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Abstract
The full configuration interaction quantum Monte Carlo (FCIQMC) method, originally developed in quantum chemistry, 
has also been successful for both molecular and condensed matter systems. Another natural extension of this methodology 
is its application to nuclear structure calculations. We developed an FCIQMC approach to study nuclear systems. To validate 
this method, we applied FCIQMC to a small model space, where the standard shell model remains computationally feasible. 
Specifically, we performed calculations for ℏ� isotopes using pf-shell GXPF1A interaction and compared the results with 
those obtained from the standard shell model calculations. To further demonstrate the capabilities of the FCIQMC, we 
investigated its performance in systems exhibiting strong correlations, where conventional nuclear structure models are less 
effective. Using an artificially constructed strongly correlated system with a modified GXPF1A interaction, our calculations 
revealed that FCIQMC delivered superior results compared to many existing methods. Finally, we applied FCIQMC to Fe 
isotopes in the sdpf-shell model space, showing its potential to perform accurate calculations in large model spaces that are 
inaccessible to the shell model because of the limitations of current computational resources.

Keywords  Full configuration interaction quantum Monte Carlo · Shell Model · Strong correlation

1  Introduction

Atomic nuclei are self-bound quantum many-body systems, 
and a key goal in modern nuclear physics is to solve these 
systems using first principles. To achieve this, one can com-
pute the ground-state and excited-state energies along with 
their corresponding wavefunctions, either in coordinate 

space or within a specific basis, such as the harmonic oscil-
lator basis.

Methods in the coordinate space are typically represented 
by various quantum Monte Carlo (QMC) techniques, includ-
ing diffusion Monte Carlo (DMC) and the related Green’s 
function Monte Carlo (GFMC) [1–4]. These methods have 
proven to be successful in accurately determining the proper-
ties of light nuclei. However, a major obstacle of these meth-
ods is the Fermion sign problem: due to the antisymmetry 
property of the many-body wavefunction, the wavefunction 
necessarily contains both positive and negative amplitudes, 
which cannot be directly sampled using a probability distri-
bution. Techniques such as the fixed-node approximation or 
constrained-path method are often employed to mitigate the 
sign problem [2, 4]. A key challenge in these methods is the 
requirement for a trial wavefunction that approximates the 
true wavefunction as closely as possible.

Configuration interaction (CI) methods, including the 
configuration interaction shell model (CISM) [5, 6] and no-
core shell model (NCSM) [7, 8], provide direct and accurate 
frameworks for solving quantum many-body systems in basis 
space. However, the configuration space grows exponentially 
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with the number of particles, making it computationally 
infeasible to store all the configurations in memory. To 
address this issue, one can truncate the configuration space 
using methods such as particle-hole truncation or ℏ� trunca-
tion. Despite these techniques, many configurations are still 
required to achieve converged results, which is impossible 
for large-dimension systems.

An alternative approach is the post-Hartree–Fock meth-
ods [9], which offers polynomial complexity. These include 
perturbative approaches, such as many-body perturbation 
theory (MBPT) [10–13], and non-perturbative approaches, 
such as the in-medium similarity renormalization group 
(IMSRG) [14–16] and coupled cluster (CC) [17, 18]. How-
ever, all of these approaches rely on truncation schemes, 
which may introduce inaccuracies, particularly in strongly 
correlated systems. Efforts to improve the accuracy by going 
to higher-order truncations [19, 20] are in progress. How-
ever, computational cost remains a significant challenge.

In 2009, Booth et al. developed a full configuration inter-
action quantum Monte Carlo method for quantum chemistry 
calculations [21]. This method samples wavefunctions in the 
configuration space, allowing the storage of only a small 
subset of important configurations that are often several 
orders of magnitude smaller than those in the full configura-
tion space. Moreover, by utilizing signed walkers and walker 
annihilation, FCIQMC can avoid the Fermion sign problem 
and converge to the exact wavefunction without requiring 
prior knowledge of its nodal structure.

FCIQMC has been successfully applied to a range of 
systems [21–23], including both molecular and condensed 
matter systems, and has proven to be particularly effective 
for strongly correlated systems [24, 25]. Given its strengths, 
it shows promise for nuclear structure calculations. In this 
study, we developed a C++ code implementing FCIQMC, 
considering the symmetry properties of nuclear systems.

Several other quantum Monte Carlo methods also oper-
ate in configuration space, including the Monte Carlo shell 
model (MCSM) [26, 27], which constructs the basis by 
evolving in the auxiliary field and then diagonalizes the 
Hamiltonian using that basis; and the configuration interac-
tion Monte Carlo (CIMC) [28, 29], which, despite its simi-
lar name to FCIQMC, uses a guiding wavefunction to per-
form a “fixed-node approximation” in configuration space. 
It is important to note that although these methods share 
some similarities, they are fundamentally distinct from one 
another.

The remainder of this article is organized as follows: In 
Sect. 2, we introduce the theory and algorithm of FCIQMC 
and its enhanced variant. In Sect. 3, we present the bench-
marking results with shell model calculations for Fe isotopes 
in the pf-shell and for an artificially constructed strongly 
correlated system. We also tested large-space calculations 
using examples of Mg isotopes in the full sdpf shell.

2 � The Full configuration interaction 
quantum Monte Carlo

The CI method aims to solve the Schrödinger equation 
ĤΨ0 = E0Ψ0 in configuration space. A configuration is a 
Slater determinant constructed on a single-particle basis. 
Considering a system of N particles with M single-particle 
orbitals, a†

i
 ( i = 1, 2,… ,M ), we can express all possible con-

figurations as

where �0⟩ denotes the particle’s vacuum state. The Lanc-
zos algorithm is powerful for diagonalizing Hamiltonians 
in the configuration space, as used in the computational 
codes of Bigstick [30] and kshell [31] to obtain the exact 
wavefunction,

The dimensions of the full configuration space are of the 

order of 
(
M

N

)
 , which grows exponentially with the number 

of particles. This makes it impossible to store all the coef-
ficients Ci in the memory when the system is large.

Instead, the FCIQMC method samples wavefunctions in 
the configuration space. To achieve this, we use the pro-
jection method instead of the diagonalization method to 
obtain the ground-state wavefunction Ψ0 using the follow-
ing operator:

where E0 is the ground-state energy and � indicates the time 
evolution. In this process, excited states are projected, and 
only the ground state remains. This approach is achieved by 
the imaginary time Schrödinger equation as follows:

By expanding this differential equation in the configuration 
space, we obtain

Here, we replace the ground-state energy E0 with a self-
adaptive shift S because the ground-state energy is unknown 
before the calculation. The method for adapting the shift S 
is explained later in this paper.

Similar to QMC methods in coordinate space, the coef-
ficient Ci can be either positive or negative, making it impos-
sible to sample them directly as a probability distribution. In 

(1)�Di⟩ = a
†

i1
a
†

i2
… a

†

iN
�0⟩, i1 < i2 < ⋯ < iN ,

(2)Ψ =
�

i

Ci�Di⟩.

(3)𝜓(𝜏) = e−𝜏(Ĥ−E0)𝜓(𝜏 = 0)
𝜏→∞
�������������������→ Ψ0,

(4)−
d

d𝜏
𝜓(𝜏) = (Ĥ − E0)𝜓(𝜏).

(5)−
dCi

d�
=
∑

j

(Hij − S�ij)Cj.



Full configuration interaction quantum Monte Carlo in nuclear structure calculations﻿	 Page 3 of 8  212

the FCIQMC method, this issue is addressed by introducing 
the so-called walkers, which are distributed across various 
determinants. The number of walkers in �Di⟩ is denoted as 
Ni . Every walker is assigned a sign to represent negative 
coefficients, allowing Ni to be either positive or negative. 
The total number of walkers is given by:

We expect the walker number in a given determinant to be 
proportional to the corresponding expanded coefficients. 
Thus, the imaginary time Schrödinger equation is discre-
tized as follows:

A typical evolution of FCIQMC starts with a single deter-
minant �D0⟩ , which can be the Hartree–Fock ground state or 
a determinant with particles filling the lowest orbitals of the 
basis used. We begin the evolution with 10 walkers in �D0⟩ 
according to Eq. (7). The process of imaginary time evolu-
tion can be split into three periods: warm up, projection, 
and statistic.

During the warm-up period, we maintain a constant 
shift S = ⟨D0�Ĥ�D0⟩ > E0 . The ground-state wavefunction 
grows with exp[−(E0 − S)�] , causing the total walker num-
ber to increase exponentially. Once the total walker number 
reached a certain number, we entered the projection period. 
During this period, the shift varied according to the total 
walker number. The goal was to maintain the total walker 
number at a constant level. The shift S was updated at A 
steps, as suggested in Ref. [21]

In this study, we adapted the shift S every A = 10 steps and 
set � = 0.1 for all calculations.

When the imaginary time evolution reaches equilibrium, 
which means that the total walker number is almost stable, 
and the shift S fluctuates only slightly around the ground 
state, we begin the statistical period. We continued the equi-
librium evolution for several steps and performed statistics 
to evaluate the ground-state energy. The shift parameter S 
can be used to evaluate the ground-state energy, and we can 
also use the local time energy:

where N0(�) is the walker number in the �D0⟩ determinant 
and H0i is for ⟨D0�Ĥ�Di⟩.

(6)Nw =
∑

i

|Ni|.

(7)−
ΔNi

Δ�
=
∑

j

(Hij − S�ij)Nj.

(8)S(�) = S(� − AΔ�) −
�

AΔ�
ln

Nw(�)

Nw(� − AΔ�)
.

(9)E(𝜏) =
⟨D0�Ĥ�𝜓(𝜏)⟩
⟨D0�𝜓(𝜏)⟩ =

�

i

H0i

Ni(𝜏)

N0(𝜏)
,

The remaining challenge is the evolution of the imagi-
nary time Schrödinger equation, Eq. (7) stably and effec-
tively, which is key to the FCIQMC calculation. Every Δ� 
evolution is performed in the following three steps [21]:

The spawning step: For each walker in determinant �Di⟩ , 
we select a connected �Dj⟩ with a probability of pgen(j|i) 
and attempt to spawn walkers into �Dj⟩ with the following 
probability:

The sign of the newly spawned walker is opposite to 
sign(HijNi) . Spawning walkers with probability pspawn(j|i) 
means that we spawn ⌊pspawn⌋ walkers with a probability of 1 
and spawn one walker with a probability of pspawn − ⌊pspawn⌋ . 
Two determinants, �Di⟩ and �Dj⟩ are said to be connected if 
Hij ≠ 0 and j ≠ i . For a system with only one- and two-body 
interactions, there are two types of connected determinants: 
single and double excitations.

For a single excitation, we first select an occupied 
orbital (labeled a) from �Di⟩ with an equal probability of 
1∕Na where Na is the number of occupied orbitals in �Di⟩ . 
Next, we identify all unoccupied orbitals in �Di⟩ that have 
the same parity, spin projection m and isospin projection 
tz as those of the a orbital. From this set of unoccupied 
orbitals, we randomly selected one (labeled by b) with an 
equal probability of 1∕Nb where Nb is the number of unoc-
cupied orbitals. Then, �Dj⟩ is constructed by removing the 
a orbital and adding the b orbital to �Di⟩ . Finally, the gen-
eration probability pgen(j|i) is determined as the product of 
the two probabilities, that is, equal to 1∕(NaNb).

For double excitation, we first select two occupied 
orbitals labeled by a and b. Similar to the single excitation 
discussed above, each selection of a pair of occupied orbit-
als has an equal probability. Then, we identify all pairs of 
unoccupied orbitals that have the same parity, total spin 
projection m, and total isospin projection tz as those of the 
two-body state formed by the a and b orbitals. From this 
set of unoccupied orbital pairs, we randomly selected one 
pair with an equal probability. As in the single-excitation 
case, the generation probability pgen(j|i) is determined by 
the product of the probabilities associated with selecting 
the pair of occupied orbitals and the pair of unoccupied 
orbitals.

In each spawning attempt, we performed either a single 
or double excitation chosen with probabilities psingle and 
pdouble = 1 − psingle , respectively. The final pgen is multiplied 
by psingle when a single excitation is chosen, or multiplied 
by pdouble when a double excitation is chosen. In the present 
work, we used Psingle = 1∕2 for all calculations. Our calcula-
tion indicates that this choice of probability assignment does 
not have a noticeable impact on the calculation outcomes.

(10)pspawn(j|i) =
Δ�|Hij|
pgen(j|i)

.
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Diagonal death/cloning step: For each walker in determi-
nant �Di⟩ , we calculate

If pdeath(i) > 0 , the walker dies with probability pdeath(i) . 
If pdeath(i) < 0 , the walker clones with a probability of 
−pdeath(i).

The annihilation step: Collect all walkers in the same 
determinant (including the spawned walkers), and annihilate 
pairs of walkers with opposite signs until only walkers with 
the same sign remain in the determinant. This step is neces-
sary to prevent exponential growth of walkers [21].

This algorithm can be easily extended to a Hamiltonian 
with three-body interactions, although we did not incorpo-
rated it in the present computational code. The only modi-
fication is that the spawning step should include triplet 
excitation.

The original FCIQMC [21], as described above, can work 
for some systems, but requires a minimum walker number 
that can be very large in certain cases. For example, with 
our code, we found that in sd and pf shells, the converged 
evolution requires a walker number that is almost equal to 
the dimension of a full configuration calculation which is 
due to the sign problem. During Monte Carlo evolution, 
some determinants may randomly acquire a small number of 
walkers with opposite signs to the main wavefunction [32]. 
These components of the wavefunction can spread in sub-
sequent steps, which requires a large total walker number to 
adequately suppress them.

Deidre Cleland et al. showed that the walker number 
required for coverage can be dramatically reduced using 
initiator truncation [24]. In this method, one defines some 
important determinants as initiators and restricts non-ini-
tiator walkers from spawning to unoccupied determinants. 
In this way, we align the signs of the walkers in the small 
walker-number determinants with those in the large walker-
number determinants, which helps to suppress the sign 
problem. This method is referred to as initiator FCIQMC 
(i-FCIQMC) [24]. The original Hamiltonian is truncated as 
follows:

In our calculations, we define initiators using the deter-
minants �Di⟩ with |Ni| > n𝛼 , where n� is called the ini-
tiator threshold. This prescription approaches the origi-
nal FCIQMC algorithm when the total walker number 
approaches infinity. In this study, we take an initiator thresh-
old of n� = 3.

Another improvement over the original FCIQMC method 
is the use of the floating-point walker number [33], which 
enhances the stability of the evolution and reduces the 

(11)pdeath(i) = Δ�(Hii − S).

(12)H̃ij =

�
0, �Dj⟩ is not initiator and Ni = 0,

Hij, otherwise.

statistical error of the results. However, the floating-point 
walker approach can result in a large number of determinants 
being occupied by a small number of walkers. To reduce 
memory usage, a walker-number cutoff Nocc was intro-
duced [33]. In this method, if the walker number Ni is less 
than Nocc , it is either replaced by Nocc with a probability of 
Ni∕Nocc or removed with a probability of 1 − Ni∕Nocc . The 
same procedure was applied to spawned walkers with a sepa-
rate cutoff parameter � . We use the floating-point walker-
number method in the present work, and we take Nocc = 1 
and � = 0.1 in all calculations.

The i-FCIQMC method can also be used to obtain excited 
states [34]. In this respect, several parallel imaginary-time 
evolutions were performed. After each Δ� evolution, we 
used the Gram–Schmidt orthogonalization to obtain the 
orthogonal components of the wavefunction.

3 � Calculations and discussions

We first benchmarked our computations with the standard 
shell model calculations for the Fe isotopes with the pf-
shell interaction GXPF1A [35] using the code kshell [31]. 
As a detailed example, the Monte Carlo evolution of 56Fe 
is shown in Fig. 1. During the warm-up period, the total 
walker number increased rapidly. When the total walker 
number reaches the preset limit (it is 107 in 56Fe), the shift 
S starts to vary according to Eq. (8). In the present study, 
we made a small modification based on those in Ref. [24], 
which means that we do not apply initiator truncation in 
the warm-up period, whereas initiator truncation is used in 

Fig. 1   Monte Carlo evolution in 56Fe using the GXPF1A interaction. 
The upper panel shows the shift S and local-time energy E(�) as a 
function of the imaginary time � , compared with the standard shell 
model calculation. The lower panel shows the total walker number 
during the evolution
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the subsequent periods. With initiator truncation, the total 
walker number drops temporarily, but increases again. As 
time progresses, the system reaches equilibrium and the shift 
S should be stable around the expected ground-state energy. 
After that, we continued the evolution for a few more steps 
and performed statistical analysis to extract the ground-state 
energy. In the 56 Fe calculation, we used Δ� = 5 × 10−4 zs 
for the evolution. The projection period was 3.5 zs and the 
statistical period was 1.5 zs.

The equilibrium walker number and evolution time can 
vary across systems, and there is no fixed ratio between the 
equilibrium walker number and the preset warm-up limit. 
The time required for projection and statistical periods can 
also vary from system to system. The preset walker number 
and evolution time can be optimized through a trial run with 
a smaller walker number and empirical judgment.

Table 1 presents our i-FCIQMC calculations of the Fe iso-
topes with the GXPF1A interaction benchmarked with the 
standard shell model calculations with the same interaction. 
The i-FCIQMC calculations gave almost the same results 
as the full pf configuration SM calculations, demonstrating 
the validity of the i-FCIQMC applied to calculations of the 
nuclear structure. In Table 1, we also show the mean walker 
number in equilibrium, which is smaller than the dimen-
sion of the full configuration SM calculation. Using our cur-
rent implementation, the i-FCIQMC method achieves these 
results with a memory requirement that is to 1–2 orders of 
magnitude smaller than that of the SM calculations.

FCIQMC is applicable to strongly correlated systems, 
whereas other methods do not work well. In Ref. [37], Horoi 
et al. demonstrated that for a strongly correlated system, 
the CC calculation may yield significantly unbound ener-
gies compared with the full configuration SM calculation. 

In Ref.  [37], the correlations in 56Ni were enhanced by 
decreasing the shell gap between 0f7∕2 and 1p3∕2 orbitals. The 
i-FCIQMC method was applied to the same systems, and 
the results are shown in Fig. 2, along with the results from 
the CC methods, CISDTQ (configuration interaction sin-
gles, doubles, triplets, and quadruples), and full configura-
tion SM. The calculated energies are relative to the reference 
energy of −203.800MeV , which is consistent with Ref. [37]. 
The statistical uncertainties in the i-FCIQMC calculations 
were negligible and are therefore not displayed in the figure. 
We used approximately 108 walkers for each state, which is 
the current limit of our computations.

In the CC methods, the ground state is expressed as 
exp(T̂)�D0⟩ , where the cluster operator T̂  is defined as 
T̂1 + T̂2 + T̂3 +⋯ , and T̂n is the n-particle-n-hole (np-nh) 
component of T̂  . In practice, T̂  is typically truncated to 
T̂1 + T̂2 , corresponding to the CCSD (CC singles and dou-
bles) method. The completely renormalized (CR)-CC(2,3) 
method improves upon this by introducing a non-iterative 
contribution from T̂3 , thereby including additional correla-
tions [37–39]. As illustrated in Fig. 2, the i-FCIQMC results 
for 56Ni are close to the exact solutions from the pf-shell full 
configuration SM calculations, even in the strongly corre-
lated case (i.e., with −2 MeV shell-gap shift). In contrast, 
both CCSD and CR-CC(2,3) have lower bound energies, 
and CR-CC(2,3) calculations approximate the CISDTQ 
(aka SM with 4p-4 h truncation), indicating that they cannot 
account for correlations beyond the 4p-4 h level in these sys-
tems [37]. The i-FCIQMC method allows walkers to explore 
all possible determinants within the full configuration space, 
enabling them to capture high-order correlations that are 
inaccessible to CC methods.

Table 1   The i-FCIQMC calculations of the ground-state (g.s.) ener-
gies (in MeV ) of Fe isotopes with the pf-shell GXPF1A interaction, 
benchmarked with the standard shell model (SM) calculations using 
the same interaction. N

w
 is the mean walker number in equilibrium, 

and N
c
 is the dimension of the full pf configuration SM calculation. 

E(�) directly gives the g.s. energy, while the g.s. energy can also be 
obtained by the shift S in the statistic period. An uncertainty in E(�) 
or in S can be estimated using blocking analysis [36], given in paren-
theses

Isotope logN
w
∕logN

c
SM S(�) E(�)

46Fe 3.1/3.5 −56.667 −56.619(21) −56.643(36)

48Fe 5.2/5.8 −91.006 −90.927(22) −90.968(40)

50Fe 6.2/7.2 −122.878 −122.668(4) −122.644(44)

52Fe 7.2/8.0 −152.129 −152.018(2) −152.004(14)

54Fe 7.1/8.5 −175.731 −175.673(2) −175.669(6)

56Fe 7.2/8.7 −195.900 −195.802(4) −195.758(27)

58Fe 7.2/8.5 −213.424 −213.304(3) −213.303(29)

60Fe 7.3/8.0 −228.135 −228.102(5) −228.084(14)

Fig. 2   The computations of the 56Ni ground-state energy using dif-
ferent methods, as a function of the shell-gap shift between 0f7∕2 and 
1p3∕2 orbitals in the pf-shell GXPF1A interaction
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We have went to a larger model space for the sdpf shell. 
Using the sdpf-mu interaction [40], we calculated Mg iso-
topes with a total walker number of ≈ 108 . The results are 
presented in Fig. 3. Our present computing resources only 
allow us to perform the sdpf full configuration SM calcu-
lation for the light isotopes 24,26 Mg of the Mg chain. For 
heavier isotopes, the sdpf full configuration SM calculation 
exceeds the current computational capability. Therefore, we 
performed the SM calculation with a ℏ� truncation, in which 
a Nℏ� truncation means that only the configurations with 
excitation energies ≤ Nℏ� are included in the SM calcula-
tion. In the present work, we truncated the configuration 
space with 2ℏ� and 4ℏ� , as shown in Fig. 3. (Note that 4ℏ� 
calculations of isotopes heavier than 34Mg remain beyond 
our current computational resources). We see that the SM 
calculations with the 2ℏ� truncation yield unbound results 
compared to other methods owing to the truncation error. 
The i-FCIQMC and SM calculations with 4ℏ� truncation 
provide similar results for the Mg isotopes and are also in 
good agreements with the full configuration SM calculations 
in 24,26Mg.

In i-FCIQMC calculations with approximately 108 total 
walker number, only 10–20 GB of memory is required, 
demonstrating its significant potential for nuclear structure 

calculations in the configuration space. One of the major 
challenges in shell model calculations is the prohibitive 
memory cost in large model spaces. In contrast, i-FCIQMC 
requires a much smaller configuration space dimension com-
pared to full configuration shell model calculations. Further-
more, unlike shell model calculations, i-FCIQMC does not 
require storing hundreds of Lanczos vectors, which signifi-
cantly reduces the memory usage. The current i-FCIQMC 
implementation is parallelized using OpenMP, and MPI 
parallelization has been implemented for electron calcula-
tions [42]. In the future, we plan to further optimize the code 
with more efficient parallelization techniques, enabling the 
calculation of larger total walker numbers.

4 � Summary

In this study, we applied the FCIQMC method to nuclear 
structure calculations and demonstrated its effectiveness 
in nuclear many-body systems. According to our code, 
the original FCIQMC method requires a large total walker 
number to converge, which makes it impractical for nuclear 
structure calculations. However, we showed that the initiator 
FCIQMC method performs well in these calculations.

Our i-FCIQMC computations were benchmarked with 
full configuration shell model calculations with a focus on 
Fe isotopes in the pf shell. The results confirmed the validity 
of our i-FCIQMC computations. For 56Ni , using the shell-
gap-shifted GXPF1A interaction, the i-FCIQMC method 
produced more accurate results than those obtained with 
coupled cluster calculations, highlighting its strength in 
handling strongly correlated systems. Additionally, we per-
formed large-space calculations for Mg isotopes in the sdpf 
shell, demonstrating the capability of i-FCIQMC to calculate 
large-space many-body systems.
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shows the dimensions required in the calculations. Currently, the 
dimension limit of SM calculation is 1011 [41]
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