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Abstract

We propose a dual-purpose magneto-optical lattice to accelerate both heavy ions and light particles. Dispersion modulation
allows for the control of the transition energy for light particles, whereas minimal modulation is optimal for heavy ions
to reduce intrabeam scattering. Our results demonstrate that both particle types achieve stable acceleration with minimal
structural modifications, thereby ensuring efficient beam dynamics and luminosity.
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1 Introduction

Regardless of the purpose of the ring, always in the case of
two modes, when multiply charged heavy particles and one
or two charged light particles are accelerated, the problem
arises of what the magneto-optical structure should look like
to satisfy all the conditions of stable motion for both types
of particles. Multiply charged particles have a prevailing
heating effect due to intrabeam scattering, and light parti-
cles have a greater chance of crossing through the transition
energy. All of these effects are of great importance for col-
liders, where luminosity plays a decisive role. When devel-
oping a lattice that meets all requirements for differently
charged particles, it is fundamentally important to have a
retunable structure without introducing design differences.
This structure is called dual-purpose or simple, dual.

In the NICA collider the dual magneto-optical lattice
opens up the prospect of accelerating both heavy ions, such
as gold, and light particles like protons and deuterons. The
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design of this lattice requires a different approach, owing to
the varying charge-to-mass ratios involved.

2 Light particles

In a classical regular lattice, the transition energy is approxi-
mately equal to the betatron tune, y,, ~ v, [1]. For the same
magnetic rigidity Bp, the maximum energy for light particles
is greater than that for heavy ions owing to their charge-to-
mass ratio. This means that the lattice structure for heavy
ions optimized for operating up to a certain transition energy
would require overcoming that energy to operate with light
particles. Therefore, lattices with varying transition energies
can be considered.

2.1 Transition energy

In general, the transition energy is determined by the
momentum compaction factor

C

_ 1 _1[Do

where C is the orbit length, D(s) is the dispersion function,
and p(s) is the radius of orbit curvature, and s is the longi-
tudinal coordinate. This is a characteristic of the lattice and
remains constant regardless of the particle type. In the first
order, the slip factor = 5y = 1/y2 —1/7?; thus, the fre-
quency of the synchrotron oscillations @, ~ # tends to zero
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when the beam energy approaches the transition value. In
this case, the adiabaticity of the longitudinal phase motion is
violated, which leads to instabilities as well as the influence
of nonlinear effects of higher orders of momentum spread .
The introduction of modulation into the D(s) or p(s) function
leads to variations in the momentum compaction factor and,
consequently, the transition energy.

2.2 Superperiodic modulation

The equation for the dispersion function with biperiodic
variable focusing [2]

ED | k() + ek(s)ID = —— @
ds? p(s)’

where K(s) = I%G(s), ek(s) = f—)AG(s), G(s) is the gradient of
magneto-optical lenses, AG(s) is the superperiodic gradient
modulation. Here, is considered an additional perturbation
to the regular one €k(s) = 2;10 g cos(kg), where g, is the
k-th harmonic of the gradient modulation in the Fourier
series expansion of the function. The solution for the super-
period momentum compaction factor is as follows for gradi-
ent modulation only:

! 1 <R>4 &
a,=—< 1+ -
V2 4(1 - kS/V) \% [1 _ (1 —kS/V)2]2

3
where Em is the average value of the curvature, v = v, is the
betatron tune in horizontal plane on arc, S is the number of
superperiods per arc length. Equation (3) considered without
introducing curvature modulation, because of the possibil-
ity of introducing a variation in the transition energy into
a stationary lattice. To increase the transition energy, it is
necessary to reduce a, = 1/ yéy e Meaning that the expres-
sion under the sum sign must be negative, which is realizable
under the condition kS /v, .. > 1.

First harmonic k = 1 has a dominant influence, the condi-
tion is implemented for § = 4, v, ,.. = 3. Figure 1 shows 12
FODO cells per arc, 3 FODO cells are combined into one
superperiod with complex transition energy v, .. = i8 [3].
Thus, an integer number of betatron oscillations on the arc
forms tune, which is a multiple of 2z, so the arc has the
property of a first-order achromat. Straight sections can cor-
rect tuning for an entire ring to avoid betatron resonances.
Moreover, by choosing the ratio of the superperiod and
tuning for the arc, second-order achromat properties can
be achieved. Such a structure was first implemented at the
KAON factory [4], and later at J-PARC [5], neutrino fac-
tory [6].

For structure where the missing magnet technique is used,
for one reason or another it can be also implemented (Fig. 2),
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Fig. 1 (Color online) “Resonant” magneto-optic lattice with disper-
sion modulation and increased transition energy
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Fig.2 (Color online) “Resonant” NICA magneto-optical adapted lat-
tice with increased transition energy and missing magnet

but the dispersion at the edge of the arc must be suppressed
[7]. The transition energy for the entire ring with straight
sections is achieve y,, = 15.

3 Heavy-ion mode

The lifetime of the beam luminosity in a collider experiment
is achieved through the reduction of intrabeam scattering
effects coupled with the application of stochastic and elec-
tron beam cooling techniques. This approach is particularly
important for high-intensity ion beams. The temporal evo-
lution of the emittance and momentum spread in the pres-
ence of cooling processes is governed by the following set
of equations:

de 1 o4 (%)
a7z, dr /s’
N ) N —
heating

cooling

@ _ 1 .5z+<d_62> @
dt Tiong dt ) gs’

—_—— ——

cooling heating
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where ¢ is the transverse emittance, 7, is the transverse cool-
ing time, 6 = % is the momentum spread, and 7y, is the
longitudinal cooling time. For time-independent, stationary
values, the time derivatives become zero, then

. <de>
T Ndr JiBs e,

ds?
552 = Tione - <_>
' e dr /s

The benchmark for evaluating the effectiveness of a cooling
technique can be determined by comparing the timescales
of stochastic or electron cooling processes with the beam
lifetime owing to IBS over the entire energy spectrum.

o
|

®

82=52

3.1 Stochastic cooling

Let’s consider stochastic cooling using the approximate the-
ory developed by D. Mohl [8, 9]. Based on the main find-
ings, the cooling rate can be determined using the following
expression:

1 w
T—=N[2gcos0<l—1/M§k)_ gz(Mkp+U) 1.
tr, 1 N g ’
coherent incoherent ©)
effect(cooling) effect(heating)

where W = f, .. — fiin 18 the system bandwidth, N is the
effective number of particles recalculated based on the ratio
of orbit length to the beam length, along with the particle
distribution, g is the fraction of observed sample error cor-
rected per turn, U is the ratio of noise to signal, M,  and M,
are the mixing factors between the pickup-kicker and the
kicker-pickup, respecti;/ely. Equation (6) in the absence of

-M .
®_ reaches the maximum

. 1
noise at g = g, =

(1- 1/1v1§k)2

1_w
7, N My, ’
2 )
_ 2
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Tl - N Mkp ’
The mixing coefficients are defined as

1
M., =

pk Ap’
2(fmax +fmin)’7kapk7p

| ®)

M, =

p Ap’
2(fmax _fmin)rlkakpf

where 7, T}, 6 and i, T,,6 are the relative particle displace-
ment times (mixing), 7, and #,,, are the slip factor, as a first

approximation 7, = ay — 1/ Y2, M = U — 1/ s ay and
ay, are the first order of local momentum compaction factors,
T and T, are the absolute times between the pickup-kicker
and kicker-pickup, respectively. The stochastic cooling times
in Eq. (7) depend on the ratio of the effective particle density
to the cooling system bandwidth and the properties of the
magneto-optics and local momentum compaction factors
Qs Qiepr

The maximum value of the frequency band is determined
by the requirement that the “Schottky" beam bands do not
overlap. In the simplest case, this can be expressed as

1

fmax < T Ap ’
rlpk pk p

€))

thus, a mixing factor M > 1. Otherwise, the cooling effi-
ciency would become zero. Thus, it is desirable to achieve
the highest possible frequency band for a given number of
particles. From an electronic point of view, modern technol-
ogies allow for the implementation of a 10 GHz frequency
band [10]; however, their use is not always feasible owing
to the large magnitude of the slip factor 77, and momentum
spread 6.

Equation (6) is derived for the coasted beam. The particle
density of a single harmonic RF resonator is described by a
Gaussian distribution:

§2

. e_ 2 nch , (10)

N,
p (S) — bunch

Obunch 2z

where s is the distance from the beam center, o}, is the
dispersion of the particle distribution, and Ny, is the num-
ber of particles. Assuming that the cooling is at its minimum
at the center (s = 0), the effective particle number at orbit
length C_, can be calculated as follows:

_ Nbunch .

= C,p-
4o-bunch or ( i )

For a beam generated by a multi-harmonic barrier-type RF
system, so-called Barrier Bucket, the particle distribution in
the beam can be considered approximately uniform along its
entire length. The effective particle number is determined by
the simple ratio of the beam length to the total orbit length:

To summarize, the effective number of particles depends
on their distribution and is determined by their form factor

Fbunch = 2r+4

C

orb

N=Nbunch : (12)

Fbunch * Obunch

For example, let us consider the case of NICA with maximal
form factor Fy ., =4 with C,y, = 503.04 m, o,,,, = 0.6

orb

m, Nyynen = 2.2 X 10°. Considering the accumulated FNAL
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[11] experience, the realistic values for the frequency band
are f,,. = 8 GHz and f,;;, = 2 GHz. For the NICA, f, .. =4
GHz and f,;, = 2 GHz. With these parameters, the maxi-
mum achievable cooling rate was 1/7,, = 1/230s7".

Based on Eq. (8), asymptotic growth may occur in two
scenarios:

1
beam Schottky spectrum becomes continuous and
Mpk - 1;

2. slip factor approaches zero, mixing between the kicker
to the pickup does not occur and My, — oo.

1. slip factor approaches the value  — the

The efficiency of stochastic cooling depends on the proper-
ties of the magneto-optical structure. In classical “regular”
lattices, transition energy is acquired through the horizon-
tal frequency y,, =~ v, and slip factor n = 1/y§ —1/y% can
achieve zero. To avoid asymptotic growth, it is necessary
to vary the slip factor, that is, y,,.. This is possible in “reso-
nant” lattice, where transition energy can be increased or
even reach complex value. In more exotic case, can be used
“combined” lattice then 7, (pickup-kicker) with real transi-
tion energy at one arc

Mo = 1/72 =1/7 (13)

compensated by n,, (kicker-pickup) with complex transition
energy at another

Me =—1/rs—1/v* (14)

for the whole ring. This structure achieves the required ratio
of mixing factors for a maximum cooling rate close to the
ideal [12]. Let us delve deeper into the declared lattice in
greater detail.

The behavior of the g-functions and D the dispersion
across the entire “regular” ring is illustrated in Fig. 3
with y,, = 7. Straight sections, which remain constant
in all lattices, are essential for analyzing the resonant
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Fig.3 (Color online) “Regular” FODO NICA magneto-optical lattice
with missing magnets
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characteristics of the entire structure. Their arrangement
did not affect intrabeam scattering or transition energy.
To suppress dispersion in the “regular” lattice, missing
magnets technique implemented on both sides of the arc.

The “resonant” lattice is based on the principle of res-
onant modulation of the dispersion function and can be
obtained from a “regular” one by introducing additional
family of focusing quadrupoles. To suppress dispersion,
two edge focusing quadrupoles on both sides of the arc or
only two families of focusing quadrupoles on the arc can
be used, when an integer number of betatron oscillations
is reached.

The case of a “combined” lattice, one arc operates in
a regular mode, while the other employs resonant modu-
lation (Fig. 4). This choice was based on the principle
of compensation, as described by Eqs. 13 and 14, which
requires a greater modulation depth of the quadrupoles
than in purely “resonant” lattice with increased transition
energy.

As illustrated in Fig. 5, “resonant” optics with increased
transition energy up to y,. = 15, the second asymptotic is at
higher energy compared to the “regular” lattice. In “com-
bined” magneto-optics, the cooling efficiency is closer to
the ideal value in a large energy range from 2.5 to 4.5
GeV/u, while in “regular” optics the cooling rate is almost
two times lower at the most optimal point ~ 3 GeV/u. This
behavior is explained by the absence of a second point of
asymptotic growth.

3.2 Intrabeam scattering

Intrabeam scattering represents a fundamental limitation
on the beam lifetime in the collider. Consequently, the
selection of an appropriate cooling technique depends
on comparing its characteristic timescales with the rate
at which the beam is heated owing to intrabeam scatter-
ing. This is derived from the fundamental principles that
govern the process
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Fig.4 (Color online) “Combined” NICA magneto-optical lattice with
real and complex transition energies in arcs
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Fig.5 (Color online) The

Stochastic cooling

Stochastic cooling

dependence of stochastic
cooling time on the energy for
various lattices. Energy range a
1 —=7,b 0-30 GeV per nucleon

Cooling time, scconds

Cooling time, seconds

Energy, GeViu

—— Regular with both real arcs
—— Resonant wiht both real arcs

—— Resonant with real & magmne arcs

Energy, GeViu

— Regular with both real arcs
—— Resonant with both real arcs
—— Resonant with real & imagine arcs

— - Ideal case — - Ideal case
@) (b)
Intrabeam Scattering Table 1 Main parameters of lattices
3000
—— Regular Lattice Regular Resonant ~ Combined
2500 4 —— Resonant
—— Regular and resonant Energy, per nucleon (GeV/u) 4.5 12.6 12.6
§ 2000 Transition energy, y,, 7 15 i50
g 1500 4 Modulation depth - 25% 45%
7 Cooling time at 4.5 GeV/u (s) 2500 1500 800
2 1080+ Heavy ions 2500 400 250
500 - IBS time at 4.5 GeV/u (s)
Protons 1.8x10*  45x10° 79x10°
0- T T T IBS time at 12.6 GeV (s)
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Tunes 9.44/9.44  9.44/9.44  9.44/9.44

Energy, GeV/u

Fig.6 (Color online) The dependence of the beam lifetime due to

intrabeam scattering in “regular”, “resonant” and “combined” lattices
on the beam energy for heavy-ion beam
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Unlike stochastic cooling, the IBS rate increases as
decreasing energy 1/y3. In addition, the expressions in
parentheses are proportional to the slip factor 5. There-
fore, it is expected that in optics with a value # close to
zero, the heating rate should decrease. Figure 6 shows
the dependences of the heating time constant in the three
above-mentioned lattices calculated using MADX pro-

grams [13] for the parameters of the heavy-ion beam

197
79

10*7 cm~2s~!. In the context of light nuclei, such as pro-
tons and deuterons, the IBS time significantly increases

Au of the NICA collider with maximum luminosity

as the charge decreases. The corresponding IBS times for
heavy and light beams are presented in Table 1 for beam
intensities Ny.,,, = 2.2 x 10° ppb and Ny, = 1 X 10" ppb
with a number of bunches n,,, = 22. Consequently, at the
experimental energy, IBS times differ by approximately 10
times, so the issue of intrabeam scattering becomes critical
for heavy-ion beams.

From the comparison of the IBS lifetime with the cool-
ing time it can be concluded that in a regular lattice, sto-
chastic cooling is able to balance intrabeam scattering in
the energy range W > 4.5 GeV/u. To apply stochastic cool-
ing over the entire energy range, it is obvious that the
luminosity of the beam at low energies must be sacrificed
by increasing the emittance. In the resonant lattices, the
IBS time was notably reduced. This is explained by the

. [ D*+D?
fact that the structure has a greater ratio <"%> between

x

the dispersion and the beam f function than in the case of
a regular function. Thus, for heavy ions, the configuration
should be regular and minimally modulated. Electron cool-
ing was used in the regular lattice to reduce the beam by
4.5 GeV/u [14, 15].

@ Springer
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4 Summary

The dual magneto-optical structure is proposed for accelerat-
ing both heavy ion and light particle beams, exemplified by
the NICA facility. For light particles, owing to their charge-
to-mass ratio, the experimental energy can rise above the lat-
tice transition energy, which is optimal for heavy ions. Using
dispersion modulation, transition energy increases or even
reaches a complex value in a “resonant” lattice. However,
owing to the modulation of f-function and D dispersion,
the intrabeam scattering time decreases, which is crucial for
multiply charged heavy particles. For this reason, a “regular”
lattice with minimally modulated dispersion and f-function
is optimal in the heavy-ion mode. Despite the fact that sto-
chastic cooling in “regular” lattices is significantly weaker
than in “resonant” and “combined” ones, it can compensate
IBS effect.

No special changes are required to convert the “regular”
lattice into a “resonant” one. This is sufficient to introduce
only a separate family of quadrupoles.
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