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Abstract
The continuum quasiparticle random phase approximation (CQRPA), which includes the Skyrme interaction for both ground- 
and excited-state calculations, is extended in a more consistent manner in the present work. The emergence, evolution, and 
origin of pygmy monopole strengths along the even–even Ni isotopes were investigated carefully within consistent Skyrme 
HF + BCS and CQRPA models. The SLy5 Skyrme interaction and density-dependent zero-range pairing interactions were 
adopted in the calculations. No pygmy monopole strength was observed in 70−78Ni. However, pronounced pygmy monopole 
strengths are clearly observed in 80−84Ni, which are attributed mainly to the neutron excitations from weakly bound orbitals 
into the continuum. The neutron states involved in the pygmy monopole strength include 1 g

9∕2 , 2 d
5∕2 , 3 s

1∕2 and 2 d
3∕2 . We 

suggest that more efforts from experimental investigations of pygmy monopole resonance should be made to confirm or 
disprove the predictions from models in the future.

Keywords  Pygmy monopole resonance · Continuum quasiparticle random phase approximation · Skyrme energy density 
functional

1  Introduction

The multipole response and appearance of pygmy dipole 
resonance (PDR) in finite nuclei far from the �-stability line 
have become hot issues in nuclear physics [1, 2]. Pygmy 

dipole resonance, which corresponds to the collective 
motion between the neutron skin and saturated core, has 
gained considerable attention because of its important appli-
cations in nuclear astrophysics and nuclear physics [3–7]. 
For example, the PDR found in the isovector giant dipole 
resonance could have a pronounced effect on the neutron 
capture rate in r-process nucleosynthesis. The properties 
of PDR are also used to constrain the equation of state of 
asymmetric nuclear matter [8–12]; it plays similar role as 
the neutron skin in nuclear physics [13, 14].

PDR has been widely studied over the years, both experi-
mentally and theoretically, using various methods [15–28]. 
In contrast, pygmy monopole resonance (PMR) has been 
much less analyzed experimentally in neutron-rich nuclei, 
and it has been theoretically predicted in neutron-rich 
Mg [29, 30], Ca [30–32], Ni [30, 33, 34], Sn, and Pb [35–37] 
isotopes. The calculations were based mainly on discretized 
quasiparticle random phase approximation (QRPA) or the 
finite amplitude method. It has been shown that PMR may 
significantly reduce the incompressibility in the nucleus 
with pronounced neutron excess, which could provide a 
more general and deeper understanding of nuclear incom-
pressibility in isospin asymmetric systems [35]. Therefore, 
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the measurement of isoscalar giant monopole resonances 
(ISGMR) and confirming the existence of PMR in neutron-
rich nuclei are very important in nuclear physics. Follow-
ing the suggestion of theoretical results, the ISGMR was 
measured by Vandebrouck et al. in the neutron-rich nucleus 
68 Ni using inelastic � scattering at 50A MeV in inverse kin-
ematics with the active target MAYA at GANIL [38, 39]. 
The pygmy monopole strength was observed at 12.9 MeV 
in addition to isoscalar giant monopole resonance. However, 
in the case of giant monopole resonance, excitations are usu-
ally built on the 2 ℏ� particle–hole configurations, which 
indicates that the particle states involved in all low-energy 
monopole excitations may be embedded in the continuum. 
Thus, correct treatment of the continuum in a neutron-rich 
nucleus is required to explain the experimental results.

In Refs. [40, 41], the nonrelativistic and relativistic 
continuum random phase approximations (CRPA) with 
Green’s function method were used to calculate the mono-
pole strength distributions of 68,78Ni, and the calculations 
indicated that there was no pronounced monopole state 
below the excitation energy of 20 MeV. Instead, a shoulder 
structure appeared in the low-energy region. This suggests 
that the discretized RPA may not be applicable to the cal-
culation of the monopole response in 68Ni, which should be 
replaced by the CRPA with Green’s function method. CRPA 
calculations show that there is no PMR for 68,78Ni. However, 
it is unclear whether PMR exists in more neutron-rich Ni 
isotopes. In this work, we focus on the evolution of ISGMR 
in neutron-rich Ni isotopes, particularly with respect to its 
low-energy strength.

The PMR in an open-shell nucleus cannot be accurately 
described by the CRPA with Green’s function method 
because the pairing correlation is not considered. Hagino 
and Sagawa formulated a continuum quasiparticle ran-
dom phase approximation (CQRPA) for open-shell nuclei 
in the coordinate space representation in Ref. [42]. The 
nucleon–nucleon interactions for the ground state adopted 
the Woods–Saxon type. For the residual interactions in the 
CQRPA calculations, they used the t 0 and t 3 parts of the 
Skyrme residual interactions. In this study, we extend the 
CQRPA model in Ref. [42] in a more consistent manner 
and applied it to study the ISGMR in neutron-rich Ni iso-
topes. In the new CQRPA model, the Schrödinger equation 
with a Woods–Saxon mean-field potential was replaced 
by the Hartree–Fock mean-field theory with the standard 
Skyrme interaction in the ground-state calculations. The 
Landau–Migdal forms of residual interactions derived from 
the Skyrme energy density functional (EDF) are adopted in 
the CQRPA calculations.

The remainder of this paper is organized as follows. In 
Sect. 2, we briefly introduce our theoretical framework. In 
Sect. 3, the CQRPA monopole strength distributions were 
investigated. The low-energy strengths of more neutron-rich 

Ni isotopes were studied carefully to explore the PMR. 
Finally, Sect. 4 provides summary and perspective.

2 � Theoretical framework

In this work, the Skyrme Hartree–Fock + Bar-
deen–Cooper–Schrieffer (HF+BCS) and CQRPA meth-
ods were employed to study pygmy monopole resonance 
in neutron-rich nickel isotopes. The Skyrme interaction is 
expressed as an effective zero-range force between nucle-
ons with density- and momentum-dependent terms, which 
has been successfully applied in the description of various 
nuclear properties [43, 44]. In this study, the Skyrme force 
SLy5 [45] was adopted for ground- and excited-state calcu-
lations. The pairing correlation is generated by a density-
dependent zero-range force

where �(r) is the particle density and �0 = 0.16 fm−3 is the 
density at nuclear saturation. � was set to 0.5, correspond-
ing to a mixed pairing interaction. The pairing strength V0 
is fixed to be 483.5 MeV⋅fm3 by reproducing the empirical 
neutron gap in 74 Ni ( Δn=1.262 MeV) [46, 47]. This value 
was then extended to calculations of other nickel isotopes.

The CQRPA model is briefly reviewed as follows. Fur-
ther details are provided in Ref. [42]. The CQRPA response 
function ΠCQRPA is governed by the Bethe–Salpeter (B–S) 
equation; its formalism generalized to the nuclear systems 
is given by

where Π0

(
r, r�;E

)
  is the unperturbed response function, 

which can be given by
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where v2
�
 , E� , and �� are the occupation probability, quasi-

particle energy, and radial wavefunction of the quasiparticle 
state � , respectively. D��(r) is the matrix element expressed 
as

In Eq. (3), the first term represents the two-quasiparticle 
excitations within the pairing active space, whereas the sec-
ond term corresponds to the transitions from the inside to the 
outside of the pairing active space. The terms Vres in Eq. (2) 
are the residual interactions in the B–S equation, which are 
from the second derivative of the Skyrme EDF with respect 
to the proton and neutron densities and are expressed by the 
Landau–Migdal parameters [48] in this study.

The monopole strength distribution S(E) of the system to 
an external field  Vext(r) = r2YLM(r̂) is then given by

After that, various moments can be calculated by means of 
the equation

then, one can obtain the constrained energy Econ and centroid 
energy Ecen

Besides, the ratio of mk for the low-energy (LE) PMR to the 
total strength, namely

is defined to quantify the evolution of the PMR with neutron 
excess, where ELE is set to 11 MeV and Emax is equal to 40 
MeV.

3 � Results and discussion

First, we briefly discuss the ground-state properties of the 
nickel isotopes. The ground-state properties of finite nuclei 
are depicted using the HF+BCS method  [50–52]. The 
HF+BCS equation is solved in coordinate space, where the 
radial size is set to 20 fm, which guarantees that the results 
under study are stable.

(4)
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Table 1 shows the binding energies per nucleon, the neu-
tron (proton) separation energies, charge radii, and neutron 
Fermi energies in even–even 68−84 Ni isotopes calculated by 
using the SLy5 Skyrme interaction; meanwhile, the calcu-
lated results are compared with the corresponding experi-
mental data.

It can be seen that the binding energies per nucleon 
decrease with increasing mass number, and the calculated 
values can reproduce the measurements well. The neutron 
separation energies of 68−82 Ni predicted by the Skyrme EDF 
are somewhat smaller than the experimental data, but the 
calculated results can reproduce the data tendency with 
respect to the mass number well. In Table 1, it is shown 
that the theoretical proton separation energies Sp are in good 
agreement with the experimental data. We also show the 
calculated charge radii of even–even 68−84 Ni isotopes in the 
table, which increase with increasing mass number. For the 
studied nuclei, only two nuclei, 68,70Ni, had experimental 
charge radii data. These results were well reproduced by 
the calculations. The calculated neutron Fermi energies are 
presented in the last column of Table 1; one can see that the 
neutron Fermi energies are approaching to zero when the 
nuclei are becoming more and more unstable.

For neutron-rich nickel nuclei, the discretized RPA has 
been proved to be unreliable, whereas Green’s function tech-
nique can properly take into account the contribution from 
the continuum [40, 41]. Therefore, CQRPA was adopted to 
explore the PMR in more neutron-rich Ni isotopes in the pre-
sent study. As mentioned above, the residual interactions in 
the CQRPA calculations adopt the Migdal form. This means 
that the interactions used in CQRPA are not the same as 
those used in the ground-state calculations. We adjusted 
the residual interactions to ensure that a spurious isoscalar 
dipole state appeared at zero excitation energy, and the value 
of the renormalization factor was approximately 0.8.

Table 1   Binding energies per nucleon Eb (MeV), the neutron (proton) 
separation energies Sn ( Sp) (MeV), charge radii Rch (fm), and neutron 
Fermi energies �n (MeV) in even–even nickel isotopes from 68 Ni to 84
Ni, calculated by using SLy5 interaction. Corresponding experimen-
tal data are shown in the brackets for comparison [47, 49]

Eb (MeV) Sn (MeV) Sp (MeV) Rch (fm) �n (MeV)

68Ni 8.71(8.68) 6.99(7.79) 14.47(15.43) 3.91(3.89) −7.09

70Ni 8.64(8.60) 6.11(7.31) 15.76(16.12) 3.93(3.91) −6.24

72Ni 8.56(8.52) 5.45(6.89) 17.04(17.15) 3.95 −5.62

74Ni 8.46(8.43) 4.95(6.66) 18.29(18.02) 3.96 −5.13

76Ni 8.36(8.34) 4.53(6.02) 19.50(18.92) 3.98 −4.70

78Ni 8.26(8.24) 3.29(5.60) 20.69(20.26) 3.99 −2.40

80Ni 8.10(8.09) 1.70(3.15) 21.46 4.01 −1.86

82Ni 7.94(7.94) 1.44(2.70) 22.18 4.03 −1.60

84Ni 7.78 1.11 22.85 4.04 −1.17
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The CQRPA monopole strength distributions for 
70−84 Ni are shown in Fig. 1. One can see the monopole 
strengths for 70−78 Ni increased monotonically from the 
particle threshold to the ISGMR peak at approximately 
21 MeV. This implies that a shoulder structure appears in 
the low-energy region for 70−78Ni. This is consistent with 
the conclusions of Refs.  [40, 41]; there is no PMR for 
70−78Ni. However, starting from 80Ni, the particle threshold 
becomes much lower, and an obvious PMR emerges in the 
energy region between 2.5 and 11 MeV. With the increas-
ing of mass number, the low-energy strength becomes 
more and more strong.

We separated the low-energy PMR from the giant mon-
opole resonance at an excitation energy of E = 11 MeV 
and calculated the ratios of the low-energy strength to 
the whole ISGMR strength for the non-energy-weighted 
sum rule m0 , inverse energy-weighted sum rule m−1 , and 
energy-weighted sum rule m1 , respectively. As illustrated 
in Fig. 2a, the ratios of m0 (orange circles), m−1 (purple 
squares), and m1 (black stars) of the low-energy strength 
are almost zero until mass number A = 78 . From 80Ni, the 
three ratios increased significantly, and the values became 
larger in more neutron-rich nuclei. This suggests that the 
contribution of the PMR below 11 MeV increases with 
increasing mass number. The centroid energies Ecen (green 
pentagons) and constrained energies Econ (pink triangles) 
are plotted as functions of the mass number in Fig. 2b, 
which is similar to Fig. 2a, the values of Ecen and Econ 
remain constant when the mass number is not greater than 
78, whereas the two energies are significantly decreased 
from 80 Ni to 84 Ni because of the appearance and enhance-
ment of the low-energy monopole strengths. The values of 
Ecen are somewhat higher than those of Econ along the Ni 
isotopic chain, especially for 80−84Ni.

In this paragraph, quasiparticle excitations in the low-
energy region will be carefully investigated because 
these excitations may contribute significantly to the PMR 
strengths. The unperturbed and CQRPA monopole strengths 
of 80−84 Ni are shown in Fig. 3a–c. For the giant monopole 
resonance, the CQRPA strengths are shifted down to a 
lower energy compared to the distribution of unperturbed 
strengths because the attractive residual interactions play an 
important role in isoscalar monopole excitation. The PMR 
strengths were slightly reduced compared to the unperturbed 
strengths, but the locations were almost unchanged. It can 
be seen that the low-energy strengths are highly sensitive to 
neutron excess. It was found that the low-energy strength 
below 20 MeV shown in the figures is made of the excita-
tions mainly contributed by neutron states around the Fermi 
level, including 1 g9∕2 , 2 d5∕2 , 3 s1∕2 , and 2 d3∕2 . The corre-
sponding single-particle energies Es.p. , gaps Δ , quasiparticle 

Fig. 1   (Color online) CQRPA monopole strength distributions for 
70−84 Ni predicted by the SLy5 Skyrme interaction

Fig. 2   (Color online) a Ratios R of m0 , m−1 , and m1 for the even–even 
nickel isotopes from 68 Ni to 84Ni. b Centroid energies Ecen and con-
strained energies Econ in 68−84Ni

Fig. 3   (Color online)  a-c: The unperturbed and CQRPA monopole 
strength distributions for 80−84 Ni predicted by the SLy5 Skyrme inter-
action.   d-f: Some unperturbed neutron threshold strengths, which 
contribute appreciably to the total unperturbed strength below 20 
MeV in 80−84Ni, are shown for respective occupied orbits, (1g9∕2)−1 , 
(2d5∕2)−1 , (3s1∕2)−1 , and (2d3∕2)−1
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energies Eq.p. , and occupation probabilities v2 are listed in 
Table 2. We noticed that the single-particle energies of the 
four neutron states become increasingly bound with an 
increase in the neutron excess. It is shown that the gaps of 
the four neutron states are rather stable at approximately 
0.6 MeV. The neutron states 2 d5∕2 are just above or below 
the Fermi energies; therefore, the quasiparticle energies are 
relatively small. As for states 1 g9∕2 , 3 s1∕2 and 2 d3∕2 , they 
are a little far from the Fermi energies, and their quasipar-
ticle energies are relatively large except for state 3 s1∕2 in 
84Ni, because its single-particle energy is much closer to 
the Fermi energy. One can see that the occupation prob-
abilities of 1 g9∕2 are almost 1.0, leading to relatively stable 
excitations. Other partially occupied orbits (2d5∕2 , 3 s1∕2 and 
2 d3∕2 ) changed their occupation probabilities when the neu-
tron excess was increased. The corresponding unperturbed 
neutron threshold strengths, contributed by the excitation 
of neutrons around the Fermi surface to the continuum, are 
gradually enhanced[see Fig. 3d–f]: The occupancy probabil-
ities of 2d5∕2 are increased much more than the other states 
with the filling of neutrons, from 0.33 in 80 Ni increased to 
0.92 in 84Ni. Therefore, the increase in low-energy strengths 
in 80−84 Ni is mainly due to the contribution of a stronger 
threshold strength of 2d5∕2.

4 � Summary and perspectives

In the present study, we extended the CQRPA approach 
in Ref.   [42] in a more consistent manner, in which the 
model includes the Skyrme interaction for both ground- 
and excited-state calculations. Then, the consistent Skyrme 
HF+BCS and CQRPA models were applied to explore the 
emergence, evolution, and origin of low-energy monopole 
strengths along the even–even Ni isotopes. Shoulder struc-
tures at low-energy region for 70−78 Ni are found, which are 
similar to the conclusions in Refs.[40, 41]. However, the 
situation changed dramatically with the occupation of the 
weakly bound neutron orbitals. Indeed, starting from 80Ni, 
pronounced pygmy monopole strengths were clearly iden-
tified. The origin of the low-energy monopole strength is 
attributed to neutron excitations from the weakly bound 
orbitals into the continuum, including neutron states 1 g9∕2 , 

2 d5∕2 , 3 s1∕2 , and 2 d3∕2 . The changes in the ratios of low-
energy strengths to total ISGMR strengths for m−1 , m0 and 
m1 as well as the centroid and constrained energies along Ni 
isotopes are also discussed, and the changes are more obvi-
ous when the mass numbers are larger than 78, which are 
attributed mainly to the emergence of low-energy strengths. 
Eventually, the experimental data of PMR in neutron-rich 
nuclei are obviously inadequate; more efforts from the 
experimental investigations of PMR shall be made to con-
firm or disprove the predictions from models in the future.
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