n + 1)Ω𝜏

(C3)

⟨ĤL,0⟩ = 1

2

�
1 −

Ω

𝜔

�
P̂2 +

𝜔2

2

�
1 −

Ω

𝜔

�
Q̂2

−
𝜔2h1

2

�
Q̂⟨cosΩ𝜏2 cos 2Ω𝜏⟩ + P̂

𝜔
⟨sinΩ𝜏2 cos 2Ω𝜏⟩

+
2P̂Q̂

𝜔
⟨sinΩ𝜏 cosΩ𝜏 cos 2Ω𝜏⟩

�

+
𝛼

4

�
Q̂4⟨cosΩ𝜏4⟩ + 6Q̂2P̂2

𝜔2
⟨sinΩ𝜏2 cosΩ𝜏2⟩

+
P̂4

𝜔4
⟨sinΩ𝜏4⟩ + 4Q̂3P̂

𝜔
⟨sinΩ𝜏 cosΩ𝜏3⟩

+
4Q̂P̂3

𝜔3
⟨sinΩ𝜏3 cosΩ𝜏⟩

�
,

where ⟨x(�)⟩ = (1∕T) ∫ x(�)d� . Because we know that

Eq. (C3) becomes

which agrees with Eq. (18).  [26].
Next, for the Hamiltonian of the high-order modes ĤL,n 

( n > 0 ), we have

By using the relation

we obtain ⟨ĤL,n⟩ = 0 , which indicates that during one oscil-
lation period, the average interaction between single parti-
cles and the beam core via high-order oscillation modes is 
zero. Thus, the high-order modes are unable to excite the 2:1 
parametric resonance.
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+
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�
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�
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