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Abstract

The full configuration interaction quantum Monte Carlo (FCIQMC) method, originally developed in quantum chemistry,
has also been successful for both molecular and condensed matter systems. Another natural extension of this methodology
is its application to nuclear structure calculations. We developed an FCIQMC approach to study nuclear systems. To validate
this method, we applied FCIQMC to a small model space, where the standard shell model remains computationally feasible.
Specifically, we performed calculations for zw isotopes using pf-shell GXPF1A interaction and compared the results with
those obtained from the standard shell model calculations. To further demonstrate the capabilities of the FCIQMC, we
investigated its performance in systems exhibiting strong correlations, where conventional nuclear structure models are less
effective. Using an artificially constructed strongly correlated system with a modified GXPF1A interaction, our calculations
revealed that FCIQMC delivered superior results compared to many existing methods. Finally, we applied FCIQMC to Fe
isotopes in the sdpf-shell model space, showing its potential to perform accurate calculations in large model spaces that are
inaccessible to the shell model because of the limitations of current computational resources.

Keywords Full configuration interaction quantum Monte Carlo - Shell Model - Strong correlation

1 Introduction space or within a specific basis, such as the harmonic oscil-
lator basis.

Atomic nuclei are self-bound quantum many-body systems, Methods in the coordinate space are typically represented

and a key goal in modern nuclear physics is to solve these by various quantum Monte Carlo (QMC) techniques, includ-

systems using first principles. To achieve this, one can com-  ing diffusion Monte Carlo (DMC) and the related Green’s

pute the ground-state and excited-state energies along with ~ function Monte Carlo (GFMC) [1-4]. These methods have
their corresponding wavefunctions, either in coordinate  proven to be successful in accurately determining the proper-
ties of light nuclei. However, a major obstacle of these meth-
ods is the Fermion sign problem: due to the antisymmetry
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with the number of particles, making it computationally
infeasible to store all the configurations in memory. To
address this issue, one can truncate the configuration space
using methods such as particle-hole truncation or A trunca-
tion. Despite these techniques, many configurations are still
required to achieve converged results, which is impossible
for large-dimension systems.

An alternative approach is the post-Hartree—Fock meth-
ods [9], which offers polynomial complexity. These include
perturbative approaches, such as many-body perturbation
theory (MBPT) [10-13], and non-perturbative approaches,
such as the in-medium similarity renormalization group
(IMSRG) [14-16] and coupled cluster (CC) [17, 18]. How-
ever, all of these approaches rely on truncation schemes,
which may introduce inaccuracies, particularly in strongly
correlated systems. Efforts to improve the accuracy by going
to higher-order truncations [19, 20] are in progress. How-
ever, computational cost remains a significant challenge.

In 2009, Booth et al. developed a full configuration inter-
action quantum Monte Carlo method for quantum chemistry
calculations [21]. This method samples wavefunctions in the
configuration space, allowing the storage of only a small
subset of important configurations that are often several
orders of magnitude smaller than those in the full configura-
tion space. Moreover, by utilizing signed walkers and walker
annihilation, FCIQMC can avoid the Fermion sign problem
and converge to the exact wavefunction without requiring
prior knowledge of its nodal structure.

FCIQMC has been successfully applied to a range of
systems [21-23], including both molecular and condensed
matter systems, and has proven to be particularly effective
for strongly correlated systems [24, 25]. Given its strengths,
it shows promise for nuclear structure calculations. In this
study, we developed a C++ code implementing FCIQMC,
considering the symmetry properties of nuclear systems.

Several other quantum Monte Carlo methods also oper-
ate in configuration space, including the Monte Carlo shell
model (MCSM) [26, 27], which constructs the basis by
evolving in the auxiliary field and then diagonalizes the
Hamiltonian using that basis; and the configuration interac-
tion Monte Carlo (CIMC) [28, 29], which, despite its simi-
lar name to FCIQMC, uses a guiding wavefunction to per-
form a “fixed-node approximation” in configuration space.
It is important to note that although these methods share
some similarities, they are fundamentally distinct from one
another.

The remainder of this article is organized as follows: In
Sect. 2, we introduce the theory and algorithm of FCIQMC
and its enhanced variant. In Sect. 3, we present the bench-
marking results with shell model calculations for Fe isotopes
in the pf-shell and for an artificially constructed strongly
correlated system. We also tested large-space calculations
using examples of Mg isotopes in the full sdpf shell.
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2 The Full configuration interaction
quantum Monte Carlo

The CI method aims to solve the Schrodinger equation
HY, = E,¥, in configuration space. A configuration is a
Slater determinant constructed on a single-particle basis.
Considering a system of N particles with M single-particle
orbitals, aj (i=1,2,...,M), we can express all possible con-
figurations as

_ T + T . . L]
|D;y = aa, ... al.N|0), i) <iy < <y, €))]

where |0) denotes the particle’s vacuum state. The Lanc-
zos algorithm is powerful for diagonalizing Hamiltonians
in the configuration space, as used in the computational
codes of Bigstick [30] and kshell [31] to obtain the exact
wavefunction,

¥ = 2 C.|D,). @

The dimensions of the full configuration space are of the

M
order of ( N
of particles. This makes it impossible to store all the coef-
ficients C; in the memory when the system is large.

Instead, the FCIQMC method samples wavefunctions in
the configuration space. To achieve this, we use the pro-
jection method instead of the diagonalization method to
obtain the ground-state wavefunction ¥, using the follow-
ing operator:

>, which grows exponentially with the number

w(r) = eIy (r = 0)— ¥, 3)

where E| is the ground-state energy and 7 indicates the time
evolution. In this process, excited states are projected, and
only the ground state remains. This approach is achieved by
the imaginary time Schrodinger equation as follows:

d N
_aw(f) = (H - EO)I[/(T) (4’)

By expanding this differential equation in the configuration
space, we obtain

dc;
I = Z(HU - S(Sij)Cj. 5)
j

Here, we replace the ground-state energy E, with a self-
adaptive shift S because the ground-state energy is unknown
before the calculation. The method for adapting the shift §
is explained later in this paper.

Similar to QMC methods in coordinate space, the coef-
ficient C,; can be either positive or negative, making it impos-
sible to sample them directly as a probability distribution. In
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the FCIQMC method, this issue is addressed by introducing
the so-called walkers, which are distributed across various
determinants. The number of walkers in |D;) is denoted as
N;. Every walker is assigned a sign to represent negative
coefficients, allowing N, to be either positive or negative.
The total number of walkers is given by:

Nw=Z|Ni|- (6)

We expect the walker number in a given determinant to be
proportional to the corresponding expanded coefficients.
Thus, the imaginary time Schrddinger equation is discre-
tized as follows:

AN,
v ;(Hz]

A typical evolution of FCIQMC starts with a single deter-
minant |D,), which can be the Hartree—Fock ground state or
a determinant with particles filling the lowest orbitals of the
basis used. We begin the evolution with 10 walkers in |D,))
according to Eq. (7). The process of imaginary time evolu-
tion can be split into three periods: warm up, projection,
and statistic.

During the warm-up period, we maintain a constant
shift § = (Dy|H|D,) > E,. The ground-state wavefunction
grows with exp[—(E, — S)7], causing the total walker num-
ber to increase exponentially. Once the total walker number
reached a certain number, we entered the projection period.
During this period, the shift varied according to the total
walker number. The goal was to maintain the total walker
number at a constant level. The shift S was updated at A
steps, as suggested in Ref. [21]

¢ N,(0)

—AAT) - ——1 .
D A "N = AdD) ®)

— 86;)N;. @)

S(r) =Sz

In this study, we adapted the shift S every A = 10 steps and
set ¢ = 0.1 for all calculations.

When the imaginary time evolution reaches equilibrium,
which means that the total walker number is almost stable,
and the shift S fluctuates only slightly around the ground
state, we begin the statistical period. We continued the equi-
librium evolution for several steps and performed statistics
to evaluate the ground-state energy. The shift parameter S
can be used to evaluate the ground-state energy, and we can
also use the local time energy:

(Do|H|W(T)> Z N(7)
OZN (T) (9)

E(r) =
(Doly ()

where Ny(7) is the walker number in the |D) determinant

and Hy, is for (Dy|H|D,).

The remaining challenge is the evolution of the imagi-
nary time Schrodinger equation, Eq. (7) stably and effec-
tively, which is key to the FCIQMC calculation. Every At
evolution is performed in the following three steps [21]:

The spawning step: For each walker in determinant |D,),
we select a connected |D;) with a probability of p,(jli)
and attempt to spawn walkers into |D;) with the following
probability:

At|Hy|
PeenilD)

Pspawn (1) = (10)
The sign of the newly spawned walker is opposite to
sign(H;N;). Spawning walkers with probability p,,.,(l7)
means that we spawn | py,,.,,, | walkers with a probability of 1
and spawn one walker with a probability of p,uun = [Pspawn -
Two determinants, |D;) and |D;) are said to be connected if
H; # 0and j # i. For a system with only one- and two-body
interactions, there are two types of connected determinants:
single and double excitations.

For a single excitation, we first select an occupied
orbital (labeled a) from |D;) with an equal probability of
1/N, where N, is the number of occupied orbitals in |D;).
Next, we identify all unoccupied orbitals in |D;) that have
the same parity, spin projection m and isospin projection
t, as those of the a orbital. From this set of unoccupied
orbitals, we randomly selected one (labeled by b) with an
equal probability of 1 /N, where N, is the number of unoc-
cupied orbitals. Then, |D;) is constructed by removing the
a orbital and adding the b orbital to |D;). Finally, the gen-
eration probability p,(j|i) is determined as the product of
the two probabilities, that is, equal to 1 /(N,N,).

For double excitation, we first select two occupied
orbitals labeled by a and b. Similar to the single excitation
discussed above, each selection of a pair of occupied orbit-
als has an equal probability. Then, we identify all pairs of
unoccupied orbitals that have the same parity, total spin
projection m, and total isospin projection 7, as those of the
two-body state formed by the a and b orbitals. From this
set of unoccupied orbital pairs, we randomly selected one
pair with an equal probability. As in the single-excitation
case, the generation probability p,.,(j|i) is determined by
the product of the probabilities associated with selecting
the pair of occupied orbitals and the pair of unoccupied
orbitals.

In each spawning attempt, we performed either a single
or double excitation chosen with probabilities pg,.. and
Pdouble = 1 = Dgingle» tespectively. The final p,, is multiplied
by Pingle When a single excitation is chosen, or multiplied
by paouble When a double excitation is chosen. In the present
work, we used Pg,,c = 1/2 for all calculations. Our calcula-
tion indicates that this choice of probability assignment does
not have a noticeable impact on the calculation outcomes.

@ Springer
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Diagonal death/cloning step: For each walker in determi-
nant|D;), we calculate

Pacan(D) = Az(H; = 5). (11)

If Pgearn () > 0, the walker dies with probability py..:(0)-
If pgean(® < 0, the walker clones with a probability of
_pdealh(i)'

The annihilation step: Collect all walkers in the same
determinant (including the spawned walkers), and annihilate
pairs of walkers with opposite signs until only walkers with
the same sign remain in the determinant. This step is neces-
sary to prevent exponential growth of walkers [21].

This algorithm can be easily extended to a Hamiltonian
with three-body interactions, although we did not incorpo-
rated it in the present computational code. The only modi-
fication is that the spawning step should include triplet
excitation.

The original FCIQMC [21], as described above, can work
for some systems, but requires a minimum walker number
that can be very large in certain cases. For example, with
our code, we found that in sd and pf shells, the converged
evolution requires a walker number that is almost equal to
the dimension of a full configuration calculation which is
due to the sign problem. During Monte Carlo evolution,
some determinants may randomly acquire a small number of
walkers with opposite signs to the main wavefunction [32].
These components of the wavefunction can spread in sub-
sequent steps, which requires a large total walker number to
adequately suppress them.

Deidre Cleland et al. showed that the walker number
required for coverage can be dramatically reduced using
initiator truncation [24]. In this method, one defines some
important determinants as initiators and restricts non-ini-
tiator walkers from spawning to unoccupied determinants.
In this way, we align the signs of the walkers in the small
walker-number determinants with those in the large walker-
number determinants, which helps to suppress the sign
problem. This method is referred to as initiator FCIQMC
(i-FCIQMC) [24]. The original Hamiltonian is truncated as
follows:

- 0,
=

lj’

|Dj) is not initiator and N; = 0,
otherwise. (12)

In our calculations, we define initiators using the deter-
minants |D;) with |N;| > n,, where n, is called the ini-
tiator threshold. This prescription approaches the origi-
nal FCIQMC algorithm when the total walker number
approaches infinity. In this study, we take an initiator thresh-
old of n, = 3.

Another improvement over the original FCIQMC method
is the use of the floating-point walker number [33], which
enhances the stability of the evolution and reduces the

@ Springer

statistical error of the results. However, the floating-point
walker approach can result in a large number of determinants
being occupied by a small number of walkers. To reduce
memory usage, a walker-number cutoff N, was intro-
duced [33]. In this method, if the walker number N, is less
than N, it is either replaced by N, . with a probability of
N;/N,.. or removed with a probability of 1 — N,;/N, .. The
same procedure was applied to spawned walkers with a sepa-
rate cutoff parameter k. We use the floating-point walker-
number method in the present work, and we take N .. =1
and « = 0.1in all calculations.

The i-FCIQMC method can also be used to obtain excited
states [34]. In this respect, several parallel imaginary-time
evolutions were performed. After each Az evolution, we
used the Gram—Schmidt orthogonalization to obtain the
orthogonal components of the wavefunction.

CC

3 Calculations and discussions

We first benchmarked our computations with the standard
shell model calculations for the Fe isotopes with the pf-
shell interaction GXPF1A [35] using the code kshell [31].
As a detailed example, the Monte Carlo evolution of *°Fe
is shown in Fig. 1. During the warm-up period, the total
walker number increased rapidly. When the total walker
number reaches the preset limit (it is 107 in >Fe), the shift
S starts to vary according to Eq. (8). In the present study,
we made a small modification based on those in Ref. [24],
which means that we do not apply initiator truncation in
the warm-up period, whereas initiator truncation is used in

E (MeV)
0]
<

statistic i

I O (ST TSN

2 3 4 5
T (28)

Fig.1 Monte Carlo evolution in *°Fe using the GXPF1A interaction.
The upper panel shows the shift S and local-time energy E(z) as a
function of the imaginary time =, compared with the standard shell
model calculation. The lower panel shows the total walker number
during the evolution



Full configuration interaction quantum Monte Carlo in nuclear structure calculations

Page50f8 212

the subsequent periods. With initiator truncation, the total
walker number drops temporarily, but increases again. As
time progresses, the system reaches equilibrium and the shift
S should be stable around the expected ground-state energy.
After that, we continued the evolution for a few more steps
and performed statistical analysis to extract the ground-state
energy. In the °Fe calculation, we used A7 = 5x 107 zs
for the evolution. The projection period was 3.5 zs and the
statistical period was 1.5 zs.

The equilibrium walker number and evolution time can
vary across systems, and there is no fixed ratio between the
equilibrium walker number and the preset warm-up limit.
The time required for projection and statistical periods can
also vary from system to system. The preset walker number
and evolution time can be optimized through a trial run with
a smaller walker number and empirical judgment.

Table 1 presents our i-FCIQMC calculations of the Fe iso-
topes with the GXPFI1A interaction benchmarked with the
standard shell model calculations with the same interaction.
The i-FCIQMC calculations gave almost the same results
as the full pf configuration SM calculations, demonstrating
the validity of the i-FCIQMC applied to calculations of the
nuclear structure. In Table 1, we also show the mean walker
number in equilibrium, which is smaller than the dimen-
sion of the full configuration SM calculation. Using our cur-
rent implementation, the i-FCIQMC method achieves these
results with a memory requirement that is to 1-2 orders of
magnitude smaller than that of the SM calculations.

FCIQMC is applicable to strongly correlated systems,
whereas other methods do not work well. In Ref. [37], Horoi
et al. demonstrated that for a strongly correlated system,
the CC calculation may yield significantly unbound ener-
gies compared with the full configuration SM calculation.

Table 1 The i-FCIQMC calculations of the ground-state (g.s.) ener-
gies (in MeV) of Fe isotopes with the pf-shell GXPFIA interaction,
benchmarked with the standard shell model (SM) calculations using
the same interaction. N,, is the mean walker number in equilibrium,
and N, is the dimension of the full pf configuration SM calculation.
E(7) directly gives the g.s. energy, while the g.s. energy can also be
obtained by the shift S in the statistic period. An uncertainty in E(7)
or in § can be estimated using blocking analysis [36], given in paren-
theses

Isotope  logN,,/logN, SM S(z) E(7)

46Fe 3.13.5 —56.667 —56.619(21) —56.643(36)
“8Fe 5.2/5.8 —91.006 -90.927(22)  —90.968(40)
OFe  6.2/72 122878 —122.668(4) —122.644(44)
S2Fe 7.2/80 ~152.129  —152.018(2) —152.004(14)
SiFe 7.1/8.5 175731 —175.673(2) —175.669(6)
S0Fe 7.2/8.7 —195.900 —195.802(4) —195.758(27)
BFe 7.2/18.5 —213.424 -213.304(3) —213.303(29)
0Fe 7.3/8.0 —228.135 —228.102(5) —228.084(14)

In Ref. [37], the correlations in °Ni were enhanced by
decreasing the shell gap between 0f; , and 1p; /, orbitals. The
i-FCIQMC method was applied to the same systems, and
the results are shown in Fig. 2, along with the results from
the CC methods, CISDTQ (configuration interaction sin-
gles, doubles, triplets, and quadruples), and full configura-
tion SM. The calculated energies are relative to the reference
energy of —203.800MeV, which is consistent with Ref. [37].
The statistical uncertainties in the i-FCIQMC calculations
were negligible and are therefore not displayed in the figure.
We used approximately 10 walkers for each state, which is
the current limit of our computations.

In the CC methods, the ground state is expressed as
exp(T)lDO), where the cluster operator 7' is defined as
T, +T,+T;+ -, and T, is the n-particle-n-hole (np-nh)
component of T.1In practice, Tis typically truncated to
T, + T,, corresponding to the CCSD (CC singles and dou-
bles) method. The completely renormalized (CR)-CC(2,3)
method improves upon this by introducing a non-iterative
contribution from T3, thereby including additional correla-
tions [37-39]. As illustrated in Fig. 2, the i-FCIQMC results
for °Ni are close to the exact solutions from the pf-shell full
configuration SM calculations, even in the strongly corre-
lated case (i.e., with —2 MeV shell-gap shift). In contrast,
both CCSD and CR-CC(2,3) have lower bound energies,
and CR-CC(2,3) calculations approximate the CISDTQ
(aka SM with 4p-4 h truncation), indicating that they cannot
account for correlations beyond the 4p-4 h level in these sys-
tems [37]. The i-FCIQMC method allows walkers to explore
all possible determinants within the full configuration space,
enabling them to capture high-order correlations that are
inaccessible to CC methods.

of ]

’:;\ 74; ]
> i |
\E/ L J
Eﬂ _6F CCSD 4
g I CR-CC(2,3) ]
=gl —— CISDTQ ]
: —— SM :

_10k —e— -FCIQMC ]
S+

Gap shift (MeV)

Fig.2 The computations of the *°Ni ground-state energy using dif-
ferent methods, as a function of the shell-gap shift between 0f; , and
1ps, orbitals in the pf-shell GXPF1A interaction

@ Springer
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Fig.3 Ground-state energies of Mg isotopes, calculated with the
i-FCIQMC, SM with 2A® and 4hw truncations, and SM with full
sdpf configurations. The sdpf-mu interaction is used. The lower panel
shows the dimensions required in the calculations. Currently, the
dimension limit of SM calculation is 10! [41]

We have went to a larger model space for the sdpf shell.
Using the sdpf-mu interaction [40], we calculated Mg iso-
topes with a total walker number of ~ 108. The results are
presented in Fig. 3. Our present computing resources only
allow us to perform the sdpf full configuration SM calcu-
lation for the light isotopes >*Mg of the Mg chain. For
heavier isotopes, the sdpf full configuration SM calculation
exceeds the current computational capability. Therefore, we
performed the SM calculation with a Zw truncation, in which
a Nhw truncation means that only the configurations with
excitation energies < Nhw are included in the SM calcula-
tion. In the present work, we truncated the configuration
space with 2hw and 4hw, as shown in Fig. 3. (Note that 42w
calculations of isotopes heavier than 34Mg remain beyond
our current computational resources). We see that the SM
calculations with the 2/® truncation yield unbound results
compared to other methods owing to the truncation error.
The i-FCIQMC and SM calculations with 4Aw® truncation
provide similar results for the Mg isotopes and are also in
good agreements with the full configuration SM calculations
in 2426Mg.

In i-FCIQMC calculations with approximately 10? total
walker number, only 10-20 GB of memory is required,
demonstrating its significant potential for nuclear structure

@ Springer

calculations in the configuration space. One of the major
challenges in shell model calculations is the prohibitive
memory cost in large model spaces. In contrast, i-FCIQMC
requires a much smaller configuration space dimension com-
pared to full configuration shell model calculations. Further-
more, unlike shell model calculations, i-FCIQMC does not
require storing hundreds of Lanczos vectors, which signifi-
cantly reduces the memory usage. The current i-FCIQMC
implementation is parallelized using OpenMP, and MPI
parallelization has been implemented for electron calcula-
tions [42]. In the future, we plan to further optimize the code
with more efficient parallelization techniques, enabling the
calculation of larger total walker numbers.

4 Summary

In this study, we applied the FCIQMC method to nuclear
structure calculations and demonstrated its effectiveness
in nuclear many-body systems. According to our code,
the original FCIQMC method requires a large total walker
number to converge, which makes it impractical for nuclear
structure calculations. However, we showed that the initiator
FCIQMC method performs well in these calculations.

Our i-FCIQMC computations were benchmarked with
full configuration shell model calculations with a focus on
Fe isotopes in the pf shell. The results confirmed the validity
of our i-FCIQMC computations. For Ni, using the shell-
gap-shifted GXPF1A interaction, the i-FCIQMC method
produced more accurate results than those obtained with
coupled cluster calculations, highlighting its strength in
handling strongly correlated systems. Additionally, we per-
formed large-space calculations for Mg isotopes in the sdpf
shell, demonstrating the capability of i-FCIQMC to calculate
large-space many-body systems.
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