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Abstract

With the significant development of high-intensity hadron (proton and heavy ion) accelerator facilities, the space charge
effect has become a major limiting factor for increasing beam intensity because it can drive particle resonance, forming
beam halos and causing beam quality degradation or even beam loss. In studies on space charge, the particle-core model
(PCM) has been widely adopted to describe halo particle formation. In this paper, we generalize the conventional PCM to
include dispersion to investigate the physical mechanism of the beam halo in high-intensity synchrotrons. In particular, a
“1:1 parametric resonance” driven by the combined effects of space charge and dispersion is identified. A large dispersion
is proven to have a damping effect on the 2:1 parametric resonance. The analysis based on the generalized PCM agrees with
particle-in-cell simulations. A beam halo with large mismatch oscillations is also discussed.

Keywords Particle core model - Space charge - Beam halo

1 Introduction

In recent years, an increasing number of high-intensity pro-
ton or heavy-ion accelerators have been proposed, are under
construction, or have begun operate worldwide for various
scientific and industrial applications. For such high-intensity
accelerators, studies on the mechanism of intense beams and
the control of beam losses are of key importance for machine
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design and operation. One of the most important contribu-
tors to beam quality degradation is the formation of a beam
halo driven by space charge [1-13]. The main driven source
of the beam halo is parametric resonance, which causes
severe beam losses (see, for example, [14—16]). Uncontrolled
beam losses can cause severe consequences such as the
residual activation of beam pipes, quenching of supercon-
ducting magnets, vacuum degradation, and radiation dam-
age to insulation materials [17-20]. One of the most widely
employed approaches for studying beam halos is the particle-
core model (PCM) [21-30]. Compared with particle-in-cell
(PIC) simulations, the PCM method is an analytical tool for
investigating beam dynamics, particularly for the mechanism
of beam halo formation, without requiring much particle
tracking, which can be time-consuming. In this model, the
dynamic behavior of an intense beam core is described by
the evolution of the beam envelopes [31, 32]. The motion of
a single particle is affected by the space charge of beam—core
mismatch oscillations [33-38]. This becomes more com-
plicated for high-intensity hadron synchrotrons, where the
combined effect of space charge and dispersion plays a role
in the motion of circulating beams [39—43]. To analyze beam
halo formation in circular machines, the conventional PCM
method must be generalized to include dispersion.
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In this paper, we investigate the dynamics of halo particles
in the presence of both moderate and strong space charge,
where 2:1 and higher-order resonances or even chaos exist.
Furthermore, based on the generalization of the conventional
PCM method to a case with the dispersion effect for high-
intensity synchrotrons, a novel “1:1 parametric resonance”
driven by the dispersion mode is identified. We also explain
the damping effect observed by Ikegami et al. [39] from the
perspective of the oscillation modes. For beams with large
mismatch oscillations, we discuss the high- and low-order
resonances driven by the high- and low-order beam-core oscil-
lation modes.

The remainder of this paper is organized as follows.
Following this introduction, we briefly discuss the funda-
mentals of the PCM method in Sect. 2. The single-particle
dynamics of round and elliptical beams are investigated in
Sect. 3. In Sect. 4, we generalize the PCM method to include
dispersion, and the 1:1 parametric resonance driven by the
dispersion mode is discussed in detail. An analysis of the
high-order modes in the large beam mismatch oscillation
is presented in Sect. 5. Finally, the summary is presented
in Sect. 6.

2 Fundamentals

In the PCM, beams are assumed to have a uniform spatial
density in the transverse plane (KV distribution) because the
dynamics of a single particle are insensitive to the details
of the beam-core distribution. An envelope approach is
employed to describe the mismatch oscillations of the beam
core. Beam halo formation is driven by the space charge
interaction between the collective envelope oscillation
modes and single particles.

2.1 Beam-core oscillations

Let us begin with a coasting beam propagating through a
uniformly focusing structure. Such a structure can be used
to describe the average dynamic behavior of beams in an
alternating gradient focusing channel [31] (i.e., the smooth
approximation method). For simplicity, henceforth, we
neglect any impedance effects caused by the beam pipe and
all the chromatic terms. We adopt x and y to represent the
transverse degrees of freedom in the horizontal and vertical
directions, respectively, and s the longitudinal coordinate.
The “pseudo”-Hamiltonian of the beam envelope oscillation
in such a transport system is

1 5 2 2 2, 2 2
H,, = i(apx +o,, +K 0, + Ky’OO'y)

1 2 e M
- EKSC ln(ax + O'y) + 752 TO'Z’
x y
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where o, , represents the RMS transverse beam size (for KV
beams, the total transverse beam size is 2o, ). The deriva-
tives oy, . are the conjugate variables do,,/ds =0, ..
Ko and k, o are the external transverse focusing gradients
in x and y, respectively. ¢, and ¢, are the transverse RMS
emittances. K, is the space charge perveance defined by
K, = 2N, r./(f?r?), where N, is the number of particles
per unit length, . is the classical proton radius, and § and y
are relativistic factors. The RMS envelope equations can be

derived from the envelope Hamiltonian in Eq. (1):

2 2
4o e K 5
ds? XOTX 26, + o)) o’ ’
6. K &2 2
—}+K200' - _2-9
2 07y 3 :
ds ” 2o, +0,) o)

Under constant focusing, obtaining the matched RMS beam
sizes 6, ,, and o, ,, via the corresponding algebraic equation
set is straightforward:

2
2 Ksc £x
KeoOxm~ 57—~ 5 =0,
» 26+ O'yym) O)m
p 2 3)
SC Y =0.

K> Gy — ————————— —
»,07y.m 3
2(00m + 0y m) oo

Here, we use the subscript “m” to denote the matched case.

The envelope equations in Eq. (2), which are typically
employed to describe the oscillatory motion of the beam
core, can be converted into a dimensionless form with a set
of dimensionless variables, defined by

-

Ax Gx/o-xm
Ay = O-y/o-xm
9 Apx = pr/(Kx,ng,m) (4‘)
Gpy = Opy/ (K 0O m)
T = K0S

and the dimensionless parameters

l’lx = AK?/KJ%’()

4 ro= Uy,m/o-x,m (5)
n = Ky,O/Kx,O
g, = &/¢€,.

Here, AKf = K./126,14(0, 1 + 0, )] TEpresents the space
charge tuning depression in the matched case. Clearly, for
constant focusing, the dimensionless matched beam sizes

~

Ux,m
The corresponding dimensionless form of the Hamilto-
nian in Eq. (1) and envelope equations in Eq. (2) can be,

respectively, expressed as

= l,ay‘m =r.
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N 1. R . ) . X
o =560, + 60, + 67+ 1780) = (1 + 1) In6, +6,)
1—u, (1 -p)
262 262
(6)
and
d?6, B yx(1+r)_ 1—p, _o
dez " 6, +6) & .

5 ' 7
3, w(+1) (1 -p) @
— 076, - - =0,
d2 Y (6, +6,) 43

In practice, beams are not fully matched because of magnetic
errors or the misalignment of lattice elements; hence, {6,, 6, }
differs slightly from the matched solution {6, ., 6, ,, }, which
is referred to as a beam-coherent mismatch oscillation. In
the PCM, such mismatch oscillations provide the energy
transferred from the beam core to single particles via space
charge, forming halo particles when resonance occurs. A
mismatched beam traveling in a constant-focusing channel
can often be expressed as small perturbations (¢, ¢, &, §,) on
the matched solutions:

6, =6, +tE=1+¢,

6,=6,,+{=r+¢,

Apx = 8px,m +¢&, ®
Gpy = Opym + Cp-

Substituting Eq. (8) into Eq. (6), we can obtain the Hamil-
tonian for an envelope with perturbations:

. 1. .
Hper ) [Bpem + &) + Gppm +5,)°

+(L+ &+ (r+ )7

— (L DIl 47 +E+0) ©)
l—pu,  e(1-u)
* 20+62  20r+ )2

By performing Taylor expansion and maintaining the linear
term, from Eq. (9), we can obtain the equations of motion for
the envelope perturbations in matrix form (further discus-
sion in Appendix A):

20620
dr? <C> - <a1 a,) \¢ (10)

with the coefficients

r+2
ag =401 = u)+ — o
U
a, = ——, (11)
r+1

My 2r+1H
=4(n* - )+ acy
% (7 r) r+1 r

As the coefficient matrix in Eq. (10) is symmetric, it can be
decomposed via A = U - diag{kz,kczl} - UT, where U is the
eigenvector matrix of A. Here, k, and k, represent the wave-
numbers of the “breathing mode” and “quadrupole mode,”
respectively. The general solutions to Eq. (10) can be
expressed as

&(7) = Cy; cos (k,7) + Cy, cos (ky7),

{(7) = Cyy cos (k,7) + Cy, cos (kyT), (12)
with the coefficients

2 T
C;= Zk:l U Uy, (13)

where the two initial values a; = £(0), @, = {(0). Here,
we use 7 defined in Eq. (4) as the independent variable,
and the mismatch of the monument does not consider
(fp(O) = CP(O) = 0) such that Eq. (12) does not include the
“sin” term. The envelope oscillation patterns depend on the
initial values. For example, a pure breathing mode exists
with £(0) = —(U,,/ U,,)E&(0) and a pure quadrupole mode
with £(0) = —(U,,/ U,,)&(0). Generally, beam-core oscil-
lations can be characterized by a superposition of the two
modes.

2.2 Single-particle motion with space charge
of beam cores

In the presence of space charge, the horizontal motion of
a test particle is governed by
d2x 2 K.

—— 4 SC

ds2 Kx,Ox = Zax(o-x + Gy)x (14)

when the particle is inside the beam core (|x| < 20,), and

2 2K
d—x+lc2x= 5 X

x,0
ds? X2+ x|y /%2 + 4(0y2 -02) a3

when the particle is outside the beam core (|x| > 20,). Here,
x is the horizontal displacement from the center of the beam
core. Using the dimensionless parameters defined in Eqgs. (4)
and (5), we can convert the equation of particle motion in
Egs. (14) and (15) into
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oo AUPD 0 <o 16
dr? 6.6, +6,) » (16)
and

23 1+7r
g md+n % ’1> 6,

dr? 2+ |3 /—562 N (63 _ 63) 17)
Here, the dimensionless horizontal displacement is defined
asX=x/ 20, 1, Equations (16) and (17) show that when the
test particle travels inside and outside the beam core, the
wavenumbers of the particles are different because of the
varying space charge strength.

For particles inside the beam core, the wavenumber
becomes minimum: Substituting Eqs. (8) and (12) into
Eq. (16), we obtain

d2x
dr?

+ = p)x =f(o), (18)

with minimum number of waves

kp,min =V 1- Hy (19)

where f(7)is a function that describes the oscillation of the
beam core.

[ Mx
f@) = 1+r

+[Q2+1Cyy + Cpyl cos (ky7) }

{[(2 +1r)Cyy + Cyy]cos (ky7)
(20)

We can observe that k
depression p,.

However, when the test particle is far from the beam core,
the space charge can be neglected (y, = 0), and Eq. (17)
becomes

».min depends only on the space charge

d’%
dz?

+i%=0. 21

At this zero space charge limit, the wavenumber reaches its
maximum,

kpmax = 1. (22)

Generally, for a single particle traveling outside the beam
core,\/1 —p, <k, <1
In the PCM , particles move periodically inside and out-
side the beam core. In particular, when the wavenumbers of
a test particle and beam core satisfy
ki,

k =

= &9
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where k, and k; are the wavenumbers of the “breathing
mode” and “quadrupole mode,” the 2:1 parametric reso-
nance occurs and forms a beam halo [37].

To illustrate this, we plot the wavenumbers as func-
tions of the beam current (in units of the normalized space
charge tune depression y, defined in Eq. 5) by solving
Eqgs. (16) and (17) for two representative cases: round
and elliptical beams. In Fig. 1, the blue dashed lines rep-
resent the two limits of the single-particle wavenumber
kymin = /1 — 4, and k, .., = 1, whereas the solid lines
represent half of the wavenumbers for breathing mode &, /2
and quadrupole mode k, /2.

Figure la shows that for round beams,
Ky min < kq/2,ky/2 <k max always holds as the beam cur-
rent increases from the zero space charge limit (u, = 0)
to the extreme space charge limit (u, = 1.0), indicating
that both envelope modes can resonate with the test par-
ticle and drive the 2:1 parametric resonance. In compari-
son, for the elliptical beams shown in Fig. 1b, we obtain
Ky min < Kq/2,k,/2 <k max When g, > 0.39, which implies
that the breathing mode can drive the 2:1 parametric reso-
nance in the range of y, > 0.39. For u, < 0.39, we have
Kpmin < kq/2 < kymax and ky/2 >k, . In this case, the
2:1 parametric resonance can only be driven by the quad-
rupole mode.

1.25 4
1.00 A‘/ﬂ,m;\x
(a) Round beams X
0.00
1.25
1.00 t== A‘/r,mnx
o5 Tl
= A'/!.min \\\\\\\\\
0.50 1 e
0.25 » ”
(b) Elliptical beams ku/2 kq/2 h
0.00
0.0 0.2 0.4 0.6 0.8 1.0

M

Fig. 1 (Color online) Half wavenumber of the breathing mode k /2
(in red) and the quadrupole mode k,/2 (in yellow) versus the beam
current in the unit of y, for round (upper panel) and elliptical beams
(lower panel). The maximum (k;, ) and minimum (&, ;,) wave-
numbers of single particles are also plotted for comparison
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3 Resonance and chaos in the beam halo

In the presence of space charge, the motion of the parti-
cles around the beam core is periodic. When resonance
occurs, the particles can absorb energy from the beam core
and experience a much larger contour, forming halo parti-
cles. Furthermore, particles exhibit chaotic behavior with
the superposition of different modes under a strong space
charge. In this section, the 2:1 and higher-order parametric
resonances and chaos in the beam halo formation are inves-
tigated in detail.

3.1 Round beams in the breathing mode

Let us consider a round beam traveling in a symmetric focus-
ing channel with initial equal mismatch perturbations on x
and y, for example £(0) = £(0) = 0.05, to excite a breath-
ing mode on the beam (i.e., an in-phase pattern and 5%
mismatch; the quadruple mode is absent here). We select
four single particles with different initial (dimensionless)
horizontal displacements, %; < 1.0 < %, < X3 < X, (shown
in Fig. 2; the dimensionless beam-core radius is 1), and the
momentum is zero. By numerically solving Eqgs. (16) and
(17), we plot the particle motion is on a Poincaré map for
the two representative cases in Fig. 2. The moderate space
charge p, = 0.1 and strong space charge u, = 0.8 are dis-
cussed in detail below.

First , we analyze the moderate space charge case
i, = 0.1. For the two test particles with initial positions X,
and X,, the motions of the particles take the form of regu-
lar ellipses on the Poincaré map in Fig. 2a. In comparison,
the third particle with initial position %, experiences a large
excursion (red trajectory), indicating that resonance appears.
In this case, energy is transferred from the beam core to the
particle, driving the particle to reach the largest displace-
ment X3 .

The “lock” of the wavenumber of the third particle in
Fig. 2b is a typical characteristic of the parametric reso-
nance. Within the resonance island (red contour in Fig. 2a),
the wavenumber is equal to half of the wavenumber of the

sy = 0.1

PCM
PIC

Fig.2 (Color online) Motion of single particles with different ini-
tial positions in the presence of the breathing mode with moderate
(p, = 0.1, left column a, b and ¢) and strong space charge (4, = 0.8,
right column d, e and f). The Poincaré sections are shown in a and d;
the wavenumber of single particle (normalized to the breathing mode)
as a function of initial positions is shown in b and e; and the maxi-
mum displacement of single particle as a function of initial displace-
ment is shown in ¢ and f compared with the simulation results (red
dotted lines)

breathing mode (k = &, /2) in Fig. 2b. In comparison, the
wavenumber increases outside the resonance region with a
larger initial position (X, in Fig. 2a, for example) when para-
metric resonance is absent. The lock on the half wavenumber
indicates the occurrence of a 2:1 parametric resonance.
PIC simulations were conducted using the PyORBIT
code to support the above numerical results and analysis. In
the simulation, a constant-focusing channel with 16 “equal
cells” was employed. The main parameters used in the simu-
lation are summarized in Table 1. The space charge solver
is based on the fast Fourier transform (FFT) method [44].

Table 1 Main parameters used
in the simulation

Parameters Round beam Elliptical beam
Length per cell (m) 14.2 14.2

Phase advance in x (deg) 108 100

Phase advance in y (deg) 108 112

RMS emit. in x (mm-mrad) 30 30

RMS emit. in y (mm mrad) 30 30

Beam intensity (particle numbers)

1.18 x 101 (4, = 0.1)
20.0 x 10'° (1, = 0.8)

1.07 % 1010 (41, = 0.1)
7.05 % 101 (4, = 0.5)
17.5% 1010 (41, = 0.8)

@ Springer
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The simulation results for the maximum displacement of the
particles as a function of the initial displacement at 1, = 0.1
are shown in Fig. 2c. The simulation results were in good
agreement with the numerical solutions.

Second, with an enhanced space charge (u, = 0.8), the
motion of single particles becomes more complicated, as
shown in Fig. 2d-f (right). Compared with the moder-
ate space charge case (u, = 0.1), three small islands are
observed in addition to the 2:1 resonance island in Fig. 2d.
A closer examination of Fig. 2e reveals that in the region of
1.080 < % < 1.085, the wavenumber is locked at k = (1/3)k,,
indicating a 3:1 parametric resonance. Compared with the
2:1 resonance case, the small areas of the three islands
indicate that the 3:1 resonance is much weaker. (The cor-
responding narrow stopband is shown in purple in Fig. 2e.)

PIC simulations with u, = 0.8 were also performed.
As shown in Fig. 2d, the particles were trapped within the
2:1 resonance island (shown as red dots). The purple dots
around the three islands indicate that the particles gathered
around the 3:1 resonance island because of the weak 3:1
resonance. The simulation results for the maximum particle
displacement are shown in Fig. 2f. These results agreed with
the numerical calculations.

An interesting question may be raised as to whether the
4:1 parametric resonance exists and contributes to the beam
halo for a strong space charge with y, = 0.8. As shown in
Fig. 3, we obtain &, /4 < k, i, When p, = 0.8, indicating that
a 4:1 or higher parametric resonance cannot be excited. In
comparison, the condition k,, i, < ky,/3 < 3k, /8 <k, 1y 1
satisfied when u, = 0.8, which supports the occurrence of
the 3:1 and 8:3 resonance islands shown in Fig. 2.

kp.max

0.8 3ky/8 Fop main=~

~ 0.6

0.0 0.2 0.4 0.6 0.8 1.0

Fig.3 (Color online) One third (k,/3), one quarter (k,/4), and 8:3
(3k,/8) of the wavenumber of the breathing mode versus beam cur-
rent in the unit of y, for round beams. The maximum (k, ,,,) and
minimum (k, ,,;,) wavenumber of single particles is also plotted for
comparison

@ Springer

3.2 Round beams with mixed modes

In this subsection, we consider a round beam perturbed
with £(0) # £(0), which can simultaneously drive both the
breathing and quadrupole modes. The motion of single
particles affected by the space charge of the two modes is
obtained and plotted on a Poincaré map in Fig. 4, which
shows that both modes can drive the 2:1 parametric reso-
nance when the wavenumber of the test particle & satisfies
k =ky/2 and k = k, /2, respectively.

Furthermore, a chaotic phenomenon appears in the
mixed modes, as indicated by the black region in Fig. 4a
and d. In contrast to the characteristic “lock of the wave-
number” of the parametric resonance, when chaos occurs,
the wavenumber of the test particle is random, as shown
in Fig. 4b and e.

PIC simulations were performed for the mixed modes,
and the results are indicated in Fig. 4c and f using red dots.
With a moderate space charge (y, = 0.1), the simulation
results for the maximum displacements agreed with the
numerical calculations.

Note that the disagreement between the simulation
result and numerical calculation becomes observable in
the strong space charge case, as shown in Figs. 2f and 4f.

= /
0.96 . H

0.6

) - ©)

0.94

Tmax

Fig.4 (Color online) Motion of single particles with different initial
positions in the presence of mixed mode with moderate (y, = 0.1, left
column a, b, and ¢) and strong space charge (4, = 0.8, right column
d, e, and f). The Poincaré sections are shown in a and d; the wave-
numbers of single particles as functions of initial positions are shown
in b and e; and the maximum displacements of single particles as
functions of initial displacement are shown in ¢ and f, compared with
the simulation results (red dotted lines)
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We attribute this to the disturbance of the uniform particle
distribution during self-consistent particle tracking, result-
ing in different wavenumbers of single particles from the
PCM.

3.3 Elliptical beams

In the following, we discuss the case of elliptical beams,
i.e., r # 1. The wavenumbers as functions of the normalized
space charge tune depression y, are numerically obtained
and shown in Fig. 1b, where n = 1.25 and r = 0.9. For a
moderate space charge (4, = 0.1), only the quadrupole mode
can induce the 2:1 resonance.

The motions of single particles affected by the space
charge of the two modes in the elliptical beams are obtained
and plotted on a Poincaré map in Fig. 5. The character-
istic “lock of the wavenumber” is shown in Fig. 5b. For
u, > 0.5, two resonance islands appear, as shown in Fig. 5d
and g, which are driven by the quadrupole and breathing
modes, respectively. The locks of the two modes are shown
in Fig. 5e and h. Furthermore, Fig. 5d and g shows that as
space charge increases, the two resonance islands approach
each other. With strong space charge (¢, = 0.8), as shown

s, = 0.1

fe = 0.5 sy = 0.8

0.98 i / 0.8
o3 || ’_J i
0.8 0.6
0.96

0.94

Tmax

[}
N
N

Fig.5 (Color online) Motion of single particles with different initial
positions under the mixed mode with moderate (y, = 0.1, left column
a, b and ¢), enhanced (y, = 0.5, center column d, e, and f) and strong
space charge (¢, = 0.8, right column g, h, and i). The Poincaré sec-
tions are shown in a, d, and g; the wavenumbers of single particles as
functions of initial positions are shown in b, e, and h; and the maxi-
mum displacements of single particles as functions of initial displace-
ment are shown in ¢, f, and i, compared with the simulation results
(red dotted lines)

in Fig. 5g, the 2:1 resonance islands of the breathing and
quadrupole modes are closer to each other, which causes
chaotic phenomena around the two adjacent resonant islands
(shown as black dots).

PIC simulations were performed for the mixed modes in
elliptical beams using the parameters listed in Table 1. The
simulation results for the maximum displacements are shown
in Fig. 5c, f, and i using red points. The simulation results were
in good agreement with the numerical calculations.

4 Beam halo formation in high-intensity
synchrotrons

In this section, we investigate beam halo formation driven
by the resonant interaction between single particles and
the beam core in high-intensity synchrotrons, in which the
combined effect of space charge and dispersion has been
considered [39-43]. Hence, the conventional PCM is gen-
eralized to include dispersion. Note that the mechanism of
the beam halo formation discussed here differs from space
charge structural resonances, which are driven by high-order
terms in the space charge potential [45-50].

4.1 Generalized PCM with dispersion

For beams traveling in a constant-focusing bending chan-
nel, the transverse beam dynamics can be described by the
envelope equation set with the dispersion function, given
by [2, 51]

2 K €2
2 sc dx _
W T XX T B
2

d2 2 Ksc 8dy
£ S L - 24
2 T T e T .

2 K o
ds? . 2X(X +Y) P

which can be derived from the dispersion-modified envelope
Hamiltonian:

1
Henv,d = E(O-;x + O-gy + Dlzga) + Venv,d(gx’ Gy’ Dé) (25)
with
v D) = Lo 2,15 5
env,d(o-x’ Gy’ 5) - 2 x,Oo-x + ZK)’,OG}'
sc
- = In(X+Y) 26)
2
eix dy o'pD(S

@ Springer
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Here, X = 4/ 0')% + D(ZS is the total RMS horizontal beam size,

where o, is the betatron beam size, and Dj is the “dispersion
beam size,” defined as D; = D,0,,. D,; is the derivative of
D;, with D,; = dD;/ds. Y = o, is the RMS vertical beam
size because the dispersion effect is considered here only on
x. The subscript “d” denotes the case with dispersion. A
matched equation set with dispersion is

Ko o — Lo— _ far _ 0
woTem 2Xm(Xm + Ym) o O-)%
2
K, &4
2 sc Ly
o e o & 27)
00 T Y Koy + V) ™ 53
K2 Dé _ KsC D§ — E’
xOTem X X + Y O p
where X, ¥, and D; ,, are the matched solutions.

Based on the dimensionless parameters defined in Eq. (4),
the Hamiltonian in Eq. (25) can be rewritten as

ﬁd,env=1(&2 +&2,+1§2 )+ (a +n%6 2+D2)
Hqa(1 +R) 7]
~ 2 X+ P+ —"’d%
sin 62 2 62 (28)
‘C’id(l ~Hea) | L )cose .
2 &2 T e D,

where 6, and 6, are the normalized betatron beam sizes, and
n is the focusing ratio defined in Eq. (5). The dimensionless
variables related to the dispersion in Eq. (28) are defined as

-

X =X/o

Y =Y/o.,

D(s = D;/o
P X,m

sinf = o, /X,

cos® = D; /Xy,
and

Erd = Eay/Ear

’ . 30

{ /’lx,d = K.f,d/Kf,O' ( )
Here, sinf=o,,/X, is the betatron ratio,
and cos@®=D; /X, is the dispersion ratio.

Ax?, =K /12X, (X, + 0,,,)] represents the space charge
tune depression in the presence of dispersion.

We further introduce the “dispersion strength”
A= Dfs(,); /o, (O) o, to characterize the ratio of dispersion motion
to betatron motlon in zero-current beam case. Here, the
superscript “(0)” denotes the absence of space charge, and

(O) m/V/1—u,and D5 = D(O) /(1 = u,). For typical
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synchrotrons such as the CSNS RCS [52, 53], the energy
spread is frequently less than 1%, and we obtain 0 < A < 1.0.

The dimensionless form of the dispersion-modified enve-
lope equation set can be obtained from the Hamiltonian in
Eq. (28) as follows:

d2 5 16 I’lx,d(1 + R)a-x 1- Hyd 0
—O'x O, — 7= = - = =V,
dr? XX + ¥)sin 62 63
d? 2. Mg +R)G £ a(l = i)
G20y T Oy T T - ~3 =0, 31
dr Y(X + Y)sin 92 oy
2 g (1+RD
d_zDé +D, - Ld T 5 L cosf
dr XX+ Vysing? sinf

From Eq. (31), we obtain the matched beam sizes 6, ,, = 1,
Gym =7, lA)aym = cot6, and X,, = csc 6. Substituting the mis-

6ym
match perturbations

6,=1+¢
R 6,=r+¢ (32)
Ds=cotf +d

into the dispersion-modified envelope set of Eq. (31) (“d” is
the perturbation on the dispersion), we obtain (more details
in AppendixB)

& '3 by by by)(&
2 Cl=—1by b3 by|€ (33)
d by by bsJ\d

with the coefficients

R+2
by =4(1 - + sin 62,
0 ( /’l,\d) +1de 1
1 .
b, = R—ny,d sin @,
b, = Z_ﬁ”x’d sin 6 cos 6,

2 ”x,d 2R+1 Mx,d (34)
by = It R T R

b, = My q€OS 0,

1
R+1

bs = (1 — 2/4xdcosl92

R+
/"xd)+ 1

The coefficients in Eq. (34) can be expressed as a real sym-
metric matrix B = {b;}. Similar to the treatment described
in Sect. 2, we obtain B = U, - diag{k2, kg k3} - UT. Com-
pared with Eq. (10), the dispersion mode k4 can be identi-
fied [2]. The general solution to Eq. (33) takes the form

& = Dy cos (k,7) + Dy, cos (ky7) + D5 cos (ky7),

¢ = Dy cos (k,7) + D5, cos (k) + D,z cos (ky7), (35)
d = D5 cos (k,T) + D3, cos (k) + Ds3 cos (k7).
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Here, D, = 22:1 Ud.i’Ug‘,-k“k’ with a = £(0), a, = £(0), a3 = d(0)

iy

However, in the presence of space charge and disper-
sion, the motion of a single particle is governed by

dr2 X&+7)

in 62
Sin (36)

a

+ g(l — Hg,)COs0

when the particle is inside the beam core (|%4] < X sin 6) and

Mg (1 + R)Xy
- t Xy =

22 & 22 72 — %2) qin H2
1+ X/ &+ (Y2 — X?)sin6 37)

+ g(l — Uq,)cos b

when the particle is outside the beam core (|%4| > X sin0).
Here, &, = x/(2X,,) and 6 = 6 /o, denote the ratio of the
momentum spread between the single particle and beam
core. Clearly, for o, = 0,A=0andsinfd =1, R = r. In this
case, Eqgs.(36) and (37) are equivalent to Eqs.(16) and (17).

An interesting question may be raised: Can the dis-
persion mode excite the 2:1 parametric resonance and
induce a beam halo, as in the case of the two envelope
modes discussed in Sec. 3? To analyze this problem, we
plot the (half) wavenumber of the dispersion mode and
the two envelope modes in Fig. 6, where the correspond-
ing parameters are A=02,7=1.0,R=0.978, and
A=1.0,7=1.0,R =0.688. Figure 6 shows that the half
wavenumber of the dispersion mode is always below the
lower limit of the test particle, indicating that the dispersion
mode cannot induce a 2:1 resonance. Moreover, by inspect-
ing the figure, we observe k;, i, < kg < K}, may, implying the
dispersion mode can generate a “1:1” parametric resonance
on single particles.

In the following, we first demonstrate the mechanism
of the 1:1 parametric resonance under the combined effect
of dispersion and space charge and then show the damp-
ing effect on the beam halo formation owing to the moving
stably fixed point (SFP) of single particles.

4.2 Dispersion-induced 1:1 parametric resonance

First, we consider the case of pure modes, in which only one
of the breathing, quadrupole, or dispersion modes exists in
the beam-core oscillation pattern. This can be achieved by
setting the coefficients D; = 0 in Eq. (35).

The parametric resonances for the beam halo formation
in the presence of space charge and dispersion can be ana-
lyzed using the dispersion-modified PCM in Egs. (31), (36),
and (37). As shown in Fig. (7), two resonant islands are

Kp.max

. 1.0

0.6 TTeel

0.4 e

Normalized wav

}\'p max

Normalized wave number

— /2

ke/2 —— kq/2
0.0

0.0 0.2 0.4 0.6 0.8 1.0

Fig.6 (Color online) Half wavenumber of the breathing mode k /2
(in red), quadrupole mode k,/2 (yellow), dispersion mode k,/2
(green), and wavenumber of the dispersion mode k; (black) ver-
sus beam current in the unit of y, in the presence of dispersion with
A = 0.2 (upper) and A = 1.0 (lower). The maximum (%, ) and min-

imum (ZZ k, min) Wavenumbers of single particles are also plotted for

comparison

p,max

observed in panels (a) and (b), indicating the occurrence of
a 2:1 resonance driven by the (pure) breathing and (pure)
quadrupole modes. In the presence of the dispersion mode,
a “crescent moon” island is observed, as shown in panel (c).
Compared with the resonant islands in panels (a) and (b),
only one island exists in panel (c), which is identified as the
1:1 resonance induced by the dispersion mode.

To better illustrate the 1:1 resonance, we plot the Poincaré
section and normalized wavenumber of single particles in
Fig. 8 (i.e., enlarged plot in Fig. 7c). We observe that in the
“crescent moon" island, the wavenumber of single particle
is locked and equal to wavenumber of the dispersion mode
(marked as the yellow shaded area in Fig. 8b). This is a clear
proof to support the “crescent moon" island in the Poincaré
section is a 1:1 parametric resonance driven by the disper-
sion mode.

Next, we analyze the mixed mode, in which the breathing,
quadrupole, and dispersion modes exist simultaneously. As
shown in Fig. 7d, driven by the mixed modes, the 2:1 reso-
nance driven by the two envelope modes and the 1:1 reso-
nance induced by the dispersion mode exist. Furthermore,
chaos is observed around the resonant islands. Panel (e) pre-
sents the corresponding wavenumbers of the three modes.
Similar to the results shown in Fig. 4 in Sect. 3, the locking
of the wavenumbers indicates the 2:1 and 1:1 parametric
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Pure mode Mixed mode Table 2 Main parameters used in the simulation
Breathing mode
9 Parameters A =0.2 case A = 1.0 case
_ Length per cell (m) 14.2 14.2
=i D Phase advance in x 108 108
e (deg)
4 Phase advance in y 108 108
i (deg)
Quadrupole mode Bending radius (m) 36.3 36.3
2
- — RMS momen. spread  0.192 0.96
(%)
B 0 RMS emit. in x (mm- 30 30
— mrad)
-2 RMS emit. in y (mm* 30 30
— 0.4 mrad)
Dispersion mode X . 10 10
5 S Intensity (particle 1.22x 10 (u, =0.1) 2.17x 10" (u, =0.1)
- ) numbers)
N — PCM
-2 PI& PIC simulations were conducted using the parameters of
R (e) , (f) the A = 0.2 case, as shown in Table 2. The simulation results
-2 0 2 -2 0 2 are shown in Fig. 7f. The simulation results of maximum
Za Ta

Fig.7 (Color online) Poincaré sections of single particles with
5 = 3.0 affected by the breathing mode a, quadrupole mode b, dis-
persion mode ¢, and mixed modes d, with A = 0.2 and p, = 0.1. The
wavenumbers of single particles for mixed modes as functions of ini-
tial positions are shown in e; the maximum displacement of single
particle as a function of initial displacement is shown in f, compared
with the simulation results (red dotted lines)

Dispersion mode

0.0 0.2 0.4 0.6 0.8 1.0 1.2 14 1.6
Zq

Fig.8 (Color online) Poincaré section of single particles with § = 3.0
affected by the dispersion mode a with A =0.2 and u, =0.1; the
wavenumber (normalized to the dispersion mode) of single particles
as a function of initial positions is shown in b

resonances, which agrees with the resonant islands in panel
(d). When chaos occurs, the wavenumber becomes random.
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displacements were in good agreement with the numerical
calculations using the generalized PCM with dispersion.

4.3 Alleviation of the beam halo using strong
dispersion

4.3.1 Motion of single particles with zero momentum
deviation

We assume single particles with zero momentum devia-
tion for the synchronous particles (6 = 0) in high-intensity
synchrotrons. As shown in Fig. 6, for a large dispersion
(A =1.0), ky/2 < ky min holds when p, < 0.66, indicating
that the quadrupole mode cannot excite the 2:1 resonance
in this region. In comparison, for the breathing mode, we
obtain k, /2 > k, .., and thus can trigger the 2:1 resonance.

The Poincaré sections of single particles with 6 = 0 for
the pure mode case with different dispersion strengths are
shown in Fig. 9. Figure 9a and d shows that the areas of the
2:1 resonance islands driven by the breathing mode decrease
with increasing dispersion strength. A similar phenomenon
is observed in Fig. 9b and e: With an enhanced dispersion
strength A = 1.0, the 2:1 resonance driven by the quadrupole
mode disappears. We attribute this result to the fact that
the dispersion effect can reduce the 2:1 resonance. Second,
no resonance islands are observed in Fig. 9c and f, imply-
ing that the dispersion mode cannot induce a 2:1 resonance,
which agrees with the analysis from Fig. 6.

The Poincaré sections for the mixed mode case are
shown in Fig. 10. The chaos existed around the resonance
islands driven by mixed modes. Compared with Fig. 10a,
we observe the chaos in Fig. 10d weakens as the dispersion
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A=02

Breathing mode

Dispersion mode

<S; ()-

[V}

Fig.9 (Color online) Poincaré section of single particles with § = 0.0
affected by the breathing mode a and d, the quadrupole mode b and
e, and the dispersion mode ¢ and f, with A = 0.2 (left column) and
A = 1.0 (right column) under the fixed space charge strength 1, = 0.1

strength increases (A = 1.0). The wavenumbers of single
particles with different initial positions are shown in in
Fig. 10b and e, where the red and gray shadows represent
the resonance and chaos, respectively. PIC simulations were
performed for A = 0.2 and A = 1.0 using the parameters
listed in Table 2. The simulation results for the maximum
displacements are shown in Fig. 10c and f. The simulation
results were in good agreement with the PCM calculations.

4.3.2 Motion of single particles with large momentum
deviation

For the single particles with large momentum deviation, the
SFP can “move” out of the beam core in the presence of the
dispersion effect. As an example, we plot four SFPs with
different momentum deviations in phase space in the panel
(a) of Fig. 11. We set A = 1.0 for the beam core. We observe
that with 6 = 3.0 and 4.0 (marked as S5 and S,), the two SFPs
are located outside the beam core.

For a more illustrative discussion, the scanning of the
maximum excursion of an edge particle is shown in Fig. 12.
The scan is performed by varying the dispersion strength
of the beam core A and the momentum deviation ratio of

0.96 1 — 0.96 }—

0.94

2.0

15

1.0 J (f)
5 5 20 2

Fig. 10 (Color online) Motion of zero-momentum-deviation single
particles (5 = 0.0) with different initial positions in the presence of
mixed mode with moderate (A = 0.2, left column a, b and ¢) and
strong dispersion (A = 1.0, right column d, e and f) under the fixed
space charge tune depression p, =0.1. The Poincaré sections are
shown in a and d; the wavenumber of single particle as a function of
initial positions is shown in b and e; and the maximum displacement
of single particle as a function of initial displacement is shown in ¢
and f, compared with the simulation results (red dotted lines)

w

. M,
£ 00 ’

—0.5

—1.0 (b)

—-1.0 =05 0.0 0.5 1.0 1.5 05 10 15

Fig. 11 (Color online) a Example with A =1.0,u, =0.1 of the
moving SFP at four different positions (inside the beam core S, S,,
and outside the beam core S5, S,) with increasing momentum devia-
tions of single particles (5 =1.0,2.0,3.0,4.0); b example with
A =1.0, u, = 0.1 of four single particles with their initial positions
at the edge of the beam core and different momentum deviations
5= 1.0,2.0,3.0,4.0. The trajectories of the two particles inside the
beam core (in red and green), with their maximum displacements M,
and M, overlapping. The trajectories of the other two particles outside
the beam core (in yellow and blue), with their maximum displace-
ments M5 and M,

@ Springer



225 Page120f18

J-Y.Duetal.

(A=1110%0="010)

Tmax

inner SFP 2.00

L] L]
(N=0.286 — (°0) (= )2 =310)

1.00

Fig. 12 (Color online) Scan of the maximum motion of the “edge
particles” (X,,x) With varying momentum deviations (5) and dis-
persion strength (A), under the fixed space charge tune depression
u, = 0.1. Black line denotes the boundary between the area of inner
SFPs (x,,.. = 1), and the area of outer SFPs (x,_.. > 1)

max max

the single particle . Here, the edge particles are defined
that their initial positions are set to “sit” on the edge of the
beam core, i.e., X4(0) = 1. For different 6 and A values, the
edge particles have different maximum excursions, X,,,,-
The advantage of using edge particles is that, (shown in
Fig. 11b), for the edge particles with %,,,, = 1, the SFPs are
located inside the beam core, shown as the region “inner
SFP” in Fig. 12; for the edge particles with %,,,, > 1, shown
as the region “outer SFP” in Fig. 12.

Figure 12 shows that, for single particles with SFPs inside
the beam core, the condition k;, i, = /1 — u, is always sat-
isfied. For SFPs outside the beam core (X,,,, > 1), we obtain
kymin > /1 — u,. For asufficiently large 5, Ky min > k,/2. In
this case, the 2:1 resonance cannot be driven by the breath-
ing mode. In other words, the large off-momentum devia-
tions of a single particle can dampen the 2:1 resonance. To
show this more clearly, the motions of single particles with
6 = 3.0, affected by the breathing, quadruple, and disper-
sion modes are shown in Fig. 13a—c, respectively. The 2:1
resonances driven by the breathing and quadrupole modes
are dampened because of the large momentum deviation &,
and only the 1:1 resonance driven by the dispersion mode
can be observed. Panel (d) shows the mixed case. Only the
1:1 resonance caused by the dispersion mode exists. The
locking of the wavenumber is presented in panel (e), where
the condition k = kj is satisfied, indicating that the 1:1 reso-
nance is a parametric resonance.

PIC simulations were conducted using the parameters
listed for A = 1.0, as shown in Table 2, and the simulation
results are shown in Fig. 13f. The simulation results of the

max
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Pure mode Mixed mode

Breathing mode 2

Quadrupole mode

[N}

]
oy

Dispersion mode

[N}
[
ot
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Fig. 13 (Color online) Poincaré sections of single particles with
5 = 3.0 affected by the breathing mode a, quadrupole mode b, dis-
persion mode ¢ and mixed modes d, respectively, with A = 1.0 and
u, = 0.1. The wavenumbers (normalized to the dispersion mode) of
single particles for mixed modes as a function of initial positions are
shown in e; the maximum displacement of single particle as a func-
tion of initial displacement is shown in f, compared with the simula-
tion results (red dotted lines)

maximum displacements agreed closely with the numerical
calculations based on the dispersion-modified PCM.

5 High-order mode in large mismatch
oscillations

The analysis of the beam halo formation in the preceding
sections is based on perturbation theory, where single-par-
ticle oscillations with small amplitudes are considered and
high-order terms are neglected. In this section, we investi-
gate single-particle motion driven by the mismatch oscil-
lation of the beam core with a large amplitude, in which
high-order oscillation modes are considered. An interesting
question is whether these high-order oscillation modes can
induce a beam halo. Note that high-order modes in the large
mismatch discussed here should be distinguished from the
high-order resonances of the low-order modes. For example,
the 8:3 resonance shown in Fig. 2 is an eighth-order reso-
nance driven by low-order (breathing) modes.

For simplicity, we consider a round beam traveling in
a symmetrical focusing channel. In this case, the envelope
equation for the beam core (Eq. (7)) can be expressed as
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25 1—
&6 s 1Ky (38)

dz? 6 63

The solution to Eq. (38) can be expressed as a triangular
series:

6 =1+ a,cos2Qt + a, cos4Qr + ... + a, cos 2nQt, (39)

where 2Q represents the wavenumber of the breathing mode
(here, we use 2Q to replace k, for convenience of derivation),
and 2nQ (n > 1) denotes the wavenumbers of the high-order
modes.

However, the equations of motion for single particles
in Eqgs. (16) and (17) can be approximated using a cubic
term [26]:

s . i %
@*x"‘(ﬁ‘z):“ 0

Substituting Eq. (39) into Eq. (40), we obtain the Hamilto-
nian of a single particle with large mismatch oscillations in
the beam core:

222 n 24
+ (14 Y hpeos2ie) 4o, (4D

with the parameters @® = 1 — p, h; = —2ua; /(1 — u) and
a = u/4. Using the generating function,

FZ(-’X\"3P9T) =

3P pr 3
— | — + w= ) tan Qr, 42
cos Qt (260 @ 2 ) anser (42)

We can convert the Hamiltonian in Eq. (41) into
H =H ,+H ,+..+H,, 43)

where IEIL’O and I:ILﬂ (n > 0) represent the Hamiltonians of
the single-particle motion for the lowest-order (breathing)
and high-order modes, respectively. The average Hamilto-
nian I:IL!n over a mismatched oscillation period T = 27 /Q is

(Hy,)=0(n>0) (44)
1.07 Ky
g 081 2k
<
é 0.6 3k
=
£ 0.4 4k
o
= 5k
0.2 6y
| ks
0.0 i

Fig. 14 (Color online) Frequency spectrum of the beam envelope
oscillations with large mismatch

which indicates that the contribution of the higher-order
modes over one oscillation period to the 2:1 resonance is
zero (more details are given in Appendix C). Consequently,
higher-order modes cannot excite the 2:1 resonance.

For example, we numerically solve Eq. (38) with the
initial condition 6(0) = 0.6 (i.e., 40% mismatch). The
numerical results of the beam envelope oscillation is ana-
lyzed using FFT, and the frequency (wavenumber) spec-
trum is shown in Fig. 14. High-order modes (up to sixth
order) are observed, which are caused by a large mismatch
(40%). The wavenumber (frequency) of the higher modes
(nky,) is a multiple of the fundamental mode (k). The
amplitudes of the modes decreased with increasing mode
order.

The Poincaré section and corresponding wavenumbers
of single particles with different initial positions under
40% mismatch are calculated using Eqgs. (38) and (40), as
shown in Fig. 15a and b, respectively. Within the 2:1 reso-
nance islands, we obtain k = k;, /2, indicating it is driven
by the lowest-order (breathing) mode. No 2:1 resonances
driven by higher-order modes are observed, which agrees
with the analysis based on the Hamiltonian in Eq. (44).

A PIC simulation was conducted based on the param-
eters of the “round beam” shown in Table 1. In the simula-
tion, an initial KV distribution of 200,000 macroparticles

ky/2 ky/2

0.8

0.6

(b)

Fig. 15 (Color online) Motion of single particles with different initial
positions in the presence of large mismatch with strong space charge
tune depression y, = 0.8. The Poincaré sections are shown in a; the
wavenumber of single particle as a function of initial positions is
shown in b; and the contour of the Poincaré section is shown in ¢,
compared with the simulation results (red dotted lines)
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was tracked for 500 turns, and the results are shown in
Fig. 15¢c. A “peanut” shape of the halo particle distribution
was observed in the simulation result, agreeing with the
contour of the Poincaré section, which was numerically
calculated using Eqgs. (16), (17), and (38).

Based on closer observation in Fig. 15a, we observe the
chaotic regions exist around the resonance islands (black).
The physical mechanism of chaos formation can be ana-
lyzed as follows. To clarify the flow of the following text,
we distinguish two types of particle-core resonances:

1. Low-order particle-core resonances driven by high-
order beam oscillation modes (be proved not existing in
Eq. (44));

2. High-order particle-core resonances driven by low-order
beam oscillation modes.

In the former case, high-order modes cannot induce low-
order resonances, as discussed using Eq. (44). To analyze
the latter case, we use a perturbation method with a large
mismatch of 40% (£(0) = ¢(0) = 0.4in Eq. (10)) to maintain

H
y N0
0.0 0.2 0.4 0.6 0.8
0.6 31 P 1] o
41 1w
—— 4:1(skew) ii ko3
051 — 722 :
— 83 i 2k, /7
u
0.4 ky/4(skew)! | ky/4 (©
0.0 0.2 0.4 0.6 0.8

Fig. 16 (Color online) Motion of single particles with different ini-
tial positions under the breathing mode with a strong space charge
tune depression y, = 0.8. The Poincaré sections are shown in a; the
enlarged plot of a is shown in b, including the 3:1 resonance (yellow),
the 4:1 resonance (orange), the skew 4:1 resonance (brown), the 7:2
resonance (green), and the 8:3 resonance (purple); and the wavenum-
bers of single particles as functions of initial positions are shown in

©
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only the breathing mode in the system and neglect higher-
order modes because they do not contribute to the reso-
nances. Thus, it is convenient to plot the Poincaré section,
as shown in Fig. 16. Figure 16a and b shows that several
high-order resonance islands exist: the 3:1 resonance (yel-
low), 4:1 resonance (orange), skew 4:1 resonance (brown),
7:2 resonance (green), and 8:3 resonance (purple). The lock
of the wavenumber of the modes for high-order resonance
was calculated and is shown in panel (c) of Fig. 16.

A detailed observation in Fig. 16 shows that the chaos
region can be divided into inner and outer regions. The
“outer chaos” is caused by the mixture of the 2:1 resonance
and the higher-order resonance, such as the 3:1 (yellow) and
8:3 (purple) resonances. In comparison, the “inner chaos”
is closer to the beam core and much weaker. We attribute it
to the fact that the inner chaos is caused by the mixture of
high-order resonances, the 4:1 and the “skew” 4:1 as shown
in Fig. 16. The outer chaos is driven by the lowest-order
(2:1) resonances and is thus much stronger.

6 Summary

We have analyzed beam halo formation driven by the para-
metric resonance between single particles and the beam core
in high-intensity synchrotrons. In the absence of dispersion,
we observe several high-order resonances in addition to the
2:1 resonance. Moreover, chaos exists with a mixture of
parametric resonances and can be weakened by the asym-
metry of elliptical beams. In the presence of the combined
effect of space charge and dispersion, we find that the dis-
persion mode can drive the 1:1 parametric resonance and
discussed its physical mechanism in detail. In addition, we
demonstrated that the beam halo can be alleviated by a large
dispersion. For large mismatch oscillations, we proved that
higher-order modes exist; however, they are unable to drive
2:1 parametric resonance.

We expect that the 1:1 parametric resonance will have
implications for the design and operation of high-intensity
synchrotrons. Furthermore, the role of synchrotron motion
in beam halo formation warrants further investigation.

Appednix A: Equations of motion
for the envelope perturbation

For the Hamiltonian of the envelope with perturbations in
Eq. (9) in Sect. 2,
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. 1. .
Hyer =3 [(Gpim + &)* + By + &)

+ 1+ +n*r+ )

— (L D) In(l 47 +E+0) (AD
l—p,  e(l-p)
2(1 +&2  20r+ 0?2
The Hamiltonian’s equation of motion is
ae _ ot % _ ol
dr ()5 dr o0& (A2)

d¢ _of 9% oA

dr ac, 4T o

Here, (£,&,) and (¢, ) are pairs of dimensionless conjugate
variables. After neglecting the higher-order items, we obtain
from Eq. (A2)

e _ oA
dr? o0&
Hy
[ 1+¢E+0/A+7)
| / (A3)
(1=
T +¢)3]
2+ Hy
[4(1 —m)+ |- e
1+7r
and
&¢C_ _oH
dr? o¢
H 1+2r Hy (A4
—4? == -
[(’1 r)+r(1+) ]C 1+r5
where we use the following relation:
e2 2 _
R u (A5)

8}

r 1—p,

Equations (A3) and (A4) are the equations of motion for the
envelope perturbations in Eq. (10) in Sect. 2.

Appednix B: Equations of motion
for the envelope perturbation
with dispersion

The Hamiltonian of the envelope with the dispersion in
Eqg. (28) in Sect. 4 is

N 1 . R N
(0' + 0' +D§5) + z(af, + 1120'y2 +D))

1+
“"(—1(X+Y)

sin 62
l—p 1 53(1—Hx)i+(1_ )coseb (B1)
2 & 2 &2 o sing 0

= (0' +62 + D) +V(6,.6,,D;).

We define the perturbative variables (here, the subscript ‘d’
in u, 4 and €, 4 of Eq. (28) is neglected for simplicity) as
follows:

5, = 1+¢

>

A

pe = Opem T &
r+¢

>

y

(B2)

A

Gpy = Opym T &p
Dj = cot 8 + d

Dp5 = ng m T dps-

By substituting the perturbative variables in Egs. (B2) into
Eq. (B1), we obtain the Hamiltonian of the envelope with
perturbations:

H(E.8,.0.0,.ds.dyg) = P&, Lo dys) + V(E.C.ds)  (B3)

which consists of the “kinetic energy” term

Py by ) = 5 [Gpn + &)

.. , (B4)
+ By + 5+ Dy + d) 1,

and “potential” term

V(E, ¢ ds) = %[(1 + &2+ (r+¢)* + (cot 0 + d;)*]

u(1+R)
_Wln [\/(1+§)2+(00t9+d5)2+r+é’

1—/lx 1 Es(l_lux) 1
2 (1+¢? 2 r+¢)’

+(1- yx)ci’s €059 ot + dy).

(B5)

The equations of motion for envelope perturbations with
dispersion can be expressed as

d’e 1%
d*¢ av
W —(b & + by + bydy) (B7)
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d*d; oV
with the parameters
R+2 .
by=4(1—p,)+ R_-I-lﬂx sin 62
1 .
bl = R_-I-lﬂx sin @
) = R—+2,uxsin00059
R+1 B9
b=~ Fay 2RI 9
TR T RITRYTR

1
b, = ——pu_cos@
ST Ry

bs=1—-pu)+ R—+2;4Xcos«92,

R+1
which is Eq. (33) in Sec. 4.

Appednix C: Calculation of the higher-order
mode contributions

The Hamiltonian for the lowest- and higher-order modes in
Eq. (43) is

7 1 Q 2 0()2 Q 2
Ho=-(1-=)P+Z(1-=
we3(-E)e s (-2

2/’1 2
_2M <QcosQr + L sinQr) cos 2Q1 (C1)
0}
4
%(QCOSQT+ Bstr)
N a)zhnﬂ P . 2
H , = —T<QCOSQT + — str) cos2(n+ 1)Qr
’ w
(C2)

For the Hamiltonian of the lowest-order mode IA{L,O, by tak-
ing the average over one perturbation oscillation period, we

obtain
1=22 2
7(1-2)e

(Hy o) = <1—%>P2

thl 2 2 P . 2
- T(Q(cos Q77 cos 2Q7) + —(sin Qz~ cos 2Q7)
®

2P
+ —Q(sin Q71 cos Q7 cos 291))
10)

Q22

<Q4(cos Qrty + (sin Q7% cos Q%)

4A3
+ —4(sinQr4) + oF
®

40P3
w3

(sin Q7 cos Q)

+ (sin Q7> cos Qr)),

(€3

@ Springer

where (x(t)) = (1/T) [ x(z)dr. Because we know that

(cos Qr*) = (sinQr*) = %

(sin Qz° cos Q) = % (&)
(sin Q7> cos Qr) = (sin Qr cos Q) =0
Eq. (C3) becomes
. ®*Q? Q h p2 Q h
H 1-=+— —(1-==-—=
(o) ( +4>+2< w 4>
(C5)

which agrees with Eq. (18). [26].
Next, for the Hamiltonian of the high-order modes I:IL’,,
(n > 0), we have

a C02hn+l 2~ 2
(HL,,) = —T<Q(cos Q1 cos2(n + 1)Qr)

gQ(sin Qr cos Qr cos 2(n + 1)Qr) (C6)

+ —(sin Qr?cos2(n + 1)91)).
10)

By using the relation
(cos® Qr cos2(n + 1)Qr) =

(sin* Qr cos 2(n + 1)Qr) =
(cos QrsinQrcos2(n+ 1)Q7) =

(e0))

we obtain (I:IL,n) = 0, which indicates that during one oscil-
lation period, the average interaction between single parti-
cles and the beam core via high-order oscillation modes is
zero. Thus, the high-order modes are unable to excite the 2:1
parametric resonance.
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