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Abstract
We studied the energy partition between two well-separated fission fragments associated with the partition of nucleons owing 
to quantum entanglement. This is different from most fission models that invoke an explicit statistical partition of excitation 
energies. The dynamical fission evolution is described within the time-dependent Hartree–Fock+BCS framework. Excita-
tion energies of isotopic fission fragments were obtained using the particle number projection method after the dynamical 
splitting of 238 U. The resulting excitation energies of the light and heavy fragments are consistent with the appearance of 
sawtooth structures. We found that the pairing correlation strengths have a significant influence on the partition of the excita-
tion energies. Furthermore, the excitation energies of isotopic fragments increase with increasing neutron number, implying 
the suppression of the production of neutron-rich beams in rare-isotope beam facilities.
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1  Introduction

In the final stage of nuclear fission, the majority of the 
nuclear energy is released through the enormous kinetic 
energy of splitting fission fragments. However, the remain-
ing considerable part of nuclear energy is stored as the 
excitation energy of the primary fission fragments. Conse-
quently, de-excitation fission fragments are realized by neu-
tron emissions, � radiation, and then �-decays [1]. There-
fore, the energy partition between two fragments plays an 
indispensable role in determining the multiple post-fission 
observables and their correlations.

Fragment excitations are caused by dissipative motion 
and shape distortions. Dissipation plays a significant role in 
the final splitting stage [2]. The shape distortion and shell 
effects of the fragments are important in energy partition-
ing [3]. The non-equilibrium non-adiabatic fission dynamics, 
shell effects, dynamical pairing correlations, shapes of pri-
mary fragments, and energy dependencies can be naturally 
described by microscopic time-dependent density functional 
theory (TD-DFT) [2, 4–15]. It has been pointed out that the 
energy partition occurs later than particle partition [16]. In 
previous fission studies of 240Pu, the light fragments acquired 
more excitation energies than those of heavy fragments [4]. 
This is consistent with the observation that the light frag-
ments emit more neutrons than heavy fragments from the 
fission of actinide nuclei. With increasing excitation energy, 
the difference in excitation energies between light and heavy 
fragments is reduced [4].

Experimentally, the average number of neutrons, that 
is, neutron multiplicities, emitted from fission fragments 
shows puzzling sawtooth structures depending on the frag-
ment masses [17, 18]. This provides a unique opportunity 
to understand the energy sharing between two fission frag-
ments. Conventionally, the excitation energy sharing between 
fission fragments is described as at the statistical equilibrium 
by invoking different level densities of fragments [3, 19–22]. 
It has been pointed out that shape-dependent density levels can 
better describe the partitioning of excitation energies [3]. In 
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this approach, the slopes of the sawtooth structures are slightly 
underestimated [3]. Usually, different temperatures in light 
and heavy fragments must be adopted to reproduce neutron 
multiplicities [20, 21]. Sawtooth structures are also shown in 
the distributions of neutron excess depending on the fragment 
charge number [23, 24] and angular momentum depending on 
the fragment masses [25].

Recently, we proposed that quantum entanglement is cru-
cial for the appearance of sawtooth structures in the distribu-
tions of the excitation energies of fragments and subsequently 
neutron multiplicities [26]. Quantum entanglement enables the 
exchange of particles and energy between two well-separated 
fission fragments. This is a counter-intuitive picture but can be 
understood because of the non-localization of wave functions 
in the fast splitting process [26]. Owing to this entanglement, 
the energy changes associated with the particle partition were 
significantly reduced. The sharing of particles between two 
fission fragments obtained by a double particle number pro-
jection (PNP) shows a considerable spreading width [26, 27]. 
The associated energy partition owing to the superposition 
of different particle numbers can be obtained using the PNP 
method [26]. The distribution of fragment yields has been 
studied by PNP within the framework of the time-dependent 
generator coordinate method and TD-DFT [27–29]. The PNP 
method has also been used to study heavy ion reactions [30, 
31]. In most fission models, quantum correlations or entangle-
ment between two fission fragments is not considered. It is 
timely to study the energy partition between fission fragments 
considering the quantum entanglement between two fission 
fragments, in which the entanglement is persistent even when 
two fragments are well separated [26].

In this work, we studied the partition of the excitation 
energies of isotopic fission fragments of 238 U, which is rel-
evant for the production of radioactive beams from fission 
products after prompt neutron evaporation. For example, 
medium-mass neutron-rich beams are mainly produced by 
the fission of 238 U in new-generation rare isotope beam facil-
ities such as FRIB [32], RIBF [33], and HIAF [34]. Three 
new isotopes were produced in fission reactions of 238 U 
beam in the carbon target in the newly operated FRIB [32]. 
In addition, the proposal of photofission of 238 U driven by 
high-power e-LINAC with a convertor target is promising 
for producing neutron-rich beams [35]. A deeper under-
standing of nuclear fission is also relevant for the synthesis 
of superheavy elements [36], production of long-lived fis-
sion products, and next-generation energy production.

2 � Methods

The time-dependent Hartree–Fock+BCS (TD-BCS) 
approach was used to describe the dynamical fission evolu-
tion beyond the saddle point. The TD-BCS equations can be 

derived using the BCS or canonical basis in the time-depend-
ent Hartree–Fock–Bogoliubov method [37]. In our previous 
work, TD-BCS was extended to study the fission dynamics 
of compound nuclei [4]. The initial configuration of the fis-
sioning nucleus was obtained using deformation-constrained 
Hartree–Fock+BCS calculations. We employed constrained 
calculations in terms of quadrupole–octupole deformations 
(�2, �3) . The initial deformation was adopted as (�2, �3)=(2.4, 
1.4) for fission evolution. It has been pointed out that evolu-
tion results are not sensitive to initial deformation [11]. For 
nuclear interactions, SkM∗ [38] and UNEDF1 [39] forces 
were adopted, which have been widely used for the calcu-
lation of nuclear fission barriers. The mixing-type pairing 
interaction [40] is adopted with strengths Vp=475 MeV and 
Vn=420 MeV for SkM∗ force, and Vp=415 MeV and Vn=375 
MeV for the UNEDF1 force. The dynamical evolution was 
performed with the time-dependent Hartree–Fock (TDHF) 
solver Sky3D [41] with our modifications of the TD-BCS. 
The initial configurations were obtained using the SkyAX 
solver [42] to interface with the Sky3D.

Based on the TD-BCS solutions, the particle numbers of 
the fragments and fissioning nuclei are not well defined. The 
particle numbers in the two fragments are in a superposition 
state. The double PNP on the total space and partial space 
was applied to determine the particle numbers of the two 
complementary fragments.

The double projection operator is written as

where q denotes the neutron or proton, T/P denotes the pro-
jection on the total space or partial space, and N̂q

P
 denotes 

the particle number operator. Note that the particle number 
operator is N̂q

P
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function used to obtain an exclusive partial space. The pro-
jected states with particle numbers deviating from the aver-
age number up to 8 particles are calculated.
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where �� , �� are transition densities. The excitation energy 
of each fragment was obtained by subtracting the projected 
binding energy in the splitting process from the ground-state 
energy. In our approach, the energy partition is associated 
with the particle partition, which has a distribution owing 
to quantum entanglement. This method has been applied to 
calculate the excitation energies of the products in multi-
nucleon transfer reactions [31]. In practical calculations, a 
series of transition densities, such as the current density and 
spin–orbit density, must be calculated for each � . The calcu-
lations are very costly because the proton–neutron mixing 
terms involve fourfold integrations. These calculations could 
be problematic when the denominator in Eq. (2) is small, 
and a cutoff of 5 × 10−4 was applied.

3 � Results

First, the distributions of the fission yields of 238 U after PNP 
on the splitting fission event are obtained. Figure 1a shows 
the distributions of projected fission yields as a function 
of fragment masses calculated using SkM* and UNEDF1 
forces. It can be seen that the peak is around A = 136 with 
the SkM∗ force, but the peak is around A = 138 with the 
UNEDF1 force. The peak widths were similar, and the 
half-widths were approximately eight particles. It is known 
that UNEDF1 results in slightly lower fission barriers than 
SkM∗ [39]. This could be the reason why the fission yield 
peak from the UNEDF1 calculations is slightly more asym-
metric. Correspondingly, the total kinetic energy (TKE) was 
smaller with a longer scission neck. The resulting TKE of 
SkM* calculations is 168.9 MeV while TKE of UNEDF1 
calculations is about 159.5 MeV. Note that the average 
experimental TKE from photofission of 238 U is around 170 
MeV [45].

Pairing correlations are important in describing fission 
probabilities [46, 47] and dynamical fission evolutions [4, 
10, 48, 49]. To study the role of pairing correlations in 
dynamical calculations of particle partitioning between fis-
sion fragments, the distributions of fission yields after PNP 
are displayed with varying pairing strengths, as shown 
in Fig.1b. It can be observed that the peak locations are 
shifted to more asymmetric fission modes with increasing 
pairing strengths. With TDHF calculations without pairing 
correlations, the peak location is approximately A = 132 
and close to the asymmetric S1 fission channel [50, 51]. 
This situation is similar to that in our previous studies on 
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the fission of 240Pu [4]. The peak locations from calcula-
tions with pairing strengths reduced by a factor of 0.9 are 
close to the original results. However, the peak location 
is shifted to A = 142 if the pairing strength increases by a 
factor of 1.2. It has been pointed out that a larger pairing 
strength results in a longer scission neck [2], which could 
be related to more asymmetric fission yields. Within the 
TDHF, the width of the PNP is smaller than that of the 
TD-BCS+PNP calculations. This implies that the spread-
ing width of fission yields can be enhanced by including 
many-body correlation. It is known that the width of S1 
channel is narrower than that of the S2 channel [50]. With 
increasing pairing strength, the scission neck becomes 
longer, and the resulting TKE becomes smaller. The TKE 
corresponding to pairing factors of 0.0, 0.9, and 1.2 is 
174.2, 169.6, and 160.3 MeV, respectively.

The average excitation energies of fission fragments can 
be obtained using TD-BCS calculations without PNP. In 
TD-BCS, the light fragment has higher excitation energies 
than the heavy fragment during low-energy fission [4]. In 

Fig. 1   (Color online) Fission yields of 238 U based on TD-BCS+PNP 
calculations of the splitting fission fragments. a Results obtained with 
SkM∗ and UNEDF1 forces, respectively. b Results obtained with 
SkM∗ force and varying pairing strengths corresponding to factors of 
0.0 (TDHF), 0.9, and 1.2, respectively
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this study, we are interested in studying the distribution of 
the excitation energies of all fission fragments with PNP. 
This is related to the intriguing sawtooth structures of the 
neutron multiplicities.

Figure 2 shows the excitation energies of different isotopic 
fragments. It can be observed that the UNEDF1 results are 
similar to the SkM* results. The results for isotopes around 
Z = 46 , that is, the symmetric fission channel with very small 
yields, are not shown. Usually, the average neutron multiplici-
ties are illustrated in terms of fragment masses. In our cal-
culations, the detailed results show that the distributions of 
the excitation energies of the isotopic fragments have positive 
slopes. This explains the origin of sawtooth structures. Gener-
ally, light fragments have higher excitation energies than those 
of heavy fragments. However, this was not the case for the two 
complementary fragments. For the same isotopic fragments, 
heavier fragments have higher excitation energies. It should be 
noted that to obtain realistic two-dimensional distributions of 
fission yields and excitation energies, fluctuation effects in the 
fission process should be considered, which can significantly 
alleviate the slopes of sawtooth structures [26].

As shown in Fig. 2, the excitation energies of the isotopic 
fragments increase as the neutron number increases, which 
has significant implications. Currently, rare-isotope beam 
facilities [32, 33] mainly rely on the acceleration of fission 
fragments from 238 U. In particular, Coulomb excitation-
induced fission of 238 U with a high-Z target is advantageous 
for the production of neutron-rich beams [52]. Reliable 
estimation of the beam intensity is a practical issue. Beam 
intensity calculations are conventionally based on the code 
LISE++ [53], which relies on empirical fission yields. It is 
difficult to describe the intensities of light and heavy frag-
ments [33]. In our calculations, heavier isotopes had higher 
excitation energies, resulting in more neutron evaporation. 
This implies that the production of neutron-rich rare-isotope 
beams is suppressed. The partition of excitation energies 
would be changed at high energies when sawtooth structures 
are also washed out [54].

Figure 3 shows the excitation energies of the fission frag-
ments with varying pairing strengths. With increasing pair-
ing strength, the fission yield peaks are slightly more asym-
metric, as shown in Fig.1b. It can be seen that the maximum 
excitation energies of the fragments are generally reduced 
with increasing pairing strength. In particular, the excitation 
energies of the heavy fragments, except for the Z=50 shell, 
decreased significantly with increasing pairings. In addition, 
the slopes of the excitation energies of the light fragments 
were reduced with increasing pairing strengths. The slopes 
were overestimated in our approach, which can be alleviated 
by fluctuation effects [26]. Figure 3b shows the excitation 
energies obtained from the TD-BCS+PNP and TDHF+PNP 
calculations. It can be observed that the excitation energies 
and their slopes from TDHF+PNP are too large, correspond-
ing to the narrow S1 channel. Our results indicate that many-
body correlations, in addition to pairing correlations, might 
be useful to obtain reasonable excitation energies of frag-
ments, as well as to alleviate the associated slopes. In this 
respect, fluctuations can be considered an effective treatment 
for high-order correlations. Note that the main objective of 
this work is to study the energy partition between two well-
separated fission fragments, while shell effects and shape 
distortions of fragments are important in the energy sharing 
mechanism before separation. Nevertheless, quantitatively 
reproducing the full distributions of fission yields and neu-
tron multiplicities microscopically is beyond the scope of 
the present work.

4 � Summary

The excitation energies of the isotopic fission fragments 
from 238 U were calculated using the microscopic TD-BCS 
plus PNP method for a deeper understanding of nuclear 
fission. The energy partition was calculated for two 

Fig. 2   (Color online) Excitation energies of isotopic fission frag-
ments of 238 U after PNP on the splitting fission fragments. a Results 
obtained with SkM∗ force; b results obtained with UNEDF1 forces
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well-separated but entangled fragments after the dynami-
cal evolution. This is different from most fission models, 
which invoke an explicit statistical partition of excitation 
energies between fragments. The dependencies of the 
energy partition on different Skyrme forces and pairing 
strengths were studied. With increasing pairing strength, 
the fission yield peak shifts to a slightly more asymmetric 
fission channel. In TDHF calculations without pairings, 
the width of the fission yields is rather narrow, and its 
peak is close to the S1 fission channel. The excitation ener-
gies obtained for the isotopic fission fragments explain 
the origin of the sawtooth structures. Furthermore, pairing 
correlations play a significant role in the partitioning of 
energies between the fragments. The slope of the excita-
tion energies of the light fragments decreases with increas-
ing pairing strengths. For heavy fragments, the excitation 
energies of the heavy fragments, except for the Z=50 shell, 
decreased significantly with increasing pairing correla-
tions. The excitation energies based on TDHF+PNP were 

too large, and the associated slopes were very steep. Our 
results indicated that many-body correlations or fluctua-
tions are essential for obtaining reasonable excitation ener-
gies. It should be noted that the excitation energy parti-
tion and consequently neutron evaporation have practical 
implications for estimating beam intensities in rare-isotope 
beam facilities.
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