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Abstract

Recently, machine learning has become a powerful tool for predicting nuclear charge radius R, providing novel insights
into complex physical phenomena. This study employs a continuous Bayesian probability (CBP) estimator and Bayesian
model averaging (BMA) to optimize the predictions of R from sophisticated theoretical models. The CBP estimator treats
the residual between the theoretical and experimental values of R as a continuous variable and derives its posterior prob-
ability density function (PDF) from Bayesian theory. The BMA method assigns weights to models based on their predictive
performance for benchmark nuclei, thereby accounting for the unique strengths of each model. In global optimization, the
CBP estimator improved the predictive accuracy of the three theoretical models by approximately 60%. The extrapolation
analyses consistently achieved an improvement rate of approximately 45%, demonstrating the robustness of the CBP estima-
tor. Furthermore, the combination of the CBP and BMA methods reduces the standard deviation to below 0.02 fm, effectively
reproducing the pronounced shell effects on R of the Ca and Sr isotope chains. The studies in this paper propose an efficient
method to accurately describe R of unknown nuclei, with potential applications in research on other nuclear properties.

Keywords Machine learning - Nuclear charge radii - Continuous Bayesian probability estimator - Bayesian model
averaging

1 Introduction including shape coexistence [2], neutron skin [3-5], pro-

ton halo [6], shell structure [7], odd—even staggering [8,

The nuclear charge radius R is a fundamental property of
atomic nuclei and plays a crucial role in research on nuclear
structures [1]. It provides insights into various phenomena,
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9], and nuclear matter saturation [10]. There are two main
experimental methods for measuring R. One directly deter-
mines R through experiments such as muonic atom X-ray
spectroscopy (#~) [11] and high-energy elastic electron
scattering (e”) [12, 13]. The second type analyzes subtle
differences between isotopes to indirectly measure R, for
instance, K, X-ray isotope shifts (K,IS) [14] and optical iso-
tope shifts (OIS) [15]. Recently, advancements in laser spec-
troscopy techniques have enabled precise determination of
R for over 130 unstable nuclei [16-21]. Nevertheless, chal-
lenges in the experimental measurement of R persist, espe-
cially in the production of exotic isotopes and in improving
experimental sensitivity, making it difficult to understand
nuclear structures in unexplored regions.

Many theoretical models have been developed to study
R, from macroscopic formulas to sophisticated micro-
scopic approaches. First, a conventional approach to esti-
mate R is a semi-empirical formula based on the A!'/3 law
or the Z'/3 dependence of the liquid drop model, improved
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by introducing effects such as shell structure, isospin, and
odd—-even nuclear effects [22-24]. Subsequently, local-
relation-based models determine R from the properties of
neighboring nuclei [25-28], with prominent examples being
the Garvey—Kelson relation [29, 30] and mirror nuclei rela-
tion [31, 32]. Additionally, more sophisticated mean-field
nuclear structure models offer self-consistent descriptions
of R and other nuclear properties. Examples include the
Skyrme—Hartree—Fock-Bogoliubov (HFB) models [33-36],
relativistic mean-field (RMF) models [37—41], and relativ-
istic Hartree—-Bogoliubov (RHB) models [42—44]. Recent
studies in Refs. [45, 46] have systematically calculated prop-
erties such as nuclear binding energy, charge radii, and elec-
tric quadrupole moment based on the deformed RHB theory
in continuum. Finally, a class of ab initio approaches, such
as the no-core shell model (NCSM), starts from realistic
nucleon interactions and provides a precise description of R
by solving the many-body Schrédinger equation or the corre-
sponding self-consistent field equations [47, 48]. Theoretical
models have achieved significant advancements, reducing
root-mean-square errors to below 0.05 fm and providing
satisfactory descriptions of the unique behaviors of R in
isotope chains. However, as the accuracy requirements for
calculations increase, the complexity of theoretical models
also increases significantly.

In recent years, machine learning (ML) techniques have
been widely applied in nuclear physics [49, 50], includ-
ing nuclear mass studies [51-59], charge density distribu-
tions [60, 61], nuclear decay [62—66], and nuclear reactions
[67-69], particularly for predicting R [70-75]. Initially, the
ML method was applied to train the experimental values
of R., independent of the theoretical models. As early as
2013, researchers have utilized artificial neural networks
(ANN) to predict R by directly generating a formula [70].
Subsequently, to incorporate the strengths of the theoretical
models, ML techniques were employed to refine them by
estimating the residuals between the theoretical and experi-
mental values of Ri. Early work in 2016 proposed a Bayes-
ian neural network (BNN) with a single hidden layer to opti-
mize these predictions [71]. Later, multiple research groups
significantly enhanced the robustness of BNN by introducing
physical effects and adding input features [72—74]. Nota-
bly, the naive Bayesian probability (NBP) classifier, which
applies Bayesian theory and k-means clustering, reframes
the prediction of R as a classification task. This approach
demonstrated strong extrapolation capabilities and provided
uncertainty in prediction [75, 76].

Recently, the application of the continuous Bayesian
probability (CBP) estimator and the Bayesian model averag-
ing (BMA) further improved the reliability of nuclear mass
descriptions [77]. Unlike the NBP method, which discretizes
the residuals 6 of the theoretical model, the CBP estima-
tor considers 6 as a continuous variables. By combining the
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Bayesian framework with kernel density estimation (KDE),
the CBP estimator derives a posterior probability density
function (PDF) of 6 for the target nuclei. This method dem-
onstrates a robust predictive performance and can explain
intrinsic numerical relationships. Moreover, the BMA
method combines the predictive strengths of different theo-
retical models across distinct regions of the nuclear chart,
further improving overall performance [78—80].

This study combines the CBP estimator and BMA method
to optimize the predictions of R. The initial theoretical val-
ues of R were calculated separately using the HFB, RHB,
and semi-empirical liquid drop models. First, the global
optimization capability of the CBP estimator was evaluated
by comparing its predictions with experimental data from
the 2013 compilation of nuclear charge radii [16]. Subse-
quently, its extrapolation capability was investigated using
the learning set from the 2004 compilation [11] to predict
R for nuclei newly reported in the 2013 compilation. After
optimization using the CBP estimator, to further improve the
predictive accuracy for nuclei near the drip line, the BMA
method was applied to assign weights to each model based
on their predictive performance on the benchmark nuclei.
The benchmark nuclei selected in this study are K [81],
38Ca [82], '9°Cd, ''°Cd [83], 2*'Po [84], and >**Ra [85].
Finally, we predict R of the Ca and Sr isotopic chains using
the CBP estimator in combination with the BMA method
to verify the ability of this approach to capture the physical
effects on R.. The approaches proposed in this study can
be used to investigate R of unknown nuclei, with potential
applications in the study of other nuclear properties.

This paper is structured in three sections: Sect. 2 intro-
duces the theoretical framework of the CBP and BMA meth-
ods. Section 3 presents the results of these methods. Sec-
tion 4 provides the summary of this study.

2 Theoretical framework

The theoretical framework offers detailed procedures and
formulas for a continuous Bayesian probability (CBP) esti-
mator and the Bayesian model averaging (BMA). A method
for evaluating the predictive performance and a formula for
quantifying the uncertainties are also presented.

2.1 The continuous Bayesian probability method

In the CBP estimators, the residuals 6 of R are treated as
continuous variables and their posterior PDFs are derived
from Bayesian theory. The estimated residuals, which are
used to correct the theoretical models, can then be calculated
from the posterior PDFs.
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For continuous multivariate variables, given a set of fea-
tures or variables X, X,, ..., X,, and a target variable Y, the
posterior PDF can be expressed as

oF| X = P(X1Y)p(X,] Y) - p(X,,| Y)p(¥) o
[p(Xi1Y)p(X,]Y) -+ p(X,,| Y)p(Y)dY

The conditional PDF p(X;|Y) represents the likelihood of
observing events X; given the occurrence of Y, whereas the
prior PDF p(Y) denotes the frequency of occurrence for a
given Y. The denominator in Eq. (1) acts as a normalization
constant, ensuring that the posterior PDF p(Y1X) is integrated
to unity.

According to Eq. (1), event Y represents the continuous
residual 6. Events X; correspond to the proton number Z,
and neutron number N, of the target nucleus. It is assumed
that Z, and N, are independent of other variables. Thus, the
posterior PDF can be expressed as

p(Z]8)p(N,| 8)p(5)
[ p(Z18)p(N,| 8)p(8)ds

The conditional PDFs p(Z,| 6) and p(N,| 6) in Eq. (2) can be
derived using the following univariate Bayesian formula,

P(5|Z1)P(Zt)

p(d)

p(81Z.N,) = @)

p(Z16) = : ©)

p(8IN,)p(N,)
o)

In Egs. (3) and (4), the prior probability p(Z(N,)) was cal-
culated from the occurrence frequencies of Z,(N,) in the
learning set. The likelihood PDFs p(6|Z,) and p(6|N,) are
estimated using kernel density estimation (KDE).

p(N:|8) = @)

1 ny 5—55

pwm—%@;K(@), 5)
1 & [(6-6

p((Sth) = nNhN ;K< hN >’ (6)

where Ay, denotes the bandwidth parameter and nyy, rep-
resents the number of nuclei in the learning set that have
the same Z,(NV,) as the target nucleus. Kernel function K() is
specified as a Gaussian kernel because the residuals follow
a Gaussian distribution:

1 2

K@ = e 2.
" @)

Similarly, the prior PDF p(6) can also be obtained using
KDE,

X © < 5— 5i>
h§ P h5 ’ (8)
where /5 denotes the bandwidth parameter, and # is the total
number of nuclei in the learning set. In Egs. (5), (6), and (8),
the individual residual §; is defined as 6; = eCXP - Rlh The
values chosen for the bandwidth parameters hg, &, and hy
depend on several factors, including the range of §;, the size
of the dataset, and the level of noise in the data.

When determining the likelihood PDF and prior PDF, a
weight function is introduced to account for the local rela-
tionship between neighboring nuclei:

2 2
Z—-7Z) +(N—-N,
W(Z,N;Z[,Nt)=exp —< t) p( t) +e. (9

Parameter p significantly affects the prediction performance
and extrapolation range of the CBP estimator. Based on the
distribution characteristics of the nuclei from the dataset on
the nuclear chart, p = 4 was selected for this study. Param-
eter ¢ affects the stability of the posterior PDF, and e = 10~1°
was chosen to ensure a Gaussian distribution for p(5| Z, Nl).
The prior PDF and likelihood PDF with the applied weights
are as follows:

Pu(8) = h% <

> (Z,,N;:Z,,N,), (10)

Pw(812) = nzh ; < ) (z,N;Z,N),  (11)
Pu(6IN) = 2 ( ) (Z,NsZ,N,). (12
N =1

The posterior PDF p(8| Z, N,) is obtained by combining
Egs. (2)—(12), and the expected value was used to determine
the estimated residual of the target nucleus.

§™(Z,N) = / sp(8] Z, N)ds. (13)

Ultimately, the refined nuclear charge radius is obtained by
appending the estimated residual 6°™(Z, N) to the theoretical
nuclear charge radius R"(Z, N):

R&™(Z,N) = RMZ,N) + 6°™(Z,N). (14)

2.2 Bayesian model averaging
Even after refinement by the CBP estimator, individual mod-

els often fail to comprehensively account for all physical phe-
nomena, owing to their varying strengths and weaknesses in
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different regions of the nuclear chart. To consider the advan-
tages of different models in the isotopic and isotonic chains,
Bayesian model averaging (BMA) was introduced [86].

The BMA method is based on the Bayesian theorem and
assigns weights to each model by assessing its predictive
performance. Specifically, given a set of K candidate models
M,, ..., Mg, the BMA method calculates posterior probabili-
ties based on the predictions for the benchmark nucleus from
each model. These posterior probabilities serve as the weights
for each model and are calculated as follows:

P(D| M) P(My)
i, P(DI M) P(M;)

In this study, the six selected benchmark nuclei in dataset D
were ¥K, 3Ca, 100Cq, 119Cd, 201Pg, and 2*3*Ra, which were
used to evaluate the accuracy of the models based on the
entire nuclide chart. Residuals were obtained using three
theoretical models: the HFB model with SLy4 parameteriza-
tion, RHB model with PK1 parameter set, and semi-empir-
ical liquid drop model. The prior probability P(M k) =1/K
is related to the number of candidate models, and the condi-
tional probability P(D| M, ) depends on the predictive per-
formance of each theoretical model,

2
S
P(D|M,) = H

J

P(M,| D) =

as)

: (16)

where J denotes the total number of benchmark nuclei. The
refined residuals 5;3” for the j-th benchmark nucleus corre-
sponding to the theoretical model M, are defined as
St = RZ/.P — R{". The parameter 4 is used to normalize the
values of 5;3” and is defined by

K J

= KJZZWm (17)

k=1 j=1

Finally, the average nuclear charge radius calculated using
the BMA method is:

K
R(Z.N,) = Y. RS"P(M,| D). (18)
i=1

The discrepancies between the corrected theoretical pre-
dictions and the experimental data for each model were
assessed using the standard deviation o,,,, defined as
S ReXP Reorr 2

ci  Tci ) (19)
=1

ms
S n4
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In the CBP estimator, the prediction uncertainties are
obtained from the posterior PDF. The one-sigma uncertainty
0™ (Z, N) of each model corresponding to a specific nucleus
(Z, N) is defined as

ﬁ%ﬂh¢/w4wmmwmww, (20)
and the uncertainty of the BMA is given by

K
"(Z,N) = ) o™"P(M,| D). Q1)

i=1

3 Results

In this section, the theoretical values of R are initially
calculated using the HFB model with SLy4 parameteriza-
tion, RHB model with the PC-PK1 parameter set [87], and
three-parameter semi-empirical formula of Sheng et al. [88].
Notably, the RHB model is based on the relativistic contin-
uum Hartree—Bogoliubov theory and incorporates nucleon
intrinsic electromagnetic structure corrections [89, 90].
Subsequently, the initial results were refined by employing
the CBP estimator and BMA method. The entire set com-
prises 892 nuclei with proton numbers Z > 3 sourced from
the 2013 charge radii compilation [16]. The global optimi-
zation and extrapolation capabilities of the CBP estimator
are evaluated, followed by an analysis of the extrapolation
performance of the approach that combines the CBP and
BMA methods.

3.1 Global optimizations of the CBP estimator

The theoretical R. values of 892 nuclei were calculated
using three models, and the raw residuals 6P™ = Rexp Rth
for each nucleus were obtained. Subsequently, the CBP estl-
mator was applied to refine the predictions of each model.
According to Sect. 2, the posterior PDF p(5| Z,, N,) of the
target nucleus can be calculated by Egs. (2)—(12). The
refined charge radius R (Z,, N,) was then obtained using
Egs. (13) and (14). The HFB and RHB models in this study
were solved under the assumption of spherical symmetry.
In the entire set, the majority of 6P is distributed within
the range of —0.1 fm to 0.1 fm. For nuclei with identical
proton or neutron numbers, the variation in 6™ is typically
limited to within 0.05 fm. Based on the distribution char-
acteristics of 6P, the bandwidth parameters were selected
as hs = 0.07fm, h, = 0.01 fm, and hy = 0.02 fm. Table 1
presents the standard deviations o, of the three theoretical
models before optimization and o, after optimization by
the CBP estimator. The global optimization performance of
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Table 1 The standard deviation o, (fm) from the theoretical models
and o, (fm) after the CBP and NBP refinements. 892 nuclei in 2013

charge radii compilation with Z > 3 are chosen as the entire set

Methods HFB RHB Sheng
CBP OCpre 0.040 0.047 0.042
Cpost 0.016 0.017 0.016
Ac /0y 60.0% 63.8% 61.9%
NBP Cpost 0.020 0.021 0.023
Ao /o, 50.0% 55.3% 45.2%

pre

the CBP estimator was evaluated using the improvement rate
A()-/o-lare = (6pre - Gpost)/o-pre'

As shown in Table 1, the standard deviations o, for
the spherical HFB, RHB, and semi-empirical formulas are
approximately 0.04 fm. However, the deformed mean-field
theories give a standard deviation of approximately 0.03 fm
[41, 42]. After refining using the CBP estimator, the standard
deviations o, for both spherical models are further reduced
to approximately 0.016 fm, representing an improvement
of approximately 60%. This improvement demonstrates the
advantages of the CBP estimator. The CBP estimator can
introduce deformation effects into the calculations of spheri-
cal theoretical models using statistics, thereby improving the
description of R for deformed atomic nuclei.

To illustrate the progress achieved by the CBP method,
Table 1 presents the optimization performance of the NBP
method for comparison. The NBP method is a discrete
Bayesian probabilistic approach that employs the k-means
algorithm to determine the cluster centers 6;, which are then
used to refine the theoretical models. For the three models,
the improvement rate of the CBP method is approximately
10% higher than that of the NBP method. This arises from
the CBP estimator treating residuals as continuous variables
and obtaining the estimated residual value 6°™ by integrat-
ing the posterior PDF over the entire residual distribution,
rather than using a discrete posterior probability, as in the
NBP method. The CBP estimator accounts for all possible
residual contributions, thereby achieving a higher degree of
optimization and demonstrating a clear advantage.

To further illustrate the performance of the CBP estima-
tor across the different models and regions, Fig. 1 presents
the raw residuals (gray dots) from the HFB model, the RHB
model, and the semi-empirical formula, along with the cor-
rected residuals (blue dots) after applying the CBP estimator.
It is evident that after CBP optimization, the residuals for
all three theoretical models were remarkably reduced across
most regions. This improvement can be attributed to the
CBP estimator framework. Based on the global description
of theoretical models, the CBP estimator utilizes a statisti-
cal approach to further capture the local correlation effects
among nuclei with identical proton or neutron numbers. The

I‘iFB(O’ = 0'.04(] fm)| 4
. CBP(o = 0.016 fm)

~ 0.2} ¢ | = RHB(c = 0.047fm)|
g . | -+ CBP(c = 0.017fm)
={®
o
|
a*o—ﬂ.l F
% 00
; b
Q::—D.Z - ( ) |
0.2F . > Sheng(c = 0.042fm)| 4

- CBP(o = 0.016 fm)

CXp

Fig.1 The charge radii residuals 6 = R.™ — Rg‘ from the experimen-
tal data as a function of mass number A. The gray dots denote the raw
results from the HFB calculations, and the blue dots denote the pre-
dicted residuals after the CBP refinements. b and ¢ the same as a, but
for the results from RHB model and Sheng’s formula, respectively

introduction of the weight function ensures that only nuclei
in close proximity to the target nucleus on the nuclear chart
significantly influence the prediction, thereby enhancing the
sensitivity of the CBP estimator to local correlation effects.
Therefore, the CBP estimator is more effective in regions
where local correlations are stronger, and the distribution
of 6P is more regular, such as regions with pronounced
shell effects.

In regions 60<A <90, 120<A <140, and
215 < A <240inFig. 1a;45 <A < 90,110 < A < 140, and
220 < A <240inFig. 1b;and 80 < A < 95,110 < A < 145,
and 210 < A < 240 in Fig. 1c, where theoretical model pre-
dictions exhibit similar accuracy and the distribution of
6P™ is highly regular, the CBP estimator achieves substan-
tial improvements, considerably reducing the residuals. In
particular, for nuclei with mass numbers around A = 100,
A =150, and A = 190, where proton—neutron residual inter-
actions and other physical effects lead to large 6P, the CBP

@ Springer



215 Page60of11

J.Liuetal.

method markedly enhances the predictive accuracy by sta-
tistically accounting for these interactions and effects. How-
ever, for light nuclei, where 6P™ exhibits greater variability
owing to relatively low nucleon numbers, the optimization
effect of the CBP estimator is comparatively limited. As
more charge radii of light nuclei are precisely measured in
experiments, the predictive performance of the CBP estima-
tor for light nuclei can be further enhanced.

3.2 Extrapolating capabilities of the CBP estimator

Model extrapolation was essential for the acquisition of
unknown data. In this section, we evaluate the extrapola-
tion performance of the CBP estimator. The learning set
comprised 790 nuclei with proton numbers Z > 3 from the
2004 charge radii compilation [11], while the validation set
included 102 experimental charge radii added between 2004
and 2013. The bandwidth parameters /g, hy, and h, used in
the extrapolation process are the same as those employed
in the global optimization. The standard deviations o, and
Opost fOI the learning and validation sets, both before and
after applying the CBP estimator, are reported in Table 2
along with the optimization rate Ao/ Opre-

According to Table 2, the standard deviations of R cal-
culated using the HFB, RHB, and semi-empirical formulas
are approximately 0.040 fm for both the learning and valida-
tion sets. This consistency indicates that the initial theoreti-
cal models possess considerable extrapolation capabilities,
which are more beneficial for the CBP estimator in predict-
ing unknown regions. After applying the CBP estimator, the
standard deviations for all three models in the learning set
decreased to less than 0.020 fm, achieving an improvement
of approximately 60% compared to the initial results. In the
validation set, the standard deviations were slightly greater
than 0.020 fm, with improvement rates of approximately
45% for the three models. The steady improvement rates
across both the learning and validation sets demonstrate the
robust extrapolation capabilities of the CBP estimator.

The optimization rates for all three models in the vali-
dation set were lower than those in the learning set. This
phenomenon can be explained by the CBP framework: the
Bayesian formula accounts for statistical correlations among

Table2 The raw standard deviation o, (fm) from the theoretical
models and the standard deviation o, (fm) after the CBP estima-

tor refinements. The learning set includes 790 nuclei with Z > 3 in

nuclei with the same proton and neutron numbers, whereas
the weight function considers local relationships among
neighboring nuclei. Most nuclei in the validation set were
positioned near the drip line, where fewer neighboring nuclei
were represented in the learning set, thereby diminishing the
performance of the CBP estimator. As more R values were
measured experimentally, the extrapolation ability of the
CBP estimator was expected to improve significantly.

The results in Table 2 indicate that the CBP estima-
tor demonstrates excellent extrapolation capabilities. The
HFB, RHB, and semi-empirical formulas provide the over-
all trends of R variations. By inheriting the advantages
of theoretical models and incorporating local correlation
characteristics between nuclei, the CBP estimator captures
the physical effects that are not reflected in theoretical mod-
els, leading to reliable corrections of R.. Consequently, for
nuclei lacking experimental data, the CBP estimator can
offer precise and robust predictions.

3.3 Comprehensively factoring in the results
of different models using the BMA method

After optimization using the CBP estimator, specific models
exhibited optimal predictive performance in distinct regions,
especially for nuclei far from the f-stability line. This study
introduces the BMA method to integrate these strengths.
The BMA method assigns weights based on the predictive
performance of different models for the benchmark nuclei.
To balance the predictive discrepancies between the theoreti-
cal models across different regions of the nuclear chart, the
benchmark nuclei selected for the BMA method were K,
38Ca, 100Cd, 119Cd, 291Pg, and 233Ra, which cover a wide
range of the nuclear chart, including from light nuclei to
heavy nuclei and from proton-rich regions to neutron-rich
regions. These selected nuclei are located near the edges
of the nuclear chart and are outside the 2013 charge radii
compilation, making them particularly valuable for bench-
marking extrapolation capabilities.

After obtaining the corrected residuals 5" = R.” — R
for the benchmark nuclei, the weights for each model
were calculated using the BMA method and the results
are presented in Table 3. The HFB model exhibits

the 2004 compilation, and the validation set includes the newly added
102 nuclei in the 2013 compilation

Models Learning set Validation set

O-pre Gpost A6/ O-pre Upre Gpnsl AO-/ Gpre
HFB 0.040 0.017 57.5% 0.038 0.021 44.7%
RHB 0.046 0.017 63.0% 0.052 0.025 51.9%
Sheng 0.042 0.018 57.1% 0.043 0.026 39.5%
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Table 3 The corrected residuals 6" (fm) of six benchmark nuclei: K, 3¥Ca, 199Cd, 11°Cd, 2°!Po, and 2*3>Ra, and the weights of three models by

BMA are based on 6°°" of these four benchmark nuclei

Models YK BCa 100cq 119¢cd 201pg 233Ra Weight
HFB 0.017 -0.003 -0.017 0.007 0.007 —-0.006 0.49
RHB -0.015 0.010 0.008 —0.006 -0.017 0.009 0.38
Sheng 0.013 0.013 -0.014 0.010 0.018 -0.011 0.13

superior predictive accuracy for benchmark nuclei and is
thus assigned higher weights. In contrast, the RHB model
and semi-empirical formula are assigned lower weights
owing to their lower predictive accuracies. The BMA
method was applied to optimize the predictions for 102 vali-
dation nuclei. The standard deviation is 0.019 fm, which is
lower than that of the individual model optimized by the
CBP estimator, as shown in Table 2. Compared with the
HFB model, the RHB model, and Sheng’s formula individu-
ally optimized using the CBP estimator, the introduction of
the BMA method improves the accuracy by 9.5%, 24.0%,
and 26.9%, respectively. This demonstrates that the BMA
method effectively combines the strengths of the different
models, further enhancing predictive accuracy.

Analysis of the trend of variation in charge radii within
isotopic chains reveals many important and interesting
physical phenomena. This study combines the CBP and
BMA methods to predict the R of the Ca and Sr isotopic
chains, illustrating the capability of this approach to cap-
ture the physical effects within the isotopic chains. The cal-
cium isotopic chain serves as a distinctive nuclear system
for investigating interactions between protons and neutrons
inside the nucleus [91-93]. In the stable isotope region of
the Ca chain, °Ca and “8Ca both exhibit a large number of
protons and neutrons, and their R values are nearly identi-
cal. Owing to the change in the nuclear structure associ-
ated with shell closure, a kink in R- at N = 28 is observed.
For 20 < N < 28, the trend of R follows a parabolic shape,
and the odd—even staggering effect on R is particularly

pronounced. For neutron-rich nuclei with N > 28, R exhib-
ited a strong increase.

Figure 2a presents the predicted charge radii R (purple
squares) for the Ca isotopic chain based on the combined
CBP and BMA methods, along with uncertainty bands cal-
culated from the corresponding error estimates. The experi-
mental values RZXP (gray circles) and initial results from the
HFB model (blue squares) are also provided for comparison.
The HFB model predicts an approximately linear relation-
ship between R and the mass number, which deviates from
the experimental results. After corrections using the CBP
and BMA methods, the discrepancies between R and the
experimental data were substantially reduced, providing an
accurate description of the parabolic trend of R and kink
at ¥8Ca.

The experimental charge radii in Fig. 2a clearly show
the shell effect and odd—even staggering. However, the
odd—even staggering is diluted in the R predicted using
the CBP estimator combined with the BMA method. This
is because the calculation of the CBP estimator relies on
nuclides with the same proton number Z or neutron number
N, which leads to a weakening of the odd—even staggering
effect. The introduction of the BMA method combines the
results of the three models, further diluting the odd—even
staggering effect.

In addition to Ca isotopes, the charge radii of Sr isotopes
also exhibit prominent shell effects [94]. The Sr isotope
chain extends from the valley of stability at 83Sr, where
isotopes show a spherical shape, to the strongly deformed

Fig.2 a The theoretical and
experimental charge radii R
for Ca isotopes, with uncer-
tainty bands included for the
predictions refined by the CBP
estimator. b Similar to a, but for
Sr isotopes
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isotopes on either side of the stability line. As the nucleus
approached the neutron shell closure at N = 50 from the
neutron-deficient side, R gradually decreased. At N = 50,
it exhibited a kink, after which it began to increase. When
N reached 60, a sudden increase in R~ was observed, corre-
sponding to an experimental transition from a near-spherical
shape to a strongly deformed configuration [95]. The refined
predictions R of Sr isotopes obtained using the CBP estima-
tor in conjunction with the BMA approach are shown in
Fig. 2b. R was closely aligned with the experimental data,
particularly for the kink of 38Sr and the pronounced increase
in R observed at *8Sr.

4 Summary

This study combined the continuous Bayesian probability
(CBP) estimator with Bayesian model averaging (BMA) to
refine R predictions from the HFB, RHB, and semi-empir-
ical formulas. In global optimization, the CBP estimator
achieved an improvement of approximately 60% for all three
models. In extrapolation, it demonstrates an improvement
rate of approximately 45%. These results indicate that, based
on sophisticated theoretical models, the CBP estimator can
provide accurate predictions of R in the unknown regions
of the nuclear chart. To enhance the predictive accuracy for
nuclei near the drip line, the BMA method was subsequently
employed to assign weights to each model based on their
predictive performance for the benchmark nuclei. By com-
bining the CBP estimator with the BMA method, the stand-
ard deviation is further reduced, and the physical phenomena
on R such as shell effects in the Ca and Sr isotopic chains,
are accurately captured.

The improvements achieved by the proposed method are
attributed to the theoretical frameworks of the CBP estima-
tor and the BMA method. According to the CBP estimator
framework, a continuous posterior probability density func-
tion (PDF) was generated to obtain the estimated residuals
for the target nucleus. The Bayesian formula captures the
statistical relationships among nuclei with the same proton
or neutron number, whereas the weight function accounts for
the local correlations among neighboring nuclei. The theo-
retical models provide the overall trend of R, and the CBP
estimator reliably refines these theoretical results through
statistical techniques. Thus, the BMA method combines the
strengths of different models across various regions of the
nuclear chart, leading to further refinement of the results.

In summary, the CBP and BMA methods were effec-
tively employed to predict the nuclear masses and charge
radii, demonstrating considerable predictive accuracy.
The methodologies developed in this work can be further
extended to estimate charge radii in regions far from the f

@ Springer

-stability line and are equally applicable to the exploration
of other nuclear properties, including nuclear reactions
and decay processes.
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