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Abstract
We propose a dual-purpose magneto-optical lattice to accelerate both heavy ions and light particles. Dispersion modulation 
allows for the control of the transition energy for light particles, whereas minimal modulation is optimal for heavy ions 
to reduce intrabeam scattering. Our results demonstrate that both particle types achieve stable acceleration with minimal 
structural modifications, thereby ensuring efficient beam dynamics and luminosity.
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1  Introduction

Regardless of the purpose of the ring, always in the case of 
two modes, when multiply charged heavy particles and one 
or two charged light particles are accelerated, the problem 
arises of what the magneto-optical structure should look like 
to satisfy all the conditions of stable motion for both types 
of particles. Multiply charged particles have a prevailing 
heating effect due to intrabeam scattering, and light parti-
cles have a greater chance of crossing through the transition 
energy. All of these effects are of great importance for col-
liders, where luminosity plays a decisive role. When devel-
oping a lattice that meets all requirements for differently 
charged particles, it is fundamentally important to have a 
retunable structure without introducing design differences. 
This structure is called dual-purpose or simple, dual.

In the NICA collider the dual magneto-optical lattice 
opens up the prospect of accelerating both heavy ions, such 
as gold, and light particles like protons and deuterons. The 

design of this lattice requires a different approach, owing to 
the varying charge-to-mass ratios involved.

2 � Light particles

In a classical regular lattice, the transition energy is approxi-
mately equal to the betatron tune, �tr ≃ �x [1]. For the same 
magnetic rigidity B� , the maximum energy for light particles 
is greater than that for heavy ions owing to their charge-to-
mass ratio. This means that the lattice structure for heavy 
ions optimized for operating up to a certain transition energy 
would require overcoming that energy to operate with light 
particles. Therefore, lattices with varying transition energies 
can be considered.

2.1 � Transition energy

In general, the transition energy is determined by the 
momentum compaction factor

where C is the orbit length, D(s) is the dispersion function, 
and �(s) is the radius of orbit curvature, and s is the longi-
tudinal coordinate. This is a characteristic of the lattice and 
remains constant regardless of the particle type. In the first 
order, the slip factor � = �0 = 1∕�2

tr
− 1∕�2 ; thus, the fre-

quency of the synchrotron oscillations �s ∼ � tends to zero 
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when the beam energy approaches the transition value. In 
this case, the adiabaticity of the longitudinal phase motion is 
violated, which leads to instabilities as well as the influence 
of nonlinear effects of higher orders of momentum spread � . 
The introduction of modulation into the D(s) or �(s) function 
leads to variations in the momentum compaction factor and, 
consequently, the transition energy.

2.2 � Superperiodic modulation

The equation for the dispersion function with biperiodic 
variable focusing [2]

where K(s) = e

p
G(s) , �k(s) = e

p
ΔG(s) , G(s) is the gradient of 

magneto-optical lenses, ΔG(s) is the superperiodic gradient 
modulation. Here, is considered an additional perturbation 
to the regular one �k(s) =

∑∞

k=0
gk cos(k�) , where gk is the 

k-th harmonic of the gradient modulation in the Fourier 
series expansion of the function. The solution for the super-
period momentum compaction factor is as follows for gradi-
ent modulation only:

where Rarc is the average value of the curvature, � = �x is the 
betatron tune in horizontal plane on arc, S is the number of 
superperiods per arc length. Equation (3) considered without 
introducing curvature modulation, because of the possibil-
ity of introducing a variation in the transition energy into 
a stationary lattice. To increase the transition energy, it is 
necessary to reduce �s = 1∕�2

tr, arc
 , meaning that the expres-

sion under the sum sign must be negative, which is realizable 
under the condition kS∕𝜈x,arc > 1.

First harmonic k = 1 has a dominant influence, the condi-
tion is implemented for S = 4, �x,arc = 3 . Figure 1 shows 12 
FODO cells per arc, 3 FODO cells are combined into one 
superperiod with complex transition energy �tr, arc = i8 [3]. 
Thus, an integer number of betatron oscillations on the arc 
forms tune, which is a multiple of 2� , so the arc has the 
property of a first-order achromat. Straight sections can cor-
rect tuning for an entire ring to avoid betatron resonances. 
Moreover, by choosing the ratio of the superperiod and 
tuning for the arc, second-order achromat properties can 
be achieved. Such a structure was first implemented at the 
KAON factory [4], and later at J-PARC [5], neutrino fac-
tory [6].

For structure where the missing magnet technique is used, 
for one reason or another it can be also implemented (Fig. 2), 
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but the dispersion at the edge of the arc must be suppressed 
[7]. The transition energy for the entire ring with straight 
sections is achieve �tr = 15.

3 � Heavy‑ion mode

The lifetime of the beam luminosity in a collider experiment 
is achieved through the reduction of intrabeam scattering 
effects coupled with the application of stochastic and elec-
tron beam cooling techniques. This approach is particularly 
important for high-intensity ion beams. The temporal evo-
lution of the emittance and momentum spread in the pres-
ence of cooling processes is governed by the following set 
of equations:
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Fig. 1   (Color online) “Resonant” magneto-optic lattice with disper-
sion modulation and increased transition energy

Fig. 2   (Color online) “Resonant” NICA magneto-optical adapted lat-
tice with increased transition energy and missing magnet
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where � is the transverse emittance, �tr is the transverse cool-
ing time, � =

Δp

p
 is the momentum spread, and �long is the 

longitudinal cooling time. For time-independent, stationary 
values, the time derivatives become zero, then

The benchmark for evaluating the effectiveness of a cooling 
technique can be determined by comparing the timescales 
of stochastic or electron cooling processes with the beam 
lifetime owing to IBS over the entire energy spectrum.

3.1 � Stochastic cooling

Let’s consider stochastic cooling using the approximate the-
ory developed by D. Mohl [8, 9]. Based on the main find-
ings, the cooling rate can be determined using the following 
expression:

where W = fmax − fmin is the system bandwidth, N is the 
effective number of particles recalculated based on the ratio 
of orbit length to the beam length, along with the particle 
distribution, g is the fraction of observed sample error cor-
rected per turn, U is the ratio of noise to signal, Mpk and Mkp 
are the mixing factors between the pickup-kicker and the 
kicker-pickup, respectively. Equation (6) in the absence of 
noise at g = g0 =

1−Mpk
2

Mkp

 reaches the maximum

The mixing coefficients are defined as

where �pkTpk� and �kpTkp� are the relative particle displace-
ment times (mixing), �pk and �kp are the slip factor, as a first 

(5)

�st = �tr ⋅
(
d�

dt

)

IBS

||||�=�st
,

�2
st
= �long ⋅

(
d�2

dt

)

IBS

|||||�2=�2
st

.

(6)

1

�tr, l
=

W

N
[2g cos �

(
1 − 1∕M2

pk

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

coherent

effect(cooling)

− g2
(
Mkp + U

)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

incoherent

effect(heating)

],

(7)

1

�tr
=

W

N

(
1 − 1∕M2

pk

)2

Mkp

,

1

�l
= 2

W

N

(
1 − 1∕M2

pk

)2

Mkp

.

(8)

Mpk =
1

2
(
fmax + fmin

)
�pkTpk

Δp

p

,

Mkp =
1

2
(
fmax − fmin

)
�kpTkp

Δp

p

,

approximation �pk = �pk − 1∕�2 , �kp = �kp − 1∕�2 , �pk and 
�kp are the first order of local momentum compaction factors, 
Tpk and Tkp are the absolute times between the pickup-kicker 
and kicker-pickup, respectively. The stochastic cooling times 
in Eq. (7) depend on the ratio of the effective particle density 
to the cooling system bandwidth and the properties of the 
magneto-optics and local momentum compaction factors 
�pk , �kp.

The maximum value of the frequency band is determined 
by the requirement that the “Schottky" beam bands do not 
overlap. In the simplest case, this can be expressed as

thus, a mixing factor Mpk > 1 . Otherwise, the cooling effi-
ciency would become zero. Thus, it is desirable to achieve 
the highest possible frequency band for a given number of 
particles. From an electronic point of view, modern technol-
ogies allow for the implementation of a 10 GHz frequency 
band [10]; however, their use is not always feasible owing 
to the large magnitude of the slip factor �pk and momentum 
spread �.

Equation (6) is derived for the coasted beam. The particle 
density of a single harmonic RF resonator is described by a 
Gaussian distribution:

where s is the distance from the beam center, �bunch is the 
dispersion of the particle distribution, and Nbunch is the num-
ber of particles. Assuming that the cooling is at its minimum 
at the center ( s = 0 ), the effective particle number at orbit 
length Corb can be calculated as follows:

For a beam generated by a multi-harmonic barrier-type RF 
system, so-called Barrier Bucket, the particle distribution in 
the beam can be considered approximately uniform along its 
entire length. The effective particle number is determined by 
the simple ratio of the beam length to the total orbit length:

To summarize, the effective number of particles depends 
on their distribution and is determined by their form factor 
Fbunch =

√
2� ÷ 4

For example, let us consider the case of NICA with maximal 
form factor Fbunch = 4 with Corb = 503.04 m, �bunch = 0.6 
m, N

bunch
= 2.2 × 10

9 . Considering the accumulated FNAL 
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[11] experience, the realistic values for the frequency band 
are fmax = 8 GHz and fmin = 2 GHz. For the NICA, fmax = 4 
GHz and fmin = 2 GHz. With these parameters, the maxi-
mum achievable cooling rate was 1∕�tr = 1∕230 s−1.

Based on Eq. (8), asymptotic growth may occur in two 
scenarios: 

1.	 slip factor approaches the value � →
1

2(fmax+fmin)Tpk�
 , the 

beam Schottky spectrum becomes continuous and 
Mpk → 1;

2.	 slip factor approaches zero, mixing between the kicker 
to the pickup does not occur and Mkp → ∞.

The efficiency of stochastic cooling depends on the proper-
ties of the magneto-optical structure. In classical “regular” 
lattices, transition energy is acquired through the horizon-
tal frequency �tr ≈ �x and slip factor � = 1∕�2

tr
− 1∕�2 can 

achieve zero. To avoid asymptotic growth, it is necessary 
to vary the slip factor, that is, �tr . This is possible in “reso-
nant” lattice, where transition energy can be increased or 
even reach complex value. In more exotic case, can be used 
“combined” lattice then �pk (pickup-kicker) with real transi-
tion energy at one arc

compensated by �kp (kicker-pickup) with complex transition 
energy at another

for the whole ring. This structure achieves the required ratio 
of mixing factors for a maximum cooling rate close to the 
ideal [12]. Let us delve deeper into the declared lattice in 
greater detail.

The behavior of the �-functions and D the dispersion 
across the entire “regular” ring is illustrated in Fig.  3 
with �tr = 7 . Straight sections, which remain constant 
in all lattices, are essential for analyzing the resonant 

(13)�pk = 1∕�2
tr
− 1∕�2

(14)�kp = −1∕�2
tr
− 1∕�2

characteristics of the entire structure. Their arrangement 
did not affect intrabeam scattering or transition energy. 
To suppress dispersion in the “regular” lattice, missing 
magnets technique implemented on both sides of the arc.

The “resonant” lattice is based on the principle of res-
onant modulation of the dispersion function and can be 
obtained from a “regular” one by introducing additional 
family of focusing quadrupoles. To suppress dispersion, 
two edge focusing quadrupoles on both sides of the arc or 
only two families of focusing quadrupoles on the arc can 
be used, when an integer number of betatron oscillations 
is reached.

The case of a “combined” lattice, one arc operates in 
a regular mode, while the other employs resonant modu-
lation (Fig. 4). This choice was based on the principle 
of compensation, as described by Eqs. 13 and 14, which 
requires a greater modulation depth of the quadrupoles 
than in purely “resonant” lattice with increased transition 
energy.

As illustrated in Fig. 5, “resonant” optics with increased 
transition energy up to �tr = 15 , the second asymptotic is at 
higher energy compared to the “regular” lattice. In “com-
bined” magneto-optics, the cooling efficiency is closer to 
the ideal value in a large energy range from 2.5 to 4.5 
GeV/u, while in “regular” optics the cooling rate is almost 
two times lower at the most optimal point ∼ 3 GeV/u. This 
behavior is explained by the absence of a second point of 
asymptotic growth.

3.2 � Intrabeam scattering

Intrabeam scattering represents a fundamental limitation 
on the beam lifetime in the collider. Consequently, the 
selection of an appropriate cooling technique depends 
on comparing its characteristic timescales with the rate 
at which the beam is heated owing to intrabeam scatter-
ing. This is derived from the fundamental principles that 
govern the process

Fig. 3   (Color online) “Regular” FODO NICA magneto-optical lattice 
with missing magnets

Fig. 4   (Color online) “Combined” NICA magneto-optical lattice with 
real and complex transition energies in arcs
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Unlike stochastic cooling, the IBS rate increases as 
decreasing energy 1∕�3 . In addition, the expressions in 
parentheses are proportional to the slip factor � . There-
fore, it is expected that in optics with a value � close to 
zero, the heating rate should decrease. Figure 6 shows 
the dependences of the heating time constant in the three 
above-mentioned lattices calculated using MADX pro-
grams [13] for the parameters of the heavy-ion beam 
197
79

Au of the NICA collider with maximum luminosity 
1027 cm−2s−1 . In the context of light nuclei, such as pro-
tons and deuterons, the IBS time significantly increases 
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as the charge decreases. The corresponding IBS times for 
heavy and light beams are presented in Table 1 for beam 
intensities Nheavy = 2.2 × 109 ppb and Nlight = 1 × 1012 ppb 
with a number of bunches nbunch = 22 . Consequently, at the 
experimental energy, IBS times differ by approximately 10 
times, so the issue of intrabeam scattering becomes critical 
for heavy-ion beams.

From the comparison of the IBS lifetime with the cool-
ing time it can be concluded that in a regular lattice, sto-
chastic cooling is able to balance intrabeam scattering in 
the energy range W ≥ 4.5 GeV/u . To apply stochastic cool-
ing over the entire energy range, it is obvious that the 
luminosity of the beam at low energies must be sacrificed 
by increasing the emittance. In the resonant lattices, the 
IBS time was notably reduced. This is explained by the 
fact that the structure has a greater ratio 

⟨
D2

x
+Ḋ2

x

𝛽2
x

⟩
 between 

the dispersion and the beam � function than in the case of 
a regular function. Thus, for heavy ions, the configuration 
should be regular and minimally modulated. Electron cool-
ing was used in the regular lattice to reduce the beam by 
4.5 GeV/u [14, 15].

Fig. 5   (Color online) The 
dependence of stochastic 
cooling time on the energy for 
various lattices. Energy range a 
1 − 7 , b 0–30 GeV per nucleon

Fig. 6   (Color online) The dependence of the beam lifetime due to 
intrabeam scattering in “regular”, “resonant” and “combined” lattices 
on the beam energy for heavy-ion beam

Table 1   Main parameters of lattices

Lattice Regular Resonant Combined

Energy, per nucleon (GeV/u) 4.5 12.6 12.6
Transition energy, �

tr
7 15 i50

Modulation depth – 25% 45%
Cooling time at 4.5 GeV/u (s) 2500 1500 800
Heavy ions
IBS time at 4.5 GeV/u (s)

2500 400 250

Protons
IBS time at 12.6 GeV (s)

1.8 × 10
4

4.5 × 10
3

7.9 × 10
3

Tunes 9.44/9.44 9.44/9.44 9.44/9.44
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4 � Summary

The dual magneto-optical structure is proposed for accelerat-
ing both heavy ion and light particle beams, exemplified by 
the NICA facility. For light particles, owing to their charge-
to-mass ratio, the experimental energy can rise above the lat-
tice transition energy, which is optimal for heavy ions. Using 
dispersion modulation, transition energy increases or even 
reaches a complex value in a “resonant” lattice. However, 
owing to the modulation of �-function and D dispersion, 
the intrabeam scattering time decreases, which is crucial for 
multiply charged heavy particles. For this reason, a “regular” 
lattice with minimally modulated dispersion and �-function 
is optimal in the heavy-ion mode. Despite the fact that sto-
chastic cooling in “regular” lattices is significantly weaker 
than in “resonant” and “combined” ones, it can compensate 
IBS effect.

No special changes are required to convert the “regular” 
lattice into a “resonant” one. This is sufficient to introduce 
only a separate family of quadrupoles.
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