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Abstract
Neutron-rich boron, carbon, and nitrogen isotopes have garnered extensive experimental and theoretical interest. In the present 
work, we conducted a comprehensive study of these nuclei by utilizing ab initio valence-space in-medium similarity renor-
malization group calculations with chiral nucleon–nucleon and three-nucleon interactions. First, we systematically calculated 
the spectra of nuclei. Our results align well with the available experimental data, which are comparable to phenomenological 
shell model calculations. Subsequently, the evolution of the N = 14 and N = 16 shell gaps is discussed based on the calcu-
lated spectra and the effective single-particle energies. Our calculations suggest that the N = 14 neutron subshell is present 
in the oxygen isotopes but disappears in the boron, carbon, and nitrogen isotopic chains. Moreover, the N = 16 subshell is 
present in all isotopes but gradually decreases from 24 O to 21 B. These results provide valuable information for future studies.
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1  Introduction

The shell structure of nuclei is a fundamental framework 
in nuclear physics. However, for neutron-rich nuclei far 
from the stability valley, the traditional magic numbers 
N = 8, 20, 28 , and 40 vanish [1–10] and new magic num-
bers such as N = 14 , 16, 32, and 34 emerged  [11–14]. The 
evolution of shell structures in exotic nuclei has significantly 
deepened our understanding of nuclear quantum many-body 
systems and their underlying nuclear forces. Light neutron-
rich nuclei are particularly intriguing, as the development 
of radioactive beam facilities has facilitated unprecedented 

exploration of isotopic chains extending to the dripline 
region [15].

The neutron-rich oxygen isotopes 22O and 24O are doubly 
magic nuclei with a high excitation energy of the first 2+ 
excited state, providing clear evidence for the emergence of 
the N = 14 and 16 subshell closures [14, 16–18]. However, 
a comparison of the systematic behavior of the 2+ energy 
levels in the oxygen and carbon isotopic chains suggests that 
the N = 14 shell gap disappears in the carbon isotopes [19, 
20]. In 15C , the ground state and first excited state are 1∕2+ 
and 5∕2+ , respectively, indicating an inversion of the neutron 
�1s1∕2 and �0d5∕2 orbits in 15C compared to 17O [21, 22]. A 
similar inversion is anticipated when neutrons are added to 
20C [19, 20]. As the transition region between oxygen and 
carbon isotopes, nitrogen isotopes also signal the erosion of 
the N = 14 shell gap [23–26]. Moreover, the evolution of the 
N = 16 shell gap in neutron-rich boron, carbon, nitrogen, 
and oxygen isotopic chains remains an intriguing question. 
Further experimental and theoretical studies are required 
to fully understand the origin and evolution of N = 14 and 
N = 16 shell gaps.

Neutron-rich boron, carbon, and nitrogen isotopes exhibit 
many exotic phenomena. For instance, two-neutron halo 
structures were observed in 17B [27], 19B [28], and 22C [29], 
while one-neutron halo structures were found in 15C [30] and 
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19C [31]. In addition, the observation of the most neutron-
rich unbound nuclei, 20 B and 21 B, was recently reported in 
Ref. [32]. Furthermore, a thick neutron skin has been detected 
in 17−22N [26]. These light neutron-rich systems, which strad-
dle the neutron dripline, have accumulated a wealth of exper-
imental data, thereby providing an ideal testing ground for 
theoretical models [33]. These studies have inspired exten-
sive theoretical studies, including the shell model (SM) [21, 
34–36], Gamow shell model (GSM) [37–39], antisymmetrized 
molecular dynamics (AMD) [40, 41], and ab initio no-core 
shell model (NCSM) calculations [42–44]. However, tradi-
tional SM calculations, which employ phenomenological inter-
actions, have limited predictive power as the nuclei approach 
the dripline. In contrast, ab initio calculations based on high-
resolution interactions derived from the chiral effective field 
theory ( �EFT) of quantum chromodynamics have made great 
progress over the past decades [45–52], offering a more robust 
framework for understanding and predicting the properties of 
neutron-rich nuclei.

Systematic calculations of neutron-rich boron, carbon, 
and nitrogen isotopes enable us to gain a more comprehen-
sive understanding of their exotic structures and shell evolu-
tion while simultaneously testing our ab initio methods and 
nuclear forces. Therefore, in this study, we performed system-
atic calculations of neutron-rich boron, carbon, and nitrogen 
isotopes using the ab initio valence-space in-medium simi-
larity renormalization group (VS-IMSRG) [53–58] based on 
nucleon–nucleon (NN) and three-nucleon (3N) interactions 
derived from �EFT.

The remainder of this paper is organized as follows: First, 
we provide a brief introduction to the VS-IMSRG framework. 
Next, we present systematic calculations of the spectra of neu-
tron-rich boron, carbon, and nitrogen isotopes. Subsequently, 
we discuss the shell evolution of the N = 14 and N = 16 shell 
gaps in these isotopes utilizing the calculated effective single-
particle energies (ESPE). Finally, we conclude with a sum-
mary of this work.

2 � Method

The intrinsic Hamiltonian of an A-nucleon system can be writ-
ten as:

where p is the nucleon momentum in the laboratory, m is the 
nucleon mass, vNN and v3N are the NN and 3N interactions, 
respectively. In this study, we used three different �EFT NN 
+ 3N interactions: EM1.8/2.0 [59, 60], N 3LO+3N(lnl) [9, 
61] and N 4LO+3N(lnl) [62]. The EM1.8/2.0 interaction, 

(1)H =

A
∑

i<j

((

pi − pj

)2

2mA
+ vNN

ij

)

+

A
∑

i<j<k

v3N
ijk
,

consisting of a next-to-next-to-next-to-leading order (N3

LO) NN interaction softened by the similarity renormaliza-
tion group (SRG) evolution with momentum resolution scale 
� = 1.8 fm−1 and a next-to-next-to-leading order (N2LO) 3N 
interaction with momentum cutoff Λ = 2.0 fm−1 , can repro-
duce well the ground-state energies up to 132Sn [59, 60]. The 
N 3LO+3N(lnl) interaction, which presents good description 
of ground-state energies up to nickel isotopes, is composed 
of an N 3 LO NN interaction and an N 2 LO 3N interaction, 
adopting a large SRG scale of � = 2.6 fm−1 for the NN inter-
action without including the induced 3N force [9, 61]. The 
N 4LO+3N(lnl) interaction, composed of a next-to-next-to-
next-to-next-to-next-to-leading order (N4LO) NN interaction 
and an N 2 LO 3N interaction, also adopts a large SRG scale 
of � = 2.6 fm−1 for the NN interaction, without including 
the induced 3N force [62]. In this study, we take a harmonic-
oscillator basis at ℏ� = 16 MeV with emax = 2n + l = 14 and 
E3max = 14 , which is sufficiently large for convergence.

In practical calculations, Hamiltonian (1) is rewrit-
ten as normal-order operators with respect to the Har-
tree–Fock reference state,

where E0 , f, Γ , W refer to the normal-ordered zero-, one-, 
two- and three-body terms, respectively. Because the con-
tribution of 3N force can be captured well at the normal-
ordered two-body level [63], the residual normal-ordered 
three-body term W is neglected.

Next, using the continuous unitary transformation U(s), 
the Hamiltonian (2) is decoupled from the large Hilbert 
space to a small valence space using VS-IMSRG. This is 
achieved by solving the flow equation,

with an anti-Hermitian generator,

In the present study, we adopted protons in the p shell and 
neutrons in the sd shell as the valence space. In practical 
calculations, the Magnus formalism is employed with all 
operators truncated at the two-body level [64]. The effective 
Hamiltonians for this model space are consistently derived 
by VS-IMSRG with ensemble normal ordering (ENO) [55]. 
Then, we use the large-scale shell model code KSHELL [65] 
to diagonalize the effective Hamiltonians.

(2)
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∑
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3 � Results

3.1 � Energy spectra

Nuclear spectra provide invaluable insights into nuclear 
structure. In this study, the spectra of neutron-rich boron, 
carbon, and nitrogen isotopes were systematically calcu-
lated using ab initio VS-IMSRG with three sets of �EFT 
NN + 3N interactions, that is, EM1.8/2.0 [59, 60], N 3
LO+3N(lnl) [9, 61], and N 4LO+3N(lnl) [62]. For com-
parison, we also performed phenomenological SM cal-
culations using the YSOX interaction within the full psd 
valence space, which accurately reproduced the properties 
of boron, carbon, nitrogen, and oxygen isotopes [34]. The 
results were compared with the available experimental 
data, as illustrated in Figs.  1,  2, and  3.

Nitrogen isotopes have abundant experimental data, 
which provide a valuable test ground for our ab initio cal-
culations. In addition, nitrogen nuclei lie between oxygen 
and carbon isotopes, offering essential insights into the 
shell evolution. For 16 N, the ordering of the first four states 
is experimentally determined as 2− , 0− , 3− , and 1−  [66]. 
Our VS-IMSRG calculations with the EM1.8/2.0 and N 3
LO+3N(lnl) interactions showed good agreement with the 
experimental results, whereas the SM calculations using the 
YSOX interaction failed to reproduce the spectra of 16 N. For 
17 N, the VS-IMSRG calculations with the three NN + 3N 
interactions as well as the SM calculations using the YSOX 
interaction reproduced the lowest three states well. In the 
case of 18 N, the ground state was correctly reproduced by 
the VS-IMSRG calculations with the EM1.8/2.0 interac-
tion and the SM calculations using the YSOX interaction. 
However, the VS-IMSRG calculations with N 3LO+3N(lnl) 
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Fig. 1   Energy spectra of 16−24 N calculated by ab initio VS-IMSRG using the EM1.8/2.0, N 3LO+3N(lnl), and N 4LO+3N(lnl) interactions, com-
pared with the SM calculations using the YSOX interaction and the available experimental data [66]
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and N 4LO+3N(lnl) interactions give 2− as the ground state. 
For 19,21 N, all calculations correctly gave the ground state 
as 1∕2− and predicted the first excited state as 3∕2− , with 
the excited states yet to be experimentally confirmed. For 
20 N, the ground state is 2− given by all calculations. In 
the case of 22 N, the VS-IMSRG calculations with the N 3
LO+3N(lnl) and N 4LO+3N(lnl) interactions predicted a 0− 
ground state, whereas the VS-IMSRG calculations with the 
EM1.8/2.0 interaction and the SM calculations using the 
YSOX interaction predicted the ground state to be 2− and 
1− , respectively. The size of the N = 16 shell gap in 23 N 
remains unclear  [67]. All calculations predicted the ground 
state of 23 N to be 1∕2− . However, the SM calculations with 
the YSOX interaction yielded higher excitation spectra than 
the VS-IMSRG results, indicating an overly large N = 16 
shell gap in the SM calculations using the YSOX interaction. 

This behavior was also observed in 21 B, 22 C, and 24 O, as dis-
cussed above. For 24 N, all the calculations give the ground 
state as 2− and predict the first excited state as 1−.

Neutron-rich carbon isotopes have attracted considerable 
experimental and theoretical attention. The ground state and 
first excited state of 15 C are 1∕2+ and 5∕2+ , respectively, indi-
cating an inversion of the neutron �1s1∕2 and �0d5∕2 orbits in 
carbon isotopes [21, 22]. Our VS-IMSRG calculations, along 
with the SM calculations, accurately reproduced the spectra 
of 15 C. The VS-IMSRG calculations with the N 3LO+3N(lnl) 
interaction for 16,17 C did not converge; therefore, we only 
present the results for 16,17 C using the EM1.8/2.0 and N 4
LO+3N(lnl) interactions in Fig.  2. For 16,18,20 C, the first 2+ 
excited states obtained from our VS-IMSRG calculations are 
in good agreement with the experimental data, whereas SM 
calculations using the YSOX interaction generally provide 
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higher energies for the first 2+ excited states of these nuclei. 
In particular, for 22 C, the energy of the first 2+ excited state 
calculated by SM using the YSOX interaction is significantly 
higher than that predicted by VS-IMSRG. Notably, the first 
2+ excited state of 24 O, calculated by SM with YSOX inter-
action, is 5.41 MeV, which is higher than the experimental 
value of 4.76 MeV. In contrast, our VS-IMSRG calculations 
with the EM1.8/2.0, N 3LO+3N(lnl), and N 4LO+3N(lnl) 
interactions give the first 2+ excited state of 24 O to be 4.87, 
5.26, and 4.39 MeV, respectively, which are in better agree-
ment with the experimental value. Moreover, the first 2+ 
excited state of 22 C calculated by VS-IMSRG is significantly 
higher than that of the neighboring carbon isotopes, imply-
ing the presence of the N = 16 shell gap in 22 C. However, 
the calculated first 2+ excited state of 22 C is lower than that 
of 24 O, suggesting a reduction in the N = 16 shell gap in 
22 C compared to 24 O. In addition, the low energy of the 

first 2+ excited state in 20 C indicates the disappearance of 
the N = 14 shell gap in 20C [19]. For 17 C and 19 C, our VS-
IMSRG calculations failed to reproduce the experimental 
spectra because of the absence of continuum coupling in the 
current method, as discussed in Ref.  [37, 68].

In the case of neutron-rich boron isotopes, experimental 
data are limited. For 14 B, the ordering of the first five states 
is experimentally assigned as 2− , 1− , 3− , 2− , and 4− [66]. 
Our ab initio VS-IMSRG calculations with the three NN 
+ 3N interactions as well as the SM calculations using 
the YSOX interaction are all in good agreement with the 
experimental results. The spin and parity of the ground 
state for isotopes heavier than 14 B have not yet been con-
firmed experimentally. For 15,17,19,21 B, our VS-IMSRG cal-
culations with the three NN + 3N interactions predict that 
the ground states of these isotopes are all 3∕2− , which is 
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consistent with SM calculations using the YSOX inter-
action. For 16 B, the VS-IMSRG calculations with the N 3
LO+3N(lnl) and N 4LO+3N(lnl) interactions predict the 
ground state to be 2− , whereas the VS-IMSRG calcula-
tions with the EM1.8/2.0 interaction predict a ground state 
of 0− with a 2− excited state that is nearly degenerate. In 
addition, the ground state of 16 B obtained from the SM 
calculations using the YSOX interaction is also 0− . For 
the unbound nucleus 18 B, SM calculations using YSOX 
and WBP  [69] interactions predicted the ground state to 
be 2− . Our VS-IMSRG calculations with the EM1.8/2.0 
and N 4LO+3N(lnl) interactions also predicted the ground 
state of 18 B to be 2− , but the VS-IMSRG calculations with 
the N 3LO+3N(lnl) interaction gave the ground state of 18 B 
to be 3− . Both 20 B and 21 B are unbound nuclei that exist 
as resonances and decay via one- or two-neutron emis-
sions [32]. For 20 B, our VS-IMSRG calculations with the 
three NN + 3N interactions predict the ground state to be 
1− , whereas SM calculations using the YSOX interaction 
yield the ground state 2− . For 21 B, our VS-IMSRG calcu-
lations with the three NN + 3N interactions predicted a 
significantly lower energy for the first excited state 1∕2− 
compared to the SM calculations using the YSOX interac-
tion, a situation similar to that observed for 22 C and 24 O 
above. The 1∕2− state of 21 B calculated with VS-IMSRG 
has larger neutron excitation components than those in the 
SM calculations. However, the subsequent analysis of the 
ESPE calculated by VS-IMSRG suggests that the N = 16 
subshell still exists in 21B.

Overall, our ab initio VS-IMSRG calculations based 
on the three �EFT NN + 3N interactions, particularly the 
EM1.8/2.0 interaction, were in good agreement with the 
available experimental data. These results provide critical 
assistance for future research.

3.2 � Shell evolution

In neutron-rich boron, carbon, nitrogen, and oxygen iso-
topes, the evolution of N = 14 and N = 16 shell gaps has 
attracted significant experimental and theoretical attention. 
The ESPE provides a good reflection of the size of shell 
gaps, which defined as [70, 71]

where �core
i

 is the valence-space single-particle energy, Vm is 
the monopole interaction, and nj is the occupation number 
calculated consistently using the SM.

To study the evolution of the N = 14 and N = 16 shell 
gaps, we calculated the ESPE of the �1s1∕2 , �0d5∕2 , and 
�0d3∕2 orbits in these nuclei employing the VS-IMSRG 
method, based on the EM1.8/2.0, N 3LO+3N(lnl), and N 4

(5)�i = �core
i

+
∑

j

njV
m
ij
,

LO+3N(lnl) interactions, compared with the SM calcula-
tions using the YSOX interaction. As shown in Fig. 4, for the 
VS-IMSRG calculations, when protons are removed from 
the oxygen isotopes, the ESPE of the �1s1∕2 orbital is grad-
ually lowered relative to the �0d5∕2 orbital, and a reversal 
occurs in the boron and carbon isotopes. This indicates that 
the N = 14 neutron subshell is present in the oxygen isotopes 
but disappears in the boron, carbon, and nitrogen isotopic 
chains. The SM calculations using the YSOX interaction 
show the same trend as the VS-IMSRG results, whereas 
the N = 14 shell gaps in 21 N and 22 O calculated by SM are 
significantly larger than those obtained from VS-IMSRG. 
Notably, the N = 16 subshell is present in the boron, carbon, 
nitrogen, and oxygen isotopic chains and gradually decreases 
from 24 O to 21 B. Moreover, the N = 16 shell gap calculated 
by SM using the YSOX interaction was significantly larger 
than that calculated by VS-IMSRG. Additionally, the N = 16 
shell gap calculated by VS-IMSRG using the N 3LO+3N(lnl) 
interaction is generally larger than that calculated using the 
EM1.8/2.0 and N 4LO+3N(lnl) interactions. Correspond-
ingly, the energy spectra exhibited higher excitation ener-
gies, particularly in 24 O, as discussed above.

To further understand the contribution of the 3N force 
to the shell evolution, Fig.  5 shows the VS-IMSRG cal-
culations using the full NN + 3N EM1.8/2.0 interaction 
(solid lines) compared with the VS-IMSRG calculations 
without the 3N force (dashed lines). As shown in Fig. 5, 
the 3N force enhances the N = 14 shell gap in the oxy-
gen isotopes while reducing the N = 16 shell gap in the 
boron, carbon, nitrogen, and oxygen isotopes. A similar 
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trend was observed for the results using N 3LO+3N(lnl) 
and N 4LO+3N(lnl) interactions.

To analyze the roles of different components of the 
interaction in shell evolution, we employed the spin-tensor 
decomposition method [72–74] to decompose the effec-
tive interaction derived from VS-IMSRG into central, 
tensor, and spin-orbit (LS) parts. First, we conducted sys-
tematic calculations for boron isotopes and compared the 
contributions of different components of the interaction 
derived from VS-IMSRG across three sets of �EFT NN 
+ 3N interactions: N 3LO+3N(lnl), N 4LO+3N(lnl), and 
EM1.8/2.0. We also compared the results with the SM cal-
culations using the YSOX interaction. As shown in Fig. 6, 
the solid lines represent the results with the full inter-
action, the dashed lines represent the results without the 

contribution of the tensor force, and the dot-dashed lines 
represent the results without the contribution of the two-
body LS part. In our VS-IMSRG calculations, we can see 
that the tensor force slightly lowers the ESPE of the �0d3∕2 
orbital relative to the �0d5∕2 orbital, whereas the two-body 
LS component increases the ESPE of both the �0d3∕2 and 
�1s1∕2 orbits relative to the �0d5∕2 orbital. Moreover, the 
contributions of the tensor force and the two-body LS 
part were similar across the three sets of NN + 3N forces. 
Additionally, SM calculations using the YSOX interaction 
demonstrated the same trend as the VS-IMSRG results, 
although the strength of the tensor force and the two-body 
LS force showed minor differences. Next, we present the 
contributions of the different components of the interac-
tions in various isotopes. For clarity, we only show the 
results calculated by VS-IMSRG using the EM1.8/2.0 
interaction. In Fig. 7, the solid and dashed lines represent 
the ESPE with and without the contribution of the tensor 
force, respectively. It can be seen that the tensor force only 
slightly reduces the N = 16 shell gap for all the isotopes. 
Figure 8 compares the results obtained with and without 
the two-body LS part. The two-body LS part significantly 
lowers the ESPE of the �0d5∕2 orbital and causes inversion 
of the �1s1∕2 and �0d5∕2 orbits in oxygen isotopes compared 
to boron and carbon isotopes. This inversion is the origin 
of the N = 14 shell gap in the oxygen isotopes. In addition, 
the two-body LS part significantly increases the ESPE of 
the �0d3∕2 orbital, leading to the appearance of the N = 16 
subshell.

In Ref. [4], the inversion between the neutron �1s1∕2 
and �0d5∕2 orbits in 15 C and 17 O is depicted by analyz-
ing the monopole matrix elements of the YSOX interac-
tion, assuming that, from 15 C to 17 O, the proton �0p1∕2 
orbit is fully occupied, and the last neutron is in either 
the �1s1∕2 or �0d5∕2 orbital. Similar to the discussion in 
Refs.  [4], we extracted the contributions of the monopole 
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matrix elements from various components of the effective 
interaction derived by VS-IMSRG, including the central, 
tensor, and LS parts, as shown in Fig.  9. Here, the rest is 
due to the Adependence of the Hamiltonian. The two-body 
LS part significantly contributes to the shift of the �1s1∕2 
orbital relative to the �0d5∕2 orbital, even when determin-
ing the inversion of the �1s1∕2 and �0d5∕2 orbits. In contrast, 

the contribution from the tensor force was much smaller 
than that observed in the YSOX interaction in Ref.  [4].

4 � Conclusion

Utilizing three sets of chiral NN + 3N interactions, 
EM1.8/2.0, N 3LO+3N(lnl), and N 4LO+3N(lnl), we present 
ab initio VS-IMSRG calculations for neutron-rich boron, 
carbon, and nitrogen isotopes. We systematically calcu-
lated and predicted the low-lying spectra of these nuclei. 
For comparison, we also performed SM calculations using 
the YSOX interaction. Based on the calculated spectra and 
effective single-particle energies, we studied the evolution of 
N = 14 and N = 16 shell gaps. Our results suggest that the 
N = 14 neutron subshell is present in the oxygen isotopes 
but collapses in the boron, carbon, and nitrogen isotopic 
chains. Furthermore, the N = 16 subshell is predicted to be 
present in boron, carbon, nitrogen, and oxygen isotopes, but 
its size gradually decreases from 24 O to 21 B. Additionally, 
we investigated the roles of the different components of the 
interaction in shell evolution by employing the spin-tensor 
decomposition method. We find that the two-body spin-orbit 
force plays a significant role in the formation of the N = 14 
and N = 16 shell gaps. In general, our ab initio VS-IMSRG 
calculations agree well with the available experimental data, 
and theoretical predictions for these nuclei will be helpful 
for future experiments.
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