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Abstract
Recently, machine learning has become a powerful tool for predicting nuclear charge radius RC, providing novel insights 
into complex physical phenomena. This study employs a continuous Bayesian probability (CBP) estimator and Bayesian 
model averaging (BMA) to optimize the predictions of RC from sophisticated theoretical models. The CBP estimator treats 
the residual between the theoretical and experimental values of RC as a continuous variable and derives its posterior prob-
ability density function (PDF) from Bayesian theory. The BMA method assigns weights to models based on their predictive 
performance for benchmark nuclei, thereby accounting for the unique strengths of each model. In global optimization, the 
CBP estimator improved the predictive accuracy of the three theoretical models by approximately 60%. The extrapolation 
analyses consistently achieved an improvement rate of approximately 45%, demonstrating the robustness of the CBP estima-
tor. Furthermore, the combination of the CBP and BMA methods reduces the standard deviation to below 0.02 fm, effectively 
reproducing the pronounced shell effects on RC of the Ca and Sr isotope chains. The studies in this paper propose an efficient 
method to accurately describe RC of unknown nuclei, with potential applications in research on other nuclear properties.

Keywords  Machine learning · Nuclear charge radii · Continuous Bayesian probability estimator · Bayesian model 
averaging

1  Introduction

The nuclear charge radius RC is a fundamental property of 
atomic nuclei and plays a crucial role in research on nuclear 
structures [1]. It provides insights into various phenomena, 

including shape coexistence [2], neutron skin [3–5], pro-
ton halo [6], shell structure [7], odd–even staggering [8, 
9], and nuclear matter saturation [10]. There are two main 
experimental methods for measuring RC . One directly deter-
mines RC through experiments such as muonic atom X-ray 
spectroscopy ( �− ) [11] and high-energy elastic electron 
scattering ( e− ) [12, 13]. The second type analyzes subtle 
differences between isotopes to indirectly measure RC , for 
instance, K� X-ray isotope shifts ( K�IS) [14] and optical iso-
tope shifts (OIS) [15]. Recently, advancements in laser spec-
troscopy techniques have enabled precise determination of 
RC for over 130 unstable nuclei [16–21]. Nevertheless, chal-
lenges in the experimental measurement of RC persist, espe-
cially in the production of exotic isotopes and in improving 
experimental sensitivity, making it difficult to understand 
nuclear structures in unexplored regions.

Many theoretical models have been developed to study 
RC , from macroscopic formulas to sophisticated micro-
scopic approaches. First, a conventional approach to esti-
mate RC is a semi-empirical formula based on the A1∕3 law 
or the Z1∕3 dependence of the liquid drop model, improved 
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by introducing effects such as shell structure, isospin, and 
odd–even nuclear effects [22–24]. Subsequently, local-
relation-based models determine RC from the properties of 
neighboring nuclei [25–28], with prominent examples being 
the Garvey–Kelson relation [29, 30] and mirror nuclei rela-
tion [31, 32]. Additionally, more sophisticated mean-field 
nuclear structure models offer self-consistent descriptions 
of RC and other nuclear properties. Examples include the 
Skyrme–Hartree–Fock–Bogoliubov (HFB) models [33–36], 
relativistic mean-field (RMF) models [37–41], and relativ-
istic Hartree–Bogoliubov (RHB) models [42–44]. Recent 
studies in Refs. [45, 46] have systematically calculated prop-
erties such as nuclear binding energy, charge radii, and elec-
tric quadrupole moment based on the deformed RHB theory 
in continuum. Finally, a class of ab initio approaches, such 
as the no-core shell model (NCSM), starts from realistic 
nucleon interactions and provides a precise description of RC 
by solving the many-body Schrödinger equation or the corre-
sponding self-consistent field equations [47, 48]. Theoretical 
models have achieved significant advancements, reducing 
root-mean-square errors to below 0.05 fm and providing 
satisfactory descriptions of the unique behaviors of RC in 
isotope chains. However, as the accuracy requirements for 
calculations increase, the complexity of theoretical models 
also increases significantly.

In recent years, machine learning (ML) techniques have 
been widely applied in nuclear physics [49, 50], includ-
ing nuclear mass studies [51–59], charge density distribu-
tions [60, 61], nuclear decay [62–66], and nuclear reactions 
[67–69], particularly for predicting RC [70–75]. Initially, the 
ML method was applied to train the experimental values 
of RC , independent of the theoretical models. As early as 
2013, researchers have utilized artificial neural networks 
(ANN) to predict RC by directly generating a formula [70]. 
Subsequently, to incorporate the strengths of the theoretical 
models, ML techniques were employed to refine them by 
estimating the residuals between the theoretical and experi-
mental values of RC . Early work in 2016 proposed a Bayes-
ian neural network (BNN) with a single hidden layer to opti-
mize these predictions [71]. Later, multiple research groups 
significantly enhanced the robustness of BNN by introducing 
physical effects and adding input features [72–74]. Nota-
bly, the naive Bayesian probability (NBP) classifier, which 
applies Bayesian theory and k-means clustering, reframes 
the prediction of RC as a classification task. This approach 
demonstrated strong extrapolation capabilities and provided 
uncertainty in prediction [75, 76].

Recently, the application of the continuous Bayesian 
probability (CBP) estimator and the Bayesian model averag-
ing (BMA) further improved the reliability of nuclear mass 
descriptions [77]. Unlike the NBP method, which discretizes 
the residuals � of the theoretical model, the CBP estima-
tor considers � as a continuous variables. By combining the 

Bayesian framework with kernel density estimation (KDE), 
the CBP estimator derives a posterior probability density 
function (PDF) of � for the target nuclei. This method dem-
onstrates a robust predictive performance and can explain 
intrinsic numerical relationships. Moreover, the BMA 
method combines the predictive strengths of different theo-
retical models across distinct regions of the nuclear chart, 
further improving overall performance [78–80].

This study combines the CBP estimator and BMA method 
to optimize the predictions of RC . The initial theoretical val-
ues of RC were calculated separately using the HFB, RHB, 
and semi-empirical liquid drop models. First, the global 
optimization capability of the CBP estimator was evaluated 
by comparing its predictions with experimental data from 
the 2013 compilation of nuclear charge radii [16]. Subse-
quently, its extrapolation capability was investigated using 
the learning set from the 2004 compilation [11] to predict 
RC for nuclei newly reported in the 2013 compilation. After 
optimization using the CBP estimator, to further improve the 
predictive accuracy for nuclei near the drip line, the BMA 
method was applied to assign weights to each model based 
on their predictive performance on the benchmark nuclei. 
The benchmark nuclei selected in this study are 49K [81], 
38Ca [82], 100Cd , 119Cd [83], 201Po [84], and 233Ra [85]. 
Finally, we predict RC of the Ca and Sr isotopic chains using 
the CBP estimator in combination with the BMA method 
to verify the ability of this approach to capture the physical 
effects on RC . The approaches proposed in this study can 
be used to investigate RC of unknown nuclei, with potential 
applications in the study of other nuclear properties.

This paper is structured in three sections: Sect. 2 intro-
duces the theoretical framework of the CBP and BMA meth-
ods. Section 3 presents the results of these methods. Sec-
tion 4 provides the summary of this study.

2 � Theoretical framework

The theoretical framework offers detailed procedures and 
formulas for a continuous Bayesian probability (CBP) esti-
mator and the Bayesian model averaging (BMA). A method 
for evaluating the predictive performance and a formula for 
quantifying the uncertainties are also presented.

2.1 � The continuous Bayesian probability method

In the CBP estimators, the residuals � of RC are treated as 
continuous variables and their posterior PDFs are derived 
from Bayesian theory. The estimated residuals, which are 
used to correct the theoretical models, can then be calculated 
from the posterior PDFs.
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For continuous multivariate variables, given a set of fea-
tures or variables X1,X2,… ,Xm and a target variable Y, the 
posterior PDF can be expressed as

The conditional PDF p(Xi|Y) represents the likelihood of 
observing events Xi given the occurrence of Y, whereas the 
prior PDF p(Y) denotes the frequency of occurrence for a 
given Y. The denominator in Eq. (1) acts as a normalization 
constant, ensuring that the posterior PDF p(Y|X) is integrated 
to unity.

According to Eq. (1), event Y represents the continuous 
residual � . Events Xi correspond to the proton number Zt 
and neutron number Nt of the target nucleus. It is assumed 
that Zt and Nt are independent of other variables. Thus, the 
posterior PDF can be expressed as

The conditional PDFs p(Zt| �) and p(Nt| �) in Eq. (2) can be 
derived using the following univariate Bayesian formula,

In Eqs. (3) and (4), the prior probability p(Zt(Nt)) was cal-
culated from the occurrence frequencies of Zt(Nt) in the 
learning set. The likelihood PDFs p(�|Zt) and p(�|Nt) are 
estimated using kernel density estimation (KDE).

where hZ(N) denotes the bandwidth parameter and nZ(N) rep-
resents the number of nuclei in the learning set that have 
the same Zt(Nt) as the target nucleus. Kernel function K(t) is 
specified as a Gaussian kernel because the residuals follow 
a Gaussian distribution:

Similarly, the prior PDF p(�) can also be obtained using 
KDE,
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where h� denotes the bandwidth parameter, and n is the total 
number of nuclei in the learning set. In Eqs. (5), (6), and (8), 
the individual residual �i is defined as �i = R

exp

C,i
− Rth

C,i
 . The 

values chosen for the bandwidth parameters h� , hZ , and hN 
depend on several factors, including the range of �i , the size 
of the dataset, and the level of noise in the data.

When determining the likelihood PDF and prior PDF, a 
weight function is introduced to account for the local rela-
tionship between neighboring nuclei:

Parameter � significantly affects the prediction performance 
and extrapolation range of the CBP estimator. Based on the 
distribution characteristics of the nuclei from the dataset on 
the nuclear chart, � = 4 was selected for this study. Param-
eter � affects the stability of the posterior PDF, and � = 10−10 
was chosen to ensure a Gaussian distribution for p

(
�|Zt,Nt

)
 . 

The prior PDF and likelihood PDF with the applied weights 
are as follows:

The posterior PDF p
(
�|Zt,Nt

)
 is obtained by combining 

Eqs. (2)–(12), and the expected value was used to determine 
the estimated residual of the target nucleus.

Ultimately, the refined nuclear charge radius is obtained by 
appending the estimated residual �em(Z,N) to the theoretical 
nuclear charge radius Rth(Z,N):

2.2 � Bayesian model averaging

Even after refinement by the CBP estimator, individual mod-
els often fail to comprehensively account for all physical phe-
nomena, owing to their varying strengths and weaknesses in 
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different regions of the nuclear chart. To consider the advan-
tages of different models in the isotopic and isotonic chains, 
Bayesian model averaging (BMA) was introduced [86].

The BMA method is based on the Bayesian theorem and 
assigns weights to each model by assessing its predictive 
performance. Specifically, given a set of K candidate models 
M1,… ,MK , the BMA method calculates posterior probabili-
ties based on the predictions for the benchmark nucleus from 
each model. These posterior probabilities serve as the weights 
for each model and are calculated as follows:

In this study, the six selected benchmark nuclei in dataset D 
were 49K , 38Ca , 100Cd , 119Cd , 201Po , and 233Ra , which were 
used to evaluate the accuracy of the models based on the 
entire nuclide chart. Residuals were obtained using three 
theoretical models: the HFB model with SLy4 parameteriza-
tion, RHB model with PK1 parameter set, and semi-empir-
ical liquid drop model. The prior probability P

(
Mk

)
= 1∕K 

is related to the number of candidate models, and the condi-
tional probability P

(
D|Mk

)
 depends on the predictive per-

formance of each theoretical model,

where J denotes the total number of benchmark nuclei. The 
refined residuals �corr

k,j
 for the j-th benchmark nucleus corre-

sponding to the theoretical model Mk are defined as 
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k,j

= R
exp
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k,j
 . The parameter � is used to normalize the 

values of �corr
k,j

 and is defined by

Finally, the average nuclear charge radius calculated using 
the BMA method is:

The discrepancies between the corrected theoretical pre-
dictions and the experimental data for each model were 
assessed using the standard deviation �rms , defined as
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In the CBP estimator, the prediction uncertainties are 
obtained from the posterior PDF. The one-sigma uncertainty 
�em(Z,N) of each model corresponding to a specific nucleus 
(Z, N) is defined as

and the uncertainty of the BMA is given by

3 � Results

In this section, the theoretical values of RC are initially 
calculated using the HFB model with SLy4 parameteriza-
tion, RHB model with the PC-PK1 parameter set [87], and 
three-parameter semi-empirical formula of Sheng et al. [88]. 
Notably, the RHB model is based on the relativistic contin-
uum Hartree–Bogoliubov theory and incorporates nucleon 
intrinsic electromagnetic structure corrections [89, 90]. 
Subsequently, the initial results were refined by employing 
the CBP estimator and BMA method. The entire set com-
prises 892 nuclei with proton numbers Z > 3 sourced from 
the 2013 charge radii compilation [16]. The global optimi-
zation and extrapolation capabilities of the CBP estimator 
are evaluated, followed by an analysis of the extrapolation 
performance of the approach that combines the CBP and 
BMA methods.

3.1 � Global optimizations of the CBP estimator

The theoretical RC values of 892 nuclei were calculated 
using three models, and the raw residuals �pre = R

exp

C
− Rth

C
 

for each nucleus were obtained. Subsequently, the CBP esti-
mator was applied to refine the predictions of each model. 
According to Sect. 2, the posterior PDF p

(
�|Zt,Nt

)
 of the 

target nucleus can be calculated by Eqs. (2)–(12). The 
refined charge radius Rcorr

C
(Zt,Nt) was then obtained using 

Eqs. (13) and (14). The HFB and RHB models in this study 
were solved under the assumption of spherical symmetry. 
In the entire set, the majority of �pre is distributed within 
the range of −0.1 fm to 0.1 fm. For nuclei with identical 
proton or neutron numbers, the variation in �pre is typically 
limited to within 0.05 fm. Based on the distribution char-
acteristics of �pre , the bandwidth parameters were selected 
as h� = 0.07 fm , hZ = 0.01 fm , and hN = 0.02 fm . Table 1 
presents the standard deviations �pre of the three theoretical 
models before optimization and �post after optimization by 
the CBP estimator. The global optimization performance of 
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the CBP estimator was evaluated using the improvement rate 
Δ�∕�pre =

(
�pre − �post

)
∕�pre.

As shown in Table 1, the standard deviations �pre for 
the spherical HFB, RHB, and semi-empirical formulas are 
approximately 0.04 fm. However, the deformed mean-field 
theories give a standard deviation of approximately 0.03 fm 
[41, 42]. After refining using the CBP estimator, the standard 
deviations �post for both spherical models are further reduced 
to approximately 0.016 fm, representing an improvement 
of approximately 60%. This improvement demonstrates the 
advantages of the CBP estimator. The CBP estimator can 
introduce deformation effects into the calculations of spheri-
cal theoretical models using statistics, thereby improving the 
description of RC for deformed atomic nuclei.

To illustrate the progress achieved by the CBP method, 
Table 1 presents the optimization performance of the NBP 
method for comparison. The NBP method is a discrete 
Bayesian probabilistic approach that employs the k-means 
algorithm to determine the cluster centers �i , which are then 
used to refine the theoretical models. For the three models, 
the improvement rate of the CBP method is approximately 
10% higher than that of the NBP method. This arises from 
the CBP estimator treating residuals as continuous variables 
and obtaining the estimated residual value �em by integrat-
ing the posterior PDF over the entire residual distribution, 
rather than using a discrete posterior probability, as in the 
NBP method. The CBP estimator accounts for all possible 
residual contributions, thereby achieving a higher degree of 
optimization and demonstrating a clear advantage.

To further illustrate the performance of the CBP estima-
tor across the different models and regions, Fig. 1 presents 
the raw residuals (gray dots) from the HFB model, the RHB 
model, and the semi-empirical formula, along with the cor-
rected residuals (blue dots) after applying the CBP estimator. 
It is evident that after CBP optimization, the residuals for 
all three theoretical models were remarkably reduced across 
most regions. This improvement can be attributed to the 
CBP estimator framework. Based on the global description 
of theoretical models, the CBP estimator utilizes a statisti-
cal approach to further capture the local correlation effects 
among nuclei with identical proton or neutron numbers. The 

introduction of the weight function ensures that only nuclei 
in close proximity to the target nucleus on the nuclear chart 
significantly influence the prediction, thereby enhancing the 
sensitivity of the CBP estimator to local correlation effects. 
Therefore, the CBP estimator is more effective in regions 
where local correlations are stronger, and the distribution 
of �pre is more regular, such as regions with pronounced 
shell effects.

In  r eg ions  60 < A < 90  ,  120 < A < 140  ,  and 
215 < A < 240 in Fig. 1a; 45 < A < 90 , 110 < A < 140 , and 
220 < A < 240 in Fig. 1b; and 80 < A < 95 , 110 < A < 145 , 
and 210 < A < 240 in Fig. 1c, where theoretical model pre-
dictions exhibit similar accuracy and the distribution of 
�pre is highly regular, the CBP estimator achieves substan-
tial improvements, considerably reducing the residuals. In 
particular, for nuclei with mass numbers around A = 100 , 
A = 150 , and A = 190 , where proton–neutron residual inter-
actions and other physical effects lead to large �pre , the CBP 

Table 1   The standard deviation �pre (fm) from the theoretical models 
and �post (fm) after the CBP and NBP refinements. 892 nuclei in 2013 
charge radii compilation with Z > 3 are chosen as the entire set

Methods HFB RHB Sheng

 CBP �pre 0.040 0.047 0.042
�post 0.016 0.017 0.016
Δ�∕�pre 60.0% 63.8% 61.9%

NBP �post 0.020 0.021 0.023
Δ�∕�pre 50.0% 55.3% 45.2%

Fig. 1   The charge radii residuals � = R
exp

C
− R

th
C

 from the experimen-
tal data as a function of mass number A. The gray dots denote the raw 
results from the HFB calculations, and the blue dots denote the pre-
dicted residuals after the CBP refinements. b and c the same as a, but 
for the results from RHB model and Sheng’s formula, respectively
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method markedly enhances the predictive accuracy by sta-
tistically accounting for these interactions and effects. How-
ever, for light nuclei, where �pre exhibits greater variability 
owing to relatively low nucleon numbers, the optimization 
effect of the CBP estimator is comparatively limited. As 
more charge radii of light nuclei are precisely measured in 
experiments, the predictive performance of the CBP estima-
tor for light nuclei can be further enhanced.

3.2 � Extrapolating capabilities of the CBP estimator

Model extrapolation was essential for the acquisition of 
unknown data. In this section, we evaluate the extrapola-
tion performance of the CBP estimator. The learning set 
comprised 790 nuclei with proton numbers Z > 3 from the 
2004 charge radii compilation [11], while the validation set 
included 102 experimental charge radii added between 2004 
and 2013. The bandwidth parameters h� , hN , and hZ used in 
the extrapolation process are the same as those employed 
in the global optimization. The standard deviations �pre and 
�post for the learning and validation sets, both before and 
after applying the CBP estimator, are reported in Table 2 
along with the optimization rate Δ�∕�pre.

According to Table 2, the standard deviations of RC cal-
culated using the HFB, RHB, and semi-empirical formulas 
are approximately 0.040 fm for both the learning and valida-
tion sets. This consistency indicates that the initial theoreti-
cal models possess considerable extrapolation capabilities, 
which are more beneficial for the CBP estimator in predict-
ing unknown regions. After applying the CBP estimator, the 
standard deviations for all three models in the learning set 
decreased to less than 0.020 fm, achieving an improvement 
of approximately 60% compared to the initial results. In the 
validation set, the standard deviations were slightly greater 
than 0.020 fm, with improvement rates of approximately 
45% for the three models. The steady improvement rates 
across both the learning and validation sets demonstrate the 
robust extrapolation capabilities of the CBP estimator.

The optimization rates for all three models in the vali-
dation set were lower than those in the learning set. This 
phenomenon can be explained by the CBP framework: the 
Bayesian formula accounts for statistical correlations among 

nuclei with the same proton and neutron numbers, whereas 
the weight function considers local relationships among 
neighboring nuclei. Most nuclei in the validation set were 
positioned near the drip line, where fewer neighboring nuclei 
were represented in the learning set, thereby diminishing the 
performance of the CBP estimator. As more RC values were 
measured experimentally, the extrapolation ability of the 
CBP estimator was expected to improve significantly.

The results in Table 2 indicate that the CBP estima-
tor demonstrates excellent extrapolation capabilities. The 
HFB, RHB, and semi-empirical formulas provide the over-
all trends of RC variations. By inheriting the advantages 
of theoretical models and incorporating local correlation 
characteristics between nuclei, the CBP estimator captures 
the physical effects that are not reflected in theoretical mod-
els, leading to reliable corrections of RC . Consequently, for 
nuclei lacking experimental data, the CBP estimator can 
offer precise and robust predictions.

3.3 � Comprehensively factoring in the results 
of different models using the BMA method

After optimization using the CBP estimator, specific models 
exhibited optimal predictive performance in distinct regions, 
especially for nuclei far from the �-stability line. This study 
introduces the BMA method to integrate these strengths. 
The BMA method assigns weights based on the predictive 
performance of different models for the benchmark nuclei. 
To balance the predictive discrepancies between the theoreti-
cal models across different regions of the nuclear chart, the 
benchmark nuclei selected for the BMA method were 49K , 
38Ca , 100Cd , 119Cd , 201Po , and 233Ra , which cover a wide 
range of the nuclear chart, including from light nuclei to 
heavy nuclei and from proton-rich regions to neutron-rich 
regions. These selected nuclei are located near the edges 
of the nuclear chart and are outside the 2013 charge radii 
compilation, making them particularly valuable for bench-
marking extrapolation capabilities.

After obtaining the corrected residuals �corr = R
exp

C
− Rcorr

C
 

for the benchmark nuclei, the weights for each model 
were calculated using the BMA method and the results 
are presented in Table  3. The HFB model exhibits 

Table 2   The raw standard deviation �pre (fm) from the theoretical 
models and the standard deviation �post (fm) after the CBP estima-
tor refinements. The learning set includes 790 nuclei with Z > 3 in 

the 2004 compilation, and the validation set includes the newly added 
102 nuclei in the 2013 compilation

Models Learning set Validation set

�pre �post Δ�∕�pre �pre �post Δ�∕�pre

HFB 0.040 0.017 57.5% 0.038 0.021 44.7%
RHB 0.046 0.017 63.0% 0.052 0.025 51.9%
Sheng 0.042 0.018 57.1% 0.043 0.026 39.5%
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superior predictive accuracy for benchmark nuclei and is 
thus assigned higher weights. In contrast, the RHB model 
and semi-empirical formula are assigned lower weights 
owing to their lower predictive accuracies. The BMA 
method was applied to optimize the predictions for 102 vali-
dation nuclei. The standard deviation is 0.019 fm, which is 
lower than that of the individual model optimized by the 
CBP estimator, as shown in Table 2. Compared with the 
HFB model, the RHB model, and Sheng’s formula individu-
ally optimized using the CBP estimator, the introduction of 
the BMA method improves the accuracy by 9.5%, 24.0%, 
and 26.9%, respectively. This demonstrates that the BMA 
method effectively combines the strengths of the different 
models, further enhancing predictive accuracy.

Analysis of the trend of variation in charge radii within 
isotopic chains reveals many important and interesting 
physical phenomena. This study combines the CBP and 
BMA methods to predict the RC of the Ca and Sr isotopic 
chains, illustrating the capability of this approach to cap-
ture the physical effects within the isotopic chains. The cal-
cium isotopic chain serves as a distinctive nuclear system 
for investigating interactions between protons and neutrons 
inside the nucleus [91–93]. In the stable isotope region of 
the Ca chain, 40Ca and 48Ca both exhibit a large number of 
protons and neutrons, and their RC values are nearly identi-
cal. Owing to the change in the nuclear structure associ-
ated with shell closure, a kink in RC at N = 28 is observed. 
For 20 < N < 28 , the trend of RC follows a parabolic shape, 
and the odd–even staggering effect on RC is particularly 

pronounced. For neutron-rich nuclei with N > 28 , RC exhib-
ited a strong increase.

Figure 2a presents the predicted charge radii R̄ (purple 
squares) for the Ca isotopic chain based on the combined 
CBP and BMA methods, along with uncertainty bands cal-
culated from the corresponding error estimates. The experi-
mental values Rexp

C
 (gray circles) and initial results from the 

HFB model (blue squares) are also provided for comparison. 
The HFB model predicts an approximately linear relation-
ship between RC and the mass number, which deviates from 
the experimental results. After corrections using the CBP 
and BMA methods, the discrepancies between R̄ and the 
experimental data were substantially reduced, providing an 
accurate description of the parabolic trend of RC and kink 
at 48Ca.

The experimental charge radii in Fig. 2a clearly show 
the shell effect and odd–even staggering. However, the 
odd–even staggering is diluted in the RC predicted using 
the CBP estimator combined with the BMA method. This 
is because the calculation of the CBP estimator relies on 
nuclides with the same proton number Z or neutron number 
N, which leads to a weakening of the odd–even staggering 
effect. The introduction of the BMA method combines the 
results of the three models, further diluting the odd–even 
staggering effect.

In addition to Ca isotopes, the charge radii of Sr isotopes 
also exhibit prominent shell effects [94]. The Sr isotope 
chain extends from the valley of stability at 88Sr , where 
isotopes show a spherical shape, to the strongly deformed 

Table 3   The corrected residuals �corr(fm) of six benchmark nuclei: 49K , 38Ca , 100Cd , 119Cd , 201Po , and 233Ra , and the weights of three models by 
BMA are based on �corr of these four benchmark nuclei

Models 49K 38Ca 100Cd 119Cd 201Po 233Ra Weight

HFB 0.017 −0.003 −0.017 0.007 0.007 −0.006 0.49
RHB −0.015 0.010 0.008 −0.006 −0.017 0.009 0.38
Sheng 0.013 0.013 −0.014 0.010 0.018 −0.011 0.13

Fig. 2   a The theoretical and 
experimental charge radii RC 
for Ca isotopes, with uncer-
tainty bands included for the 
predictions refined by the CBP 
estimator. b Similar to a, but for 
Sr isotopes
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isotopes on either side of the stability line. As the nucleus 
approached the neutron shell closure at N = 50 from the 
neutron-deficient side, RC gradually decreased. At N = 50 , 
it exhibited a kink, after which it began to increase. When 
N reached 60, a sudden increase in RC was observed, corre-
sponding to an experimental transition from a near-spherical 
shape to a strongly deformed configuration [95]. The refined 
predictions R̄ of Sr isotopes obtained using the CBP estima-
tor in conjunction with the BMA approach are shown in 
Fig. 2b. R̄ was closely aligned with the experimental data, 
particularly for the kink of 88Sr and the pronounced increase 
in RC observed at 98Sr.

4 � Summary

This study combined the continuous Bayesian probability 
(CBP) estimator with Bayesian model averaging (BMA) to 
refine RC predictions from the HFB, RHB, and semi-empir-
ical formulas. In global optimization, the CBP estimator 
achieved an improvement of approximately 60% for all three 
models. In extrapolation, it demonstrates an improvement 
rate of approximately 45%. These results indicate that, based 
on sophisticated theoretical models, the CBP estimator can 
provide accurate predictions of RC in the unknown regions 
of the nuclear chart. To enhance the predictive accuracy for 
nuclei near the drip line, the BMA method was subsequently 
employed to assign weights to each model based on their 
predictive performance for the benchmark nuclei. By com-
bining the CBP estimator with the BMA method, the stand-
ard deviation is further reduced, and the physical phenomena 
on RC such as shell effects in the Ca and Sr isotopic chains, 
are accurately captured.

The improvements achieved by the proposed method are 
attributed to the theoretical frameworks of the CBP estima-
tor and the BMA method. According to the CBP estimator 
framework, a continuous posterior probability density func-
tion (PDF) was generated to obtain the estimated residuals 
for the target nucleus. The Bayesian formula captures the 
statistical relationships among nuclei with the same proton 
or neutron number, whereas the weight function accounts for 
the local correlations among neighboring nuclei. The theo-
retical models provide the overall trend of RC , and the CBP 
estimator reliably refines these theoretical results through 
statistical techniques. Thus, the BMA method combines the 
strengths of different models across various regions of the 
nuclear chart, leading to further refinement of the results.

In summary, the CBP and BMA methods were effec-
tively employed to predict the nuclear masses and charge 
radii, demonstrating considerable predictive accuracy. 
The methodologies developed in this work can be further 
extended to estimate charge radii in regions far from the �

-stability line and are equally applicable to the exploration 
of other nuclear properties, including nuclear reactions 
and decay processes.
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