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Abstract
A new detector array with a large solid angle coverage for the coincidence measurement of charged fragments was developed 
to study the breakup reaction mechanisms of weakly bound nuclear systems at energies around the Coulomb barrier. The 
array has been used to explore the breakup reaction mechanisms of 6,7 Li + 209 Bi systems at Ebeam = 30, 40, 47 MeV, showing 
good performance in particle identification and complete kinematic measurements. Based on this, different breakup modes 
and breakup components were clearly distinguished, and some new breakup modes were discovered, such as 7 Li → � + t 
breakup mode in 6 Li + 209 Bi system and 7 Li → 6 He + p breakup mode in 7 Li + 209 Bi system. This array can also be used to 
explore other breakup reaction mechanisms induced by weakly bound nuclei.
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1  Introduction

Nuclear reactions at energies near the Coulomb barrier are 
effective for studying the interactions between the nuclear 
structure and dynamics. As more exotic weakly bound nuclei 
become accessible at new accelerator facilities, the measure-
ment of reaction cross sections for weakly bound nuclear 

systems at sub-barrier energies is of great interest [1–3]. At 
present, it is found that in reactions involving these weakly 
bound nuclei, compared with theoretical calculations and 
tightly bound nuclei, complete fusion is significantly sup-
pressed at energies above the Coulomb barrier and a remark-
able enhancement at energies below the Coulomb barrier 
[4–8]. To investigate the breakup effects of weakly bound 
nuclei on the suppression of the complete fusion cross sec-
tion, the study of the breakup reaction and mechanism of 
weakly bound nuclei is crucial importance [9–15].

Compared to a radioactive ion beam (RIB), the beam 
intensities of stable weakly bound nuclei such as 6,7 Li and 
9 Be are orders of magnitude higher [16]. Several silicon 
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detector arrays, such as EXPADES [17], GLORIA [18], and 
MITA [19], have recently been built to study the breakup 
mechanism induced by these stable weakly bound nuclei. 
Along with the identification of some breakup modes, the 
breakup effect of these nuclei on the fusion process has been 
preliminarily studied [20]. However, owing to the limited 
coverage angle of the previously mentioned detector arrays 
and the complexity of the breakup modes, it is challenging 
to detect rare breakup events and obtain the angular distribu-
tion of different breakup products.

In view of this fact, a new Silicon Telescopic Array for 
Reactions induced by Exotic nuclei (STARE), designed by 
the China Institute of Atomic Energy (CIAE), was employed 
for the coincidence measurement of charged fragments 
induced by weakly bound nuclei at energies around the 
Coulomb barrier. Compared with previous arrays [17–19], 
STARE incorporates more telescope detectors, providing 
larger solid-angle coverage and improved particle identifi-
cation, which enables the detection of new breakup modes 
with small cross-sections. In addition, a specially designed 
frame allows both STARE and preamplifiers to be mounted 
directly inside the chamber, thereby simplifying the instal-
lation and reducing noise. The coincidence measurement 
of 6,7 Li + 209 Bi at Ebeam = 30, 40, 47 MeV was carried out 
successfully in the CIAE by STARE. In this study, the inno-
vation features and performance of STARE, as well as the 
methods and preliminary results of the data analysis, are 
described in detail.

2 � Description of the array

The STARE consists of eight telescope units, as shown in 
Fig. 1a. Each telescope unit consists of (i) a double-sided 
silicon strip detector (DSSD) with a thickness of 40 μ m for 
backward angles and 60 μ m for forward angles, and (ii) a 
quadrant silicon detector (QSD) with a thickness of 1000 
μ m. To avoid the light charged particles not being clearly 
identified in the Δ E vs. E spectrum at forward angles due to 
their low energy loss in the DSSD, an additional QSD with 
a thickness of 300 μ m was inserted between the DSSD and 
the 1000 μ m thick QSD at forward angles. A brief descrip-
tion of this detector array is provided in Refs. [13, 21]. The 
eight telescope units surrounding the target were installed 
on a designed frame produced by 3D printing, which makes 
the array lighter and easy to be carried. The relative posi-
tions of the telescope units and the target are summarized in 
Table 1. As shown in Fig. 1b, the array covers polar angles 
� lab from 25◦ to 155◦ , and spans 301◦ in azimuthal angle, 
occupying 26.8% of the 4 � sr. A larger number of telescope 
units provide larger solid angle coverage, greatly improving 
the coincidence detection efficiency compared with previous 
experiments [22–25].

Fig. 1   (Color online) a The arrangement of the detector array of eight 
telescopes with respect to the beam direction (arrow from bottom to 
top). b Angular coverage of detector array, pixel separation in each 
DSSD is exaggerated for clarity

Table 1   The information of different telescope units

Unit No. Distance between unit and 
target (mm)

The angle of the 
center of each unit 
( � , �)

0 70 132.1◦ , 139.2◦

1 70 132.1◦ , 40.8◦

2 70 132.1◦ , 220.8◦

3 70 132.1◦ , 319.2◦

4 82 90◦ , 180◦

5 82 90◦ , 0 ◦

6 70 47.9◦ , 139.2◦

7 70 47.9◦ , 319.2◦
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A mylar foil with a thickness of 0.5 μ m was installed in 
front of the telescope to stop low-energy electrons. As illus-
trated in Fig. 1a, the compact structure enables the installa-
tion of the mylar foil and silicon detectors as close as pos-
sible to each other with the lowest energy loss and angular 
straggling. Moreover, the integrated preamplifiers designed 
by CIAE [26] were installed in close proximity to the detec-
tors and positioned in the target chamber to reduce noise. 
To ensure stable operation of the preamplifiers, a cooling 
system is employed to dissipate the heat of the electronics 
and reduce the detector leakage current. Specifically, two 
brass rings are mounted on the top and bottom of the detec-
tor array, and all preamplifiers are fixed to these brass rings. 
During the experiments, the brass rings were cooled using 
a dedicated cooling system that provided a stable and low-
temperature operating environment for the preamplifiers. 
These preamplifiers have been applied in several experi-
ments and exhibit excellent and stable performance [27–34]. 
A specific photograph is shown in Fig. 2.

Silicon detectors are widely used owing to their high 
detection efficiency and good energy resolution [35]. In 
STARE, the kinetic energy of the particles was obtained 

from the energy signal of the pixel of the DSSDs, with a 
resolution of 100–150 keV FWHM for ∼ 5 MeV � sources. 
To provide supporting evidence, Fig. 3 presents the energy 
spectra of the � sources measured using DSSDs of 40, 
60 μ m. The energy resolutions of the peaks correspond-
ing to 239Pu were determined to be ∼2.0%, ∼1.8%, respec-
tively. For the same � source, the energy resolution of 
the QSD is approximately 0.5% . The width of each strip 
of the DSSD was 3 mm, and the size of each pixel of the 
DSSD was 3 mm × 3 mm. Figure 1b shows the scattering 
angles of the centers of all DSSD pixels. We can infer that 
the angular resolution in the central region of each pixel 
of the DSSDs is approximately ±1.5◦ , with an improved 
resolution observed in the peripheral regions of the detec-
tor telescopes in the laboratory frame. Complete kinematic 
measurements can be performed with good energy and 
angular resolution, which are important for describing the 
breakup process.

3 � Experiment

Coincident measurements with beams of 6,7 Li were con-
ducted at the HI-13 tandem accelerator of the CIAE. The 
beam energies at the center of the 209 Bi target (210 μg/cm2 
thick self-supporting) were approximately Ebeam = 30, 
40, 47 MeV. A collimator with a diameter of 3 mm was 
positioned 30 cm upstream of the target, aligned along 
the beam axis, to precisely define the beam spot size and 
position. The target was fixed at the center of STARE with 
a normal angle of 70◦ relative to the beam line to mini-
mize the dead area caused by the target frame. Four sili-
con detectors were installed at a distance of 250 mm from 
the center of the target for beam monitoring. To minimize 
the data collection rate during breakup measurements, the 
data were recorded when at least two pixels of the entire 
detector array were hit by particles in the multi-hit trigger 
mode.

Fig. 2   (Color online) Photograph of the detector array with preampli-
fiers and cooling rings

Fig. 3   (Color online) The 
energy spectra of the � sources 
measured by DSSDs of STARE. 
a from 40 μ m DSSD, b from 60 
μ m DSSD
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4 � Data analysis

4.1 � Energy calibration

Energy calibration of the DSSDs was carried out using 
two � sources ( 239Pu, 241Am), and the � particles decayed 
from the products of the fusion reactions. Additionally, 
energy calibrations of the QSDs were performed by evalu-
ating the deposited energies of the charged particles within 
the QSDs. This was achieved by subtracting the meas-
ured energy loss in the DSSDs from the expected particle 

energy, as determined by calculations using the reference 
for LISE++. In the experiment, the coordinate location 
of the DSSDs pixels was used to determine the scattering 
angle of the charged particles detected by the detectors. A 
typical energy-calibrated single spectrum for 7 Li + 209 Bi 
measured at Ebeam = 40 MeV is presented in Fig. 4, which 
shows elastic scattering events at ∼ 36 MeV. For reactions 
in normal kinematics that produce two nuclei in the final 
state, such as elastic scattering or transfer, the energy of a 
projectile-like nucleus decreases monotonically with � . The 
� lines between 5 and 10 MeV, as shown in Fig. 4, with ener-
gies independent of the angle, originate from the evapora-
tion residues formed following complete fusion (CF) and 
incomplete fusion (ICF).

4.2 � Removal of spurious events

According to the principle of DSSDs, we used the energy 
signal output from both sides of the DSSDs (marked Eloss1 , 
Eloss2 , respectively) to select the correct events. As shown in 
Fig. 5a, considering the statistics of events and the proportion 
of accidental coincidences, we select the events with Eloss1 - 
Eloss2 distributed within the � ( ∼100 keV) widening range as 
correct events. The two-dimensional spectrum Eloss1 vs. Eloss2 
after screening is shown in Fig. 5b. During the experiment, 
a large number of particles hit the inter-strips of the DSSDs, 
leading to a non-negligible number of accidental coincidence 
events ( ∼3%). The two-dimensional spectra of the particles 
depositing energy in adjacent strips of the same DSSD before 
and after screening based on (a) are illustrated in Fig. 5c and 

Fig. 4   (Color online) Energy-calibrated single spectrum for 7 Li + 
209 Bi measured at Ebeam = 40 MeV and displayed across the angular 
coverage of No.0-3 telescope units

Fig. 5   (Color online) Example 
of No.0-3 telescope unit to 
demonstrate accidental events 
removal from 7 Li + 209 Bi at 
Ebeam = 40 MeV. a The single 
energy spectrum of the differ-
ence in energy loss between 
the two sides of DSSD. b The 
two-dimensional energy spec-
trum Eloss1 vs. Eloss2 of the two 
sides of DSSD after screening 
based on a. c, d Particle energy 
deposition on adjacent silicon 
strips in the same side of DSSD 
before and after screening based 
on a 
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d. In Fig. 5c, inter-strip events mainly originate from � , p, d, t 
particles distributed on the different lines y = −x + c . These 

events were removed after energy screening of the DSSDs, as 
shown in Fig. 5d.

Typical two-dimensional particle identification spectra 
obtained from the same telescope unit are shown in Fig. 6. 
Owing to the excellent energy resolution of the detectors and 
statistics, the different masses (A = 1–7) and charges (Z = 1–3) 
produced by the different reaction channels can be clearly iden-
tified. In particular, the 3 He and 6 He bands can be observed in 
the experimental data of 6,7Li, which provides the possibility 
of observing new breakup modes. In Fig. 6a, 7 Li band can be 
observed. It is evident that 6 Li picked up one neutron from the 
target; thus, 1n-pickup process induced by 6 Li can occur. In 
Fig. 6b, 6 Li band can be observed. This is due to 1n-stripping 
of 7Li. The results show that 1n-stripping process is populated 
in the reactions of 7Li. The other light particles were analyzed 
in sections below.

4.3 � Identification of breakup modes

During the breakup process, momentum conservation dic-
tates that the total momentum of the fragments should remain 
zero in the center of mass frame of the projectile-like nucleus. 
Thus, fragments must travel in opposite directions in the center 
of the mass frame but may be emitted in any direction. As a 
result, we can filter out � particles from the breakup process, as 
shown in Fig. 7a, from 6 Li + 209 Bi at Ebeam = 40 MeV, when a 
continuous distribution of energies with maximum and mini-
mum energies is given by

(1)Emin,max =
m1

m1 + m2

(

Ep +
m2

m1

QBU ± 2

√

m2

m1

QBUEp

)

,

Fig. 6   (Color online) Calibrated two-dimensional ΔE - E particle 
identification spectra by No.2 telescope unit which covers an angular 
range from 110◦ to 155◦ . a for 6 Li + 209 Bi at Ebeam = 40 MeV, b for 
7 Li + 209 Bi at Ebeam = 40 MeV

Fig. 7   (Color online) a Single 
energy spectrum of inclusive 
� from No.0-3 telescope units. 
b Particle multiplicity of the 
entire array. c, d The two-
dimensional energy spectrum of 
the direct breakup modes from 
6,7 Li at Ebeam = 40 MeV
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Ep is the projectile-like fragment energy prior to breakup, 
mi is the mass of the breakup fragments, and QBU is the Q
-value for the breakup process. Figure 7b shows the current 
particle multiplicity (the number of particles contained in 
a coincidence event). We can observe that inclusive elastic 
scattering or transfer events still account for the majority, 
and the rest are the two coincidence fragments we expected.

The correlations between the kinetic energies of the coin-
cident fragments from the direct breakup mode of 6,7 Li at 
Ebeam = 40 MeV are presented in Fig. 7c and d. The band-
like structures are immediately obvious, which suggests that 
these events have originated from the true 6 Li → � + d and 
7 Li → � + t breakup processes. Other breakup events from 
different modes can be extracted in the same manner.

Based on the extracted breakup events, two-body dynam-
ics calculations can be used to reconstruct the breakup reac-
tion Q value to further understand the breakup mechanism. 
The energy change ( Q value) in the reaction can be deter-
mined by Eq. (2):

E1 , E2 are the kinetic energies of the coincidence particles 
in the reactions. Erec is the energy of the recoiling target-
like nucleus determined by conservation of momentum in 
three body system. Elab is the laboratory kinetic energy of the 
incident projectile ( Ebeam for energy loss in the target after 
correcting). The ground-state Q value ( Qgg ), for any collision 
can be expressed by:

where Ep is the kinetic energy of projectile-like nuclei 
and Ep,x and Et,x are the excitation energies of projectile-
like nuclei and target-like nuclei, respectively. For binary 
breakup, Ep + Ep,x = E1 + E2 . Therefore, the Q spectra pro-
vide more information for each state populated in the target-
like nucleus (calculated using Et,x = Qgg - Q).

The reconstructed Q spectra of all the breakup modes 
in the reactions of 6,7 Li with 209 Bi at Ebeam = 30, 40 and 47 
MeV are shown in Fig. 8. Vertical dashed lines indicate the 
expected Qgg , which corresponds to the ground state of the 
target-like nucleus. In the reaction of 6Li, compared with the 
direct breakup mode ( 6 Li → � + d), the breakup of 5 Li into 
� + p after 1n-stripping seems to be the most dominant, as 
can also be verified in Refs. [23, 36, 37]. In addition, a new 
breakup mode, 7 Li → � + t was observed for the first time by 
STARE with obvious Q value peaks, indicating the ground 
and excited states of 208Bi. We can observe that the relevance 
of the 7 Li → � + t channel increases with beam energy. The 
discovery of 7 Li → � + t breakup mode indicates that the 
1n-pickup process cannot be ignored in the reaction of 6Li, 
which also provides an additional explanation for the origin 
of inclusive � particles [38, 39].

(2)Q = E1 + E2 + Erec − Elab.

(3)Qgg = Ep + Ep,x + Erec + Et,x − Elab,

For the reaction 7 Li + 209Bi, the breakup triggered by a 
1p-pickup is the most probable channel for 7Li. The breakup 
after the production of 8 Be into two � particles produces mul-
tiple peaks in the Q value spectra, including the ground state 
and two excited states of 208Pb. However, when the target is 
replaced by a medium-mass nucleus, conclusions may be 
inconsistent. In the 7 Li + 93 Nb system [40], � + t and � + d 
are dominant. When the beam energy was increased to 40, 
47 MeV, despite a very high breakup threshold ( ∼ 10 MeV), 
a significant number of 6 He + p events were observed in 7 Li 
+ 209 Bi system. The present exclusive measurement of 6 He in 
coincidence with a proton that provides direct evidence of the 
6 He + p cluster configuration of 7 Li is important for under-
standing the possible nuclear cluster structures of 7 Li [41].

4.4 � Prompt breakup vs. resonant breakup

In recent works [25, 36], the relative energy ( Erel ) of breakup 
fragments has been reported to provide significant informa-
tion on the breakup time-scale and to allow a classification of 
the breakup process into prompt breakup or resonant breakup, 
which can be expressed in terms of the measured energies and 
masses of the fragments, and the measured opening angle of 
the fragments within the laboratory frame ( �12):

As presented in Fig. 9a and b, the Erel distribution of 209
Bi(6Li,6Li→ �+d)209 Bi and 209Bi(7Li,7Li→ �+t )209 Bi at 
Ebeam = 40 MeV is peaking around at ∼0.7 and ∼2.1 MeV, 
which correspond to the resonant states of 6 Li (3+ , 2.186 
MeV) and 7 Li (7/2− , 4.63 MeV), respectively. These peaks 
are associated with the breakup on the outgoing trajectory, 
which is not affected by the target-like Coulomb field and 
can be described as a resonant breakup. On the other hand, 
when the lifetime of the final state in the projectile-like 
nucleus is lower than the breakup scale ( ∼10−22 s), breakup 
will occur in the entrance channel close to the target-like 
nucleus (prompt breakup) with a smooth and continuous 
Erel distribution as a consequence of the Coulomb interac-
tion exerted by the target-like nucleus. To better identify the 
different breakup components experimentally, new insights 
were focused on the angular correlation spectra. As shown 
in Fig. 9c and d, the expected correlation between � and 
�12 for resonant breakup from 6 Li → � + d and 7 Li → � + t 
corresponds well to the red solid lines, which confirms the 
interpretation of these events breakup far from the target-like 
nucleus. � is the orientation of the relative velocity of the 
fragments with respect to the motion of their center of mass, 
as determined by Eq. (5). vi and ui are the velocities of each 
fragment in the laboratory and their center-of-mass frame, 
respectively. A schematic of the relationship between these 

(4)Erel =
m2E1 + m1E2 − 2

√

m1E1m2E2 cos �12

m1 + m2

.
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variables is shown in the upper right corner of Fig. 9d. For 
events arising from breakup near the target-like that cor-
respond to the prompt breakup, the � vs. �12 correlation is 
distorted owing the influence of Coulomb interaction on 
the fragment trajectories. The prompt and resonant breakup 
components can be distinguished well by the relative energy 
spectrum and angular correlation spectrum calculated using 
STRAE.

5 � Summary

In this study, a new multilayer silicon telescope array was 
designed and manufactured to study the breakup reaction 
mechanisms induced by weakly bound nuclear systems at 
energies around the Coulomb barrier. In the new array, 

(5)sin � =
v1v2 sin �12

√

v2
2
u2
1
+ v2

1
u2
2
+ 2u1u2v1v2 cos �12

Fig. 8   (Color online) The Q value spectra determined for 6,7 Li + 209 Bi at Ebeam = 30, 40, 47 MeV including different breakup modes, the vertical 
dashed lines indicate the expected Qgg for each breakup mode in reactions of 6 Li and 7Li, respectively
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integrated preamplifiers are positioned near the detectors 
and operate continuously and stably in a low-temperature 
environment, which is very important for reducing noise. 
STARE with a large solid angle greatly improves the coin-
cidence efficiency, making it possible to collect breakup 
events with very small cross-sections.

STARE has been successfully used to investigate the 
coincidence measurement of charged fragments in 6,7 Li 
+ 209 Bi systems at Ebeam = 30, 40, 47 MeV. Owing to the 
powerful particle identification and energy resolution of 
STARE, different breakup modes can be clearly distin-
guished by two-body dynamics calculations, along with 
the observation of new breakup modes. Different breakup 
components (prompt breakup and resonant breakup) can 
be identified by the relative energy and angular correlation 
spectra, which are important for reproducing the breakup 
process of weakly bound nuclei. To facilitate the under-
standing of the breakup mechanisms of weakly bound 
nuclei and to elucidate the cluster structure within the pro-
jectile-like nucleus, the angular distributions of different 
breakup components are currently being pursued. Simul-
taneously, our collaborators are also trying to develop a 
theoretical framework for predicting these reactions. The 
details of this work are presented in a forthcoming paper.
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