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Abstract

A new detector array with a large solid angle coverage for the coincidence measurement of charged fragments was developed
to study the breakup reaction mechanisms of weakly bound nuclear systems at energies around the Coulomb barrier. The
array has been used to explore the breakup reaction mechanisms of ®7Li + 2%Bi systems at E,,, = 30, 40, 47 MeV, showing
good performance in particle identification and complete kinematic measurements. Based on this, different breakup modes
and breakup components were clearly distinguished, and some new breakup modes were discovered, such as 'Li — a + ¢
breakup mode in °Li + 2*Bi system and "Li — ®He + p breakup mode in "Li + 2*’Bi system. This array can also be used to
explore other breakup reaction mechanisms induced by weakly bound nuclei.

Keywords Detector array - Coincidence measurement - Breakup reaction - Weakly bound nuclei

1 Introduction

Nuclear reactions at energies near the Coulomb barrier are
effective for studying the interactions between the nuclear
structure and dynamics. As more exotic weakly bound nuclei
become accessible at new accelerator facilities, the measure-
ment of reaction cross sections for weakly bound nuclear
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systems at sub-barrier energies is of great interest [1-3]. At
present, it is found that in reactions involving these weakly
bound nuclei, compared with theoretical calculations and
tightly bound nuclei, complete fusion is significantly sup-
pressed at energies above the Coulomb barrier and a remark-
able enhancement at energies below the Coulomb barrier
[4-8]. To investigate the breakup effects of weakly bound
nuclei on the suppression of the complete fusion cross sec-
tion, the study of the breakup reaction and mechanism of
weakly bound nuclei is crucial importance [9-15].
Compared to a radioactive ion beam (RIB), the beam
intensities of stable weakly bound nuclei such as ’Li and
9Be are orders of magnitude higher [16]. Several silicon
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detector arrays, such as EXPADES [17], GLORIA [18], and
MITA [19], have recently been built to study the breakup
mechanism induced by these stable weakly bound nuclei.
Along with the identification of some breakup modes, the
breakup effect of these nuclei on the fusion process has been
preliminarily studied [20]. However, owing to the limited
coverage angle of the previously mentioned detector arrays
and the complexity of the breakup modes, it is challenging
to detect rare breakup events and obtain the angular distribu-
tion of different breakup products.

In view of this fact, a new Silicon Telescopic Array for
Reactions induced by Exotic nuclei (STARE), designed by
the China Institute of Atomic Energy (CIAE), was employed
for the coincidence measurement of charged fragments
induced by weakly bound nuclei at energies around the
Coulomb barrier. Compared with previous arrays [17-19],
STARE incorporates more telescope detectors, providing
larger solid-angle coverage and improved particle identifi-
cation, which enables the detection of new breakup modes
with small cross-sections. In addition, a specially designed
frame allows both STARE and preamplifiers to be mounted
directly inside the chamber, thereby simplifying the instal-
lation and reducing noise. The coincidence measurement
of ®’Li + 2®Bi at E,,,, = 30, 40, 47 MeV was carried out
successfully in the CIAE by STARE. In this study, the inno-
vation features and performance of STARE, as well as the
methods and preliminary results of the data analysis, are
described in detail.

2 Description of the array

The STARE consists of eight telescope units, as shown in
Fig. 1a. Each telescope unit consists of (i) a double-sided
silicon strip detector (DSSD) with a thickness of 40 pm for
backward angles and 60 pm for forward angles, and (ii) a
quadrant silicon detector (QSD) with a thickness of 1000
pm. To avoid the light charged particles not being clearly
identified in the A E vs. E spectrum at forward angles due to
their low energy loss in the DSSD, an additional QSD with
a thickness of 300 pm was inserted between the DSSD and
the 1000 pm thick QSD at forward angles. A brief descrip-
tion of this detector array is provided in Refs. [13, 21]. The
eight telescope units surrounding the target were installed
on a designed frame produced by 3D printing, which makes
the array lighter and easy to be carried. The relative posi-
tions of the telescope units and the target are summarized in
Table 1. As shown in Fig. 1b, the array covers polar angles
0 1., from 25° to 155°, and spans 301° in azimuthal angle,
occupying 26.8% of the 4 sr. A larger number of telescope
units provide larger solid angle coverage, greatly improving
the coincidence detection efficiency compared with previous
experiments [22-25].
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Fig. 1 (Color online) a The arrangement of the detector array of eight
telescopes with respect to the beam direction (arrow from bottom to
top). b Angular coverage of detector array, pixel separation in each
DSSD is exaggerated for clarity

Table 1 The information of different telescope units

Unit No. Distance between unit and  The angle of the

target (mm) center of each unit
6, ®)

0 70 132.1°,139.2°

1 70 132.1°,40.8°

2 70 132.1°,220.8°

3 70 132.1°,319.2°

4 82 90°, 180°

5 82 90°, 0°

6 70 47.9°,139.2°

7 70 47.9°,319.2°
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A mylar foil with a thickness of 0.5 pm was installed in
front of the telescope to stop low-energy electrons. As illus-
trated in Fig. 1a, the compact structure enables the installa-
tion of the mylar foil and silicon detectors as close as pos-
sible to each other with the lowest energy loss and angular
straggling. Moreover, the integrated preamplifiers designed
by CIAE [26] were installed in close proximity to the detec-
tors and positioned in the target chamber to reduce noise.
To ensure stable operation of the preamplifiers, a cooling
system is employed to dissipate the heat of the electronics
and reduce the detector leakage current. Specifically, two
brass rings are mounted on the top and bottom of the detec-
tor array, and all preamplifiers are fixed to these brass rings.
During the experiments, the brass rings were cooled using
a dedicated cooling system that provided a stable and low-
temperature operating environment for the preamplifiers.
These preamplifiers have been applied in several experi-
ments and exhibit excellent and stable performance [27-34].
A specific photograph is shown in Fig. 2.

Silicon detectors are widely used owing to their high
detection efficiency and good energy resolution [35]. In
STARE, the kinetic energy of the particles was obtained

Fig.2 (Color online) Photograph of the detector array with preampli-
fiers and cooling rings

from the energy signal of the pixel of the DSSDs, with a
resolution of 100-150 keV FWHM for ~5 MeV a sources.
To provide supporting evidence, Fig. 3 presents the energy
spectra of the @ sources measured using DSSDs of 40,
60 pm. The energy resolutions of the peaks correspond-
ing to 2°Pu were determined to be ~2.0%, ~1.8%, respec-
tively. For the same a source, the energy resolution of
the QSD is approximately 0.5%. The width of each strip
of the DSSD was 3 mm, and the size of each pixel of the
DSSD was 3 mm X 3 mm. Figure 1b shows the scattering
angles of the centers of all DSSD pixels. We can infer that
the angular resolution in the central region of each pixel
of the DSSDs is approximately +1.5°, with an improved
resolution observed in the peripheral regions of the detec-
tor telescopes in the laboratory frame. Complete kinematic
measurements can be performed with good energy and
angular resolution, which are important for describing the
breakup process.

3 Experiment

Coincident measurements with beams of ®’Li were con-
ducted at the HI-13 tandem accelerator of the CIAE. The
beam energies at the center of the 2°Bi target (210 pg/cm?
thick self-supporting) were approximately E,.,,, = 30,
40, 47 MeV. A collimator with a diameter of 3 mm was
positioned 30 cm upstream of the target, aligned along
the beam axis, to precisely define the beam spot size and
position. The target was fixed at the center of STARE with
a normal angle of 70° relative to the beam line to mini-
mize the dead area caused by the target frame. Four sili-
con detectors were installed at a distance of 250 mm from
the center of the target for beam monitoring. To minimize
the data collection rate during breakup measurements, the
data were recorded when at least two pixels of the entire
detector array were hit by particles in the multi-hit trigger
mode.

Fig.3 (Color online) The o T 3000 T T T T
25000~ . c ]
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4 Data analysis
4.1 Energy calibration

Energy calibration of the DSSDs was carried out using
two a sources (>**Pu, ?!Am), and the « particles decayed
from the products of the fusion reactions. Additionally,
energy calibrations of the QSDs were performed by evalu-
ating the deposited energies of the charged particles within
the QSDs. This was achieved by subtracting the meas-
ured energy loss in the DSSDs from the expected particle

Li+ *®Bi @ 40 MeV

125 135
0 (deg)

Fig.4 (Color online) Energy-calibrated single spectrum for ’Li +
2Bi measured at E,,,, = 40 MeV and displayed across the angular
coverage of No.0-3 telescope units

energy, as determined by calculations using the reference
for LISE++. In the experiment, the coordinate location
of the DSSDs pixels was used to determine the scattering
angle of the charged particles detected by the detectors. A
typical energy-calibrated single spectrum for ’Li + 2*Bi
measured at E,_,,, = 40 MeV is presented in Fig. 4, which
shows elastic scattering events at ~36 MeV. For reactions
in normal kinematics that produce two nuclei in the final
state, such as elastic scattering or transfer, the energy of a
projectile-like nucleus decreases monotonically with 6. The
a lines between 5 and 10 MeV, as shown in Fig. 4, with ener-
gies independent of the angle, originate from the evapora-
tion residues formed following complete fusion (CF) and
incomplete fusion (ICF).

4.2 Removal of spurious events

According to the principle of DSSDs, we used the energy
signal output from both sides of the DSSDs (marked E, .
E, - Tespectively) to select the correct events. As shown in
Fig. 5a, considering the statistics of events and the proportion
of accidental coincidences, we select the events with E, . -
E, > distributed within the ¢ (~100 keV) widening range as
correct events. The two-dimensional spectrum E; ; vs. Ej
after screening is shown in Fig. 5b. During the experiment,
a large number of particles hit the inter-strips of the DSSDs,
leading to a non-negligible number of accidental coincidence
events (~3%). The two-dimensional spectra of the particles
depositing energy in adjacent strips of the same DSSD before
and after screening based on (a) are illustrated in Fig. 5c and

Fig.5 (Color online) Example C r ' r ] 14EF T T T ! ! ! !
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two-dimensional energy spec- i "Li + *Bi @ 40 MeV 1 2 F Li + *”Bi @ 40 MeV
trum E g, VS. Ej s Of the two 10°E 1 1 1 = ot AT T T |
sides of DSSD after screening -1 -0.5 0 0.5 1 0 2 4 6 8 10 12 14
based on a. ¢, d Particle energy Elossl -Elossz (MeV) E.Ms, (MeV)
deposition on adjacent silicon 10— LI 8 0T T T T ?
strips in the same side of DSSD 9 - 7 9t 45
before and after screening based 8| (C) . 8k (d) .
ona < ) o TF
E 6F o - 5% 6F : C 35
< st "Li + *Bi @ 40 MeV 4 E 5F - Li+2Bi @ 40 MeV 3
'g . - . - 3 '54 ! 25
=3 Sl )
1F , bt 1
0 L . 1 0 . al 1 |
0 23456 78 910 0 1 2 3 4 5 6 7 8 910
Eslrinyl (MeV) Es(ripyl (MCV)

@ Springer



STARE: a new detector array for exploring the breakup reaction mechanisms induced by weakly...

Page50f10 214

10 T T T T T T T T T 10°
91 SLi+2"Bi @ 40 MeV (@)
8_
A7 10?
Z 6
25
=4
3 10
2
o
10 : 10°
9 (b)
8
,\7 102
Z 6
25
=4
<3 10
1
0 10 15 20 25 30 35 40 45 50

E (MeV)

Fig.6 (Color online) Calibrated two-dimensional AE - E particle
identification spectra by No.2 telescope unit which covers an angular
range from 110° to 155°. a for °Li + 2®Bi at E,,,, = 40 MeV, b for
"Li + 2®Bi at E, ,,, = 40 MeV

d. In Fig. Sc, inter-strip events mainly originate from a, p, d, ¢
particles distributed on the different lines y = —x + ¢. These

x
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Fig.7 (Color online) a Single

events were removed after energy screening of the DSSDs, as
shown in Fig. 5d.

Typical two-dimensional particle identification spectra
obtained from the same telescope unit are shown in Fig. 6.
Owing to the excellent energy resolution of the detectors and
statistics, the different masses (A = 1-7) and charges (Z = 1-3)
produced by the different reaction channels can be clearly iden-
tified. In particular, the 3He and ®He bands can be observed in
the experimental data of ®’Li, which provides the possibility
of observing new breakup modes. In Fig. 6a, 'Li band can be
observed. It is evident that °Li picked up one neutron from the
target; thus, 1n-pickup process induced by °Li can occur. In
Fig. 6b, SLi band can be observed. This is due to 1n-stripping
of "Li. The results show that 1z-stripping process is populated
in the reactions of 7Li. The other light particles were analyzed
in sections below.

4.3 Identification of breakup modes

During the breakup process, momentum conservation dic-
tates that the total momentum of the fragments should remain
zero in the center of mass frame of the projectile-like nucleus.
Thus, fragments must travel in opposite directions in the center
of the mass frame but may be emitted in any direction. As a
result, we can filter out & particles from the breakup process, as
shown in Fig. 7a, from °Li + 2”Bi at E, ,,, = 40 MeV, when a
continuous distribution of energies with maximum and mini-
mum energies is given by

E _ 1
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E,, is the projectile-like fragment energy prior to breakup,
m; is the mass of the breakup fragments, and Qg is the O
-value for the breakup process. Figure 7b shows the current
particle multiplicity (the number of particles contained in
a coincidence event). We can observe that inclusive elastic
scattering or transfer events still account for the majority,
and the rest are the two coincidence fragments we expected.

The correlations between the kinetic energies of the coin-
cident fragments from the direct breakup mode of 7Li at
Eieam = 40 MeV are presented in Fig. 7c and d. The band-
like structures are immediately obvious, which suggests that
these events have originated from the true ’Li — a + d and
"Li — a + t breakup processes. Other breakup events from
different modes can be extracted in the same manner.

Based on the extracted breakup events, two-body dynam-
ics calculations can be used to reconstruct the breakup reac-
tion Q value to further understand the breakup mechanism.
The energy change (Q value) in the reaction can be deter-
mined by Eq. (2):

Q = El + EZ + Erec - Elab' (2)

E,, E, are the kinetic energies of the coincidence particles
in the reactions. E,. is the energy of the recoiling target-
like nucleus determined by conservation of momentum in
three body system. E\,, is the laboratory kinetic energy of the
incident projectile (E,.,,, for energy loss in the target after
correcting). The ground-state Q value (Q,,), for any collision
can be expressed by:

Qgg = Ep + Ep,x + Erec + Et,x - Elab’ 3)

where E, is the kinetic energy of projectile-like nuclei
and E;, and E, , are the excitation energies of projectile-
like nuclei and target-like nuclei, respectively. For binary
breakup, E, + E, , = E, + E,. Therefore, the Q spectra pro-
vide more information for each state populated in the target-
like nucleus (calculated using E, , = Q,, - 0).

The reconstructed Q spectra of all the breakup modes
in the reactions of %’Li with 2”Bi at E, ., = 30, 40 and 47
MeV are shown in Fig. 8. Vertical dashed lines indicate the
expected Q,,, Which corresponds to the ground state of the
target-like nucleus. In the reaction of °Li, compared with the
direct breakup mode (°Li — & + d), the breakup of °Li into
a + p after 1n-stripping seems to be the most dominant, as
can also be verified in Refs. [23, 36, 37]. In addition, a new
breakup mode, "Li — « + ¢ was observed for the first time by
STARE with obvious Q value peaks, indicating the ground
and excited states of 2Bi. We can observe that the relevance
of the ’Li — a + ¢ channel increases with beam energy. The
discovery of Li — « + ¢ breakup mode indicates that the
1n-pickup process cannot be ignored in the reaction of °Li,
which also provides an additional explanation for the origin
of inclusive a particles [38, 39].

@ Springer

For the reaction "Li + 2%°Bi, the breakup triggered by a
1p-pickup is the most probable channel for “Li. The breakup
after the production of 8Be into two a particles produces mul-
tiple peaks in the Q value spectra, including the ground state
and two excited states of 2°5Pb. However, when the target is
replaced by a medium-mass nucleus, conclusions may be
inconsistent. In the "Li + >Nb system [40], « + ¢ and & + d
are dominant. When the beam energy was increased to 40,
47 MeV, despite a very high breakup threshold (~10 MeV),
a significant number of ®He + p events were observed in "Li
+ 209Bi system. The present exclusive measurement of ®He in
coincidence with a proton that provides direct evidence of the
®He + p cluster configuration of “Li is important for under-
standing the possible nuclear cluster structures of "Li [41].

4.4 Prompt breakup vs. resonant breakup

In recent works [25, 36], the relative energy (E,,;) of breakup
fragments has been reported to provide significant informa-
tion on the breakup time-scale and to allow a classification of
the breakup process into prompt breakup or resonant breakup,
which can be expressed in terms of the measured energies and
masses of the fragments, and the measured opening angle of
the fragments within the laboratory frame (6,,):

myE, + mEy, —2v/m E\m,E, cos 0,
rel = :

“

As presented in Fig. 9a and b, the E,, distribution of 2%
Bi(°Li,Li— a+d)*®Bi and ®Bi(’Li,’Li— a+1)*”Bi at
Eicom = 40 MeV is peaking around at ~0.7 and ~2.1 MeV,
which correspond to the resonant states of °Li (3+, 2.186
MeV) and "Li (7/27, 4.63 MeV), respectively. These peaks
are associated with the breakup on the outgoing trajectory,
which is not affected by the target-like Coulomb field and
can be described as a resonant breakup. On the other hand,
when the lifetime of the final state in the projectile-like
nucleus is lower than the breakup scale (~10%2 s), breakup
will occur in the entrance channel close to the target-like
nucleus (prompt breakup) with a smooth and continuous
E,, distribution as a consequence of the Coulomb interac-
tion exerted by the target-like nucleus. To better identify the
different breakup components experimentally, new insights
were focused on the angular correlation spectra. As shown
in Fig. 9c and d, the expected correlation between £ and
6,, for resonant breakup from °Li - « + d and 'Li —» « + ¢
corresponds well to the red solid lines, which confirms the
interpretation of these events breakup far from the target-like
nucleus. f is the orientation of the relative velocity of the
fragments with respect to the motion of their center of mass,
as determined by Eq. (5). v; and y; are the velocities of each
fragment in the laboratory and their center-of-mass frame,
respectively. A schematic of the relationship between these
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Fig.8 (Color online) The Q value spectra determined for ’Li + 2°Bi at E,..,,,, = 30, 40, 47 MeV including different breakup modes, the vertical
dashed lines indicate the expected Q,, for each breakup mode in reactions of ®Li and "Li, respectively

variables is shown in the upper right corner of Fig. 9d. For
events arising from breakup near the target-like that cor-
respond to the prompt breakup, the § vs. 8, correlation is
distorted owing the influence of Coulomb interaction on
the fragment trajectories. The prompt and resonant breakup
components can be distinguished well by the relative energy

spectrum and angular correlation spectrum calculated using
STRAE.

vV, sin 6y,

sin fj =

&)

2,2 12,2
vouy + viuy + 2uguyvy v, cos 0,

5 Summary

In this study, a new multilayer silicon telescope array was
designed and manufactured to study the breakup reaction
mechanisms induced by weakly bound nuclear systems at
energies around the Coulomb barrier. In the new array,
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Fig.9 (Color online) a, b Dis-
tributions of the relative energy
of the coincident breakup frag-
ments in direct breakup modes
induced by ®7Li + 2®Bi at E, .,
=40MeV. ¢,d The f vs. 0,
spectra of breakup pairs for
67Li + 2Bi at E,,,,, = 40 MeV.
Solid lines show the expected

p vs. 6, correlation assuming 1 L
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integrated preamplifiers are positioned near the detectors
and operate continuously and stably in a low-temperature
environment, which is very important for reducing noise.
STARE with a large solid angle greatly improves the coin-
cidence efficiency, making it possible to collect breakup
events with very small cross-sections.

STARE has been successfully used to investigate the
coincidence measurement of charged fragments in ®7Li
+ 299Bi systems at E,,,, = 30, 40, 47 MeV. Owing to the
powerful particle identification and energy resolution of
STARE, different breakup modes can be clearly distin-
guished by two-body dynamics calculations, along with
the observation of new breakup modes. Different breakup
components (prompt breakup and resonant breakup) can
be identified by the relative energy and angular correlation
spectra, which are important for reproducing the breakup
process of weakly bound nuclei. To facilitate the under-
standing of the breakup mechanisms of weakly bound
nuclei and to elucidate the cluster structure within the pro-
jectile-like nucleus, the angular distributions of different
breakup components are currently being pursued. Simul-
taneously, our collaborators are also trying to develop a
theoretical framework for predicting these reactions. The
details of this work are presented in a forthcoming paper.
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