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Abstract

Spin polarization and spin transport are common phenomena in many quantum systems. Relativistic spin hydrodynamics
provides an effective low-energy framework to describe these processes in quantum many-body systems. The fundamental
symmetry underlying relativistic spin hydrodynamics is angular momentum conservation, which naturally leads to inter-
conversion between spin and orbital angular momenta. This inter-conversion is a key feature of relativistic spin hydrodynam-
ics, which is closely related to entropy production and introduces ambiguity in the construction of constitutive relations.
In this article, we present a pedagogical introduction of relativistic spin hydrodynamics. We demonstrate how to derive
constitutive relations by applying local thermodynamic laws and explore several distinctive aspects of spin hydrodynamics.
These include pseudo-gauge ambiguity, the behavior of the system in the presence of strong vorticity, and the challenges
of modeling the freeze-out of spin in heavy-ion collisions. We also outline some future prospects for spin hydrodynamics.
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1 Introduction

Spin is a fundamental property of particles arising from
quantum mechanics, and it plays a central role in numerous
phenomena within the quantum regime. As a form of angu-
lar momentum, spin naturally couples to rotation, allowing
it to become polarized by rotational motion. Similarly, for
a charged particle with nonzero spin, or a neutral particle
with a non-trivial charge form factor, spin can couple to an

This work was supported by the Natural Science Foundation of
Shanghai (No. 23JC1400200), National Natural Science Foundation
of China (Nos. 12225502, 12075061, and 12147101), and the
National Key Research and Development Program of China (No.
2022YFA1604900).

P< Xu-Guang Huang
huangxuguang @fudan.edu.cn

Physics Department and Center for Particle Physics
and Field Theory, Fudan University, Shanghai 200438,
China

Key Laboratory of Nuclear Physics and Ion-beam
Application (MOE), Fudan University, Shanghai 200433,
China

Shanghai Research Center for Theoretical Nuclear Physics,
National Natural Science Foundation of China and Fudan
University, Shanghai 200438, China

external magnetic field as well. Additionally, for a particle
in motion (i.e., with finite momentum), its spin may cou-
ple to acceleration, electric fields, or gradients of external
potentials, such as chemical potential and temperature. In
the case of massless particles, the spin state is specified by
its helicity state, meaning that it is intrinsically slaved by the
motion of the particle. As a result, spin can be manipulated
by rotating fields, magnetic fields, electric fields, and several
other external influences. Conversely, detecting the spin of
a particle provides invaluable insights into the environment
or underlying dynamics of the system.

In heavy-ion collision physics, the primary interest lies
in the creation of deconfined quark-gluon matter, com-
monly referred to as the quark-gluon plasma (QGP) [1-5].
To uncover the properties of the QGP in heavy-ion colli-
sion experiments, it is essential to design specific hadronic
observables that are sensitive to particular features of the
QGP. Because charged particles are typically the easiest to
detect, many observables rely on the charge of the hadrons.
For instance, the total multiplicity of the detected charged
hadrons reflects the initial energy of QGP. Meanwhile, the
anisotropy in the momentum-space distribution of charged
hadrons corresponds to the initial anisotropy in the spatial
distribution of partons, leading to well-known harmonic
flow parameters [6]. By measuring these hadronic observa-
bles, researchers have revealed several novel properties of
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hot and dense matter created during heavy-ion collisions.
One significant finding is that the QGP must be extremely
hot, with a typical temperature reaching 300-500 MeV at
RHIC and LHC, indicating an extremely high energy den-
sity. Additionally, the QGP medium was found to interact
strongly, with a very small shear viscosity to entropy density
ratio #/s. This low ratio is required to explain the observed
harmonic flow parameters [4, 5]. In fact, the #/s of the QGP
is the lowest among all known fluids.

Since 2017, it has been established that the spin degree
of freedom can be used to probe the properties of QGP [7].
This is achieved by measuring the spin polarization of spin-
ful hadrons, such as hyperons and vector mesons [8—10].
Notably, it has been observed that the A and A hyperons can
exhibit significant spin polarization at collision energies of
tens of GeV [7, 11-14]. Similarly, the ¢ and J/y mesons
exhibited considerable spin alignment [15, 16] ! These dis-
coveries open new avenues for studying the QGP through
the spin degree of freedom. For instance, we now understand
that the global spin polarization (i.e., the total amount of spin
polarization with respect to the reaction plane) of hyperons
arises from angular momentum conservation through the
formation of fluid vortices within the QGP: In non-central
heavy-ion collisions, the system possesses substantial orbital
angular momentum, which subsequently induces strong
fluid vorticity in the QGP [17-19], thereby polarizing the
spins of quarks via spin-rotation coupling [20-35]. How-
ever, to fully understand the spin polarization phenomenon,
a dynamical theory of spin polarization and spin transport
in a hot medium is essential, analogous to the necessity of
a dynamical theory of the bulk medium for understanding
harmonic flows. Naturally, such a dynamical theory of spin
transport can be derived from either kinetic or hydrodynamic
theory. In recent years, both spin kinetic theory and spin
hydrodynamics have made significant advancements. In this
article, we focus on spin hydrodynamics and refer readers
to Refs. [36] for a review of spin kinetic theory and Refs.
[37-44, 44-49] for a review of spin polarization phenomena
in heavy-ion collisions. In addition, we will focus only on
spin polarization in hot and dense medium rather than in
systems created in, for example, electron-ion collisions [50].

Throughout this article, we wuse the natu-
ral units c=h=kz =1 and the metric convention
N, = 0" = diag(l,-1,-1,-1).

! The spin alignment of a vector meson is quantified by the deviation
of p,, from 1/3, where py is the 00-component of the vector meson’s
spin density matrix.
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2 Relativistic hydrodynamics as an effective
theory

Before discussing spin hydrodynamics, let us first briefly
review the general structure of relativistic hydrodynamics
from the perspective of effective field theory. The hydro-
dynamic theory describes the low-energy behavior of inter-
acting many-body systems, where only conserved charge
densities exhibit their dynamics. Because the conserved
charge densities do not vanish, they redistribute themselves
in space according to their equations of motion (EOMs).
When expressed in a manner of spatial gradient expansion,
these EOMs constitute hydrodynamic equations.

Let us consider the hydrodynamic theory of a system with
space-time translation symmetry and global U(1) symme-
try. The corresponding conserved charge densities are the
energy density £(x), momentum density z’(x),i = 1 — 3, and
the U(1) charge density n(x). We want to derive dynamical
equations for these conserved charge densities. Sometimes,
it is more convenient to work with potential variables con-
jugated to charge densities. These are the temperature 7(x)
(orits inverse f(x) = 1/T(x)), fluid velocity u*(x) normalized
asutu’n,, = 1, and chemical potential of n(x), u(x). These
conserved charge densities (or equivalently their conjugates)
are hydrodynamic variables in hydrodynamics. Our starting
point is conservation laws:

9,0 =0, M

()MJ” =0, )

where ®"" is the energy—momentum tensor, and J# is the
U(1) current. As an effective field theory, we express ®+"
and J* in terms of the conserved charged density (or equiva-
lently, their conjugates) and their various gradient orders.
We assume spatial isotropy of the system, that is, there are
no external forces breaking the SO(3) symmetry. The build-
ing blocks are the fluid velocity u* and various quantities
that can be classified into different representations of SO(3)
in the fluid rest frame. Up to the first-order gradients, these
quantities are

Scalar : &, n, De,Dn,06 =V -u=20-u,
Vector :  Du¥, VFe, V¥n, o' = —(1/2)(V*u" — V'u"),
Tensor : o' = (1/2)[V¥*u’ + V'u* — (2/3)A*0],

3)
where D = u - d is the co-moving time derivative, 6 is the
expansion rate of the fluid, V,, = A, 0" is the spatial gradient
operator, A, =1, — u,u, is the spatial projector, c*" is the
shear tensor that is traceless, and @ v is the vorticity tensor.
Note that the co-moving time derivatives will eventually be
replaced by spatial gradients using the EOMs in the leading
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order. Note that the vorticity tensor transforms in the same
way as a three-vector under proper three-rotations (i.e., a
three-rotation R with det R = 1) because it can be substituted
by a three pseudo-vector " = —(1/2)e*"*’u,w,,,. Conse-
quently, we can write the most general structure decomposi-
tion up to O(9) for ®#" and J* as follows 2.

0" = (ay + byDe + byDn + by 0)u"u"

+coW"' Ve + u'V¥e) + dy("'VVn + u*'V¥n)

+ e Dy’ + u’'Du') + (W' 0" + u' ")

+ (g0 + hyDe + hyDn + hg0)A*Y + iyo”

+jo(u'V'e —u"V¥e) + kg V'n — u’V¥n)

+ [yw”Du* — u’Du*) + my(u” o" — u’ w*)

+noe"""u,V e + 00€"""u,V ;n + pye"*" u,Du,

+ go™” + 0(0%),

“
T =(Ag + BSDe + BiDn + BiOW" + CyV"e + DyV¥n + EgDu + Fo + 0(3°),
®)

with all the coefficients (playing the roles of the Wilson coef-
ficients in the effective field theory, as short-distance phys-
ics are encoded in these coefficients) functions of € and n.
They are constructed by first decomposing with respect to u*
and then with respect to different representations of SO(3).
In these decompositions, the terms with f;, mg, 1y, 0¢, pg in
©#Y and F|, in J# as coefficients transform differently from
O+ and J# under parity (P), respectively, meaning that they
can appear only when the system contains parity violating
content. Under time reversal transformation (7), all the terms
of first-order gradients on the right-hand sides of ®*" and J#
except for terms with coefficients f;, m, n, 0y, py, F, trans-
form differently from ®#¥ and J#, respectively. This means
that these terms must be dissipative (i.e., these terms are
responsible for entropy generation in the fluid), while terms
with coefficients f;, mg, ny, 0y, py, Fy can appear without
generating entropy, that is, they could arise in ideal hydro-
dynamics despite being at first order in gradients. Thus, the
terms with coefficients f,, my, ny, 0y, py, F,, are especially
interesting. In fact, some of them have been intensively stud-
ied, and it was found that they contain very rich quantum
phenomena (usually dubbed chiral anomalous transports)
that are closely related to the chiral anomaly of the sys-
tem if the underlying physics is governed by the quantum
gauge theory. Recently, such chiral anomalous transport
has become an active subject in condensed matter phys-
ics, astrophysics, and heavy-ion collision physics (see Refs.
[41, 51-56] for recent reviews focusing on heavy-ion colli-
sion physics). Similarly, we can also examine the balance

2 One can start without including the co-moving time-derivative
terms as those terms are eventually replaced by the spatial gradients
up on using leading-order hydrodynamic EOMs. But we keep them to
make the discussions more transparent.

between the right-hand and left-hand sides of Eqs. (4)-(5)
under charge conjugation (C) transformation. The terms with
coefficients bg, dy, hg, kg, 09, Ag» B‘S, Bg, Cy, Ey, Fymust vanish
if there is no environmental charge-conjugation violation
(naturally, the presence of a nonzero charge density n vio-
lates the C symmetry and allows these terms to be present).
The antisymmetric terms in ®*" are particularly interesting.
To reveal their meaning, we consider the angular momentum
conservation law:

9,M""" =0, ©6)
where M*** is the angular momentum tensor
MHP = xY@HP — xP@HY 4 THVP, 7

and Z#*” is the spin tensor. We can re-write Eq.(6) in the
following form:

0,5 = @ — ©". ®)

Thus, the antisymmetric part of @*" provides a source for
spin generation (one may more clearly see this by integrating
Eq.(8) over space). This will be the focus of this study, and
we return to it in the next section. In the remainder of this
section, for the purpose of demonstrating the construction of
the hydrodynamic theory, we simply assume that the system
does not possess a spin tensor, so that ®#" is symmetric,
OM = OY#, and assume that there is no environmental parity
violation, so that terms with coefficients f,, m, ny, 0y, py, F
must vanish. Thus, the most general decomposition of ®+"
and J* up to the first order in gradients into different com-
ponents with respect to u#, and subsequently, for the compo-
nents orthogonal to u*, with respect to different irreducible
tensor structures under SO(3) are as follows:

0" =(ay + byDe + byDn + by0)u u*
+ o' Ve + u'V¥e) + dy" V¥n + u'V¥*n) + eo(u' Du¥ + u’ Du*)

+ (g9 + hiDe + HyDn + HiO) A

+ igo""”
+0(3%),
)
J* =(Ay + B{De + ByDn + ByO)u" + C)V*e
(10)

+ DyV*n + EyDu* + 0(0%).

Up to this point, expressions (9)—(10) are merely param-
eterizations of ®** and J#, and such a parameterization is
ambiguous at O(0) order (and higher orders in gradients). To
see this, we consider to re-express ®*" and J* in terms of a
redefinition of the hydrodynamic variables &, n’, u’# which
differ from &, n, u* by O(d)-order shifts:

e =e+6s, n'=n+6n u*=u"+5u", 11
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where 6e,6n,6u” are order-O(d) quantities and
u,6u* = 0(9%) so that u*> = 1is maintained at O(d). This
can be seen by noting that u’?> = u? + 2u,ou” + éu? which
leads to 2u, 6u* + su*> = O(9%) and therefore u, 5u* must be
0(0?%). In terms of the primed variables, we obtain

M/yulv

" =

/ aao aao £ n u
a, — E& + %&l + byDe + byDn + b0

+ o' Ve + u'V¥e) + dy(u' Vin + u’'V¥n)+

ey Du” + u’Du*) + (g, — ay)(6u*u’ + u"éu”)

+ A/ﬂv

0 0
g - <%5s + %5;1) + HEDe + WD + 10

+iyc" + 0(0%),
(12)

u _ | ar aAO aAO 3 n u '
JH=|A) - 6_58+()—6n + B,De + ByDn + B0 | u
e n

—Agout + CyV¥e + DyV¥*n + EyDu*

+0(0%),
13)

where a; = ay(¢’, n’) and similarly for g/, A| and all second-
order terms are omitted. By observing the expressions in the
three square brackets, one can see that by suitably choosing
o€ and 6n, one can eliminate the first-order terms in two of
the three square brackets. For example, one can solve out 6
and én by requiring the first-order terms in square brackets
in ®#Y to vanish. However, it is more convenient to elimi-
nate the first-order terms in the coefficients of u'#u'¥ in ®*¥
and u’* in J¥. Similarly, by suitably choosing éu*, one can
eliminate either the second line in ®#" (this choice is called
the Landau-Lifshitz frame for u*) or the second line in J#
(this choice is called the Eckart frame for u*). Therefore, we
can always choose the following simpler forms for ®*¥ and
J# (Landau-Lifshitz frame),

O = aguu’ + (gy + HsDe + WiDn + HiOIAM + igo™ + 0(0?), (14)

JH =Agu* + CyV¥e + Dy V¥n + E,Du* + O(3%). (15)

Contracting with u*, we can identify that a, = u,u, 0"
which is the local energy density € and Ay = u - J which is
the local U(1) charge density n. [Sometimes, this is also
considered as the matching condition because this means
thatu,u, " = u,u, O and u,J* = u,Ji; with ® and J
is the zeroth order energy—momentum tensor and charge
current. ]

Let us first consider the zeroth-order terms, which, as we
have already discussed, correspond to ideal hydrodynamics:

Ofp, =eu"u” + g A", (16)

@ Springer

Ho_
J(O) —I’llzt”. (17)
In the rest frame of the fluid, u#=(1, 0), it becomes
©yy, = diag(e, =gy, —8o, —8o) Which identifies —g, as the
thermodynamic pressure P. In the zeroth order, the conser-
vation laws are

(¢ + P)Du¥ — V*P =0, (18)
De + (¢ + P)§ =0, (19)
Dn +nf = 0. (20)

To close these equations, we need to know the thermody-
namic relation among P, €, n, that is, the equation of state,
P = P(g, n).

Let us then consider the first-order terms that correspond
to dissipative hydrodynamics. From Egs. (18)-(20), we
notice that we could replace De and Dr in the first order
terms by —(e + P)0 and —n6 and Du* by V#P /(¢ + P). This
allows us to re-write the energy—momentum tensor and
charge current as

O =eutu’ — (P + hy®)A" + g™ + 0(0°), @n
J* =nut + C)V¥e + D\V*n + 0(3%), (22)
with C) = Co + Ey@P/de), /(e + P, and

ho = (€ + P)h, + nh) — it »
D} = Dy + Eo(0P/om), /(e + P)- Further constraints can be imposed,
based on the laws of local thermodynamics. For a fluid at
rest, we have the first law of thermodynamics as

Tds + pdn = de, (23)

Ts+un=¢€e+P, 24)

where s denotes the entropy density. To proceed, we
propose the covariant generalization of the second one
(Gibbs—Duhem relation):

s* = Pp* + OB, — aJ¥, (25)

where # = pu* (f = 1/T), a = u/T, and s is the entropy
current, such thatu - s = s. The divergence of s* (multiplied
by T) can be calculated directly as:
— Q" u

To,s" = @mvﬂuv - 17,V . (26)
The second law of local thermodynamics requires that
To,s* > 0 for any configuration of the velocity field u”,
temperature 7, and chemical potential y, which imposes the
following constraints:

hy=-(<0, iy=212>0, J' =cV¥a, 27

(¢))
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where ¢ and 7 are the bulk and shear viscosities, respec-
tively, and o is charge conductivity. This also shows that
the coefficients C} and Dj are fixed in such a way that
C V"€ + DjV#n = cV*a. The EOMs of the first-order dis-
sipative hydrodynamics are then read

(e + P—C0)Du¥ — VH(P = (0) +27A"0,6" =0,  (28)
De + (e + P - {0)0 — 2no ,,6"* =0, (29)
Dn+nb +oV?a = 0. (30)

The first equation is the relativistic Navier—Stokes equation.
The above procedure can continue to a higher order in gradi-
ents and provide higher-order hydrodynamics. However, we
did not discuss these more complicated situations. Readers
can find discussions in Refs. [57-61].

3 Construction of relativistic spin
hydrodynamics

With the above preparation, we now discuss the construction
of relativistic spin hydrodynamics, in which the conserva-
tion of angular momentum is explicitly encoded within a
(quasi)-hydrodynamic framework. The fundamental con-
servation laws are the energy—momentum conservation (1)
and angular momentum conservation (8). Before delving
into the detailed construction, we note that if we assign spin
density $*¥ = u,X"*" as a dynamic variable in our frame-
work, Eq. (8) indicates that it is generally not conserved.
This reflects the fact that the spin angular momentum can be
transformed into orbital angular momentum, thus disquali-
fying it as a true hydrodynamic mode. Consequently, spin
hydrodynamics is not a strict hydrodynamic theory for the
gapless modes. Instead, it should be categorized as quasi-
hydrodynamics, where the low-energy dynamic variables
comprise true hydrodynamic modes and some gapped modes
(quasi-hydrodynamic modes) whose gap in the low-momen-
tum region is parametrically small compared with other
microscopic modes (the hard modes of the system) [62].
This results in spectrum separation; for physics at energy
scales comparable to these modes, we can only consider
the quasi-hydrodynamic modes alongside the true hydrody-
namic modes. Generalized hydrodynamics [63] and Hydro+
[64] near the QCD critical point fall into this category. The
spin hydrodynamics that we will discuss also belongs to this
type of theory. This framework requires that spin excitations,
despite being gapped, remain low-energy excitations com-
pared with other microscopic modes [62]. For instance, if
the system contains massive fermions, the spins of these fer-
mions are difficult to relax because the spin-orbit coupling is

inversely suppressed by the mass of the fermions compared
to the typical energy transfer [65-67]. Thus, these spins are
quasi-conserved, and we can formulate a quasi-hydrody-
namic theory for it, which is called spin hydrodynamics.

We consider a charge-neutral system such as the quark
gluon plasma or the usual electric plasma, in which some
of the constituent particles are spinful particles. The sym-
metry considered is space-time translation symmetry and
Lorentz symmetry. This leads to the energy—momen-
tum conservation and angular momentum conservation,
as given by Eq.(1) and Eq.(8). Now, the spin tensor X#*°
plays the role of the charge current J# and we can write it as
XHPe = §Poy# + higher order terms, with the spin density
S playing a similar role to the charge density n in Eq.(22).
To proceed, we need to choose a suitable power-counting
scheme for all (quasi-)hydrodynamic variables. If we con-
sider the QGP in heavy ion collisions, from the measure-
ments of global spin polarization of hyperons, we know that
the spin density in the QGP should be small because the
hyperon spin polarization is only a few percent. Thus, it is
reasonable to assume that the spin density S° is parametri-
cally smaller than the true hydrodynamic modes described
by variables £ and u*. Thus, we take the following power-
counting scheme:

&P, T,u" ~0(), (€2))

57 ~ 0(d). (32)

Analogous to the fact that the chemical potential u is con-
jugate to the charge density n, we can introduce the spin
potential u”° to be conjugate thermodynamically to the spin
density $¥° and propose the first law for local thermodynam-
ics as (analogous to Eq.(23)):

1
Tds + S, dS" = de. (33)

Ts + l;4,WS”" =e+P.

> (34)

Following the discussions on the fluid local frame, we real-
ize that the same discussions are still valid for the symmetric
part of the energy—momentum tensor; thus, we still choose
the definition of u* such that it is the eigenvector of the sym-
metric part of the energy-momentum tensor, ©*" (we still
call it the Landau-Lifshitz frame) *:

3 Since 7 is counted as O(d) quantities, the term S”°u* is unchanged
at O(d) under a re-definition of u” — u* + éu* with éu* ~ O(0).
Therefore, Eq.(35) is automatically satisfied at O(d) up on using the
zeroth-order EOM for u# [68]. But when there appear other conserved
charges, such as a global U(1) charge, Eq.(35) is a proposal to fix the

@ Springer
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0 u, = eu’. (35)

Because the EOM for spin density involves only the antisym-
metric part of the energy-momentum tensor 4", the sym-
metric part ©Y, still takes the same tensor decomposition
up to the first order in gradients, as in Eq.(21):

O = eu'u* — (P — (OA™ + 256" + O(d%). (36)

To determine the form of @Zv, we used the second law of
local thermodynamics. The covariant entropy current is (an
analog of Eq.(25))

st =Ppr+0O"p, — %amﬁ””", 37

witha,, = p,,/T. The production rate of entropy then reads

Td,s" = @/ 0,1, + O (u,, +Td,pb,) + 0. (38)
The semi-positiveness of the first term on the right-hand
side is guaranteed when both the bulk and shear viscosities
are semi-positive. The requirement of the semi-positiveness
of the second term gives the constitutive relation for ®” at
0(0) order [68]

0, =¢"u" - q"u" + ¢, 39)
q" =A[pVFT + Du¥ — 2" u,], (40)
¢llv =’,ISAI4PAW (Hpa — Twpa)' (41)
The quantity

w,, =(1/2)(0,8,—0,8,) (42)

is the thermal vorticity tensor. The quantities A and #, must
be semi-positive to guarantee the semi-positivity of the
entropy production. These are called boost heat conductiv-
ity and rotational viscosity, respectively [68]. Using these
constitutive relations, we obtain the spin hydrodynamic
equations up to O(d?) order:

(€ + P = £0)Dut — V*(P — £0) + 21240, 6"

+q- o = A'Dg" — g"0 + A9, = 0, “3)
De + (e + P = {0)0 — 250, 6"

Uy puv (44)
+0-9+q,Du" + " w,, =0,
DS + 8776 + 20" = 0. (45)

Footnote 3 (continued)

local rest frame of the fluid.
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In this section, we present a detailed derivation of the consti-
tutive relations for relativistic spin hydrodynamics up to first
order. For related discussions that follow a similar approach,
see Refs. [62, 69—78]. Other methodologies for deriving and
analyzing the constitutive relations of spin hydrodynamics
have also been discussed in the literature, including utiliz-
ing the hydrostatic partition function with constraints from
the entropy current and Onsager relations [79, 80], using
local equilibrium and non-equilibrium statistical operators
[73, 77, 81-83], and employing kinetic theories [76, 84-95].
Relativistic spin hydrodynamics have become a vibrant area
of research, attracting intense discussion in recent years. In
the following section, we will explore some of these devel-
opments; further insights can be found in Refs. [96-110].

4 Discussions

We developed spin hydrodynamics based on local thermo-
dynamic laws. Spin hydrodynamics exhibit several novel
features that differ significantly from those found in conven-
tional relativistic hydrodynamics for other types of conser-
vation laws (e.g., the energy—momentum conservation and
baryon number conservation). In this section, we explore
and discuss certain intriguing characteristics.

4.1 Pseudo-gauge ambiguity

The definition of conserved current is not unique. One exam-
ple is the magnetization current and dipole charge density.
Let J# = (p,J) represent the conserved conductive elec-
tric current. For a polarizable and magnetizable material,
the total charge density and electric current are given by
p=p+V-Pand J=J+V xM, respectively, where P is
the electric dipole density, and M is the magnetization den-
sity. In the covariant form, we have:

JH=JF + o, M"Y  with M = - M (46)

Obviously, the total current J* is conserved if the conduction
current J* is conserved, and the total electric charge remains
unchanged provided the surface dipole density vanishes. The
transformation of a conserved current that preserves both
the original conservation law and total conserved charge is
called a pseudo-gauge transformation. The example above
demonstrates that the total current and conduction current
differ by a pseudo-gauge transformation (with the magneti-
zation M*" serving as the pseudo-gauge field). This example
also highlights that a pseudo-gauge transformation is not
a true gauge transformation because it alters the physical
content of the transformed current. Further insight into the
pseudo-gauge transformation can be obtained by examining
Maxwell’s equations:
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0,F" =1T". @7)
One could subtract —0p/\/l”” from both sides and find
O ™ =T, (48)

where the new field-strength tensor is defined as
H" = F* + M*"”. This demonstrates that without impos-
ing additional constraints, the two sets of fields, (¥ ”V,j")
and (H*Y,J*), describe the same physical laws, and one can
freely choose which set to use. (If further constraints are
imposed, such as the Bianchi equation 9, F,,; = 0, which is
not preserved under a general pseudo-gauge transformation,
then only certain pseudo-gauges that respect the Bianchi
equation are permitted.)

Similarly, let us consider angular momentum conser-
vation (note the analogy with Eq.(48), where Z#*” and
®rY — O are analogous to H** and J* in Eq.(48)):

9, X" = 0" -0, (49)

which is preserved under the transformation

THPO _ SHPO = FHPO _ Heo (50)
0" 0" =" + %ap“‘v, (51)
with @V = —®*"# denotes an arbitrary local field. How-

ever, this transformation violates the conservation law of
the energy—momentum tensor. It can be modified as follows:

THPO _ SHPO = THPO _ HPo, (52)

0" 0" = 0" + %a (@M — D — V), (53)

which preserves Eq.(49) and Eq.(1). Given a spacelike
hypersurface E, the total energy—momentum and total angu-
lar momentum across E are

P’ =/dEM®”V, (54)

M = / dE, M
(GR)
= / B, (x*OH — 7@ 4 347,

One can check that P# and M*° are invariant under pseudo-
gauge transformation (52) and (53) if the pseudo-gauge field
®“7° vanishes at the boundary of Z 4.

4 This can be checked by noting that for A%V = —A#4 we have
[ dE,0,A%Y = [ d2, 0LAMY + [ dEn,n;n - 0A = [ dE,0tAMv with n* the
norm of E and 0t =0, —mn-0. Then, one can use the Gauss theorem
to transform it to an integral over the boundary of E.

One consequence of the pseudo-gauge transformation is
the freedom to choose the symmetry properties of the spin
tensor. To illustrate this, we consider an example in which
we aim to transform the general spin tensor #/? = —XHoP
into a completely antisymmetric form. We can choose
@Hre = Tmno %Z"’”’. After applying the pseudo-gauge
transformation, we obtain

SHpo —)iﬂpa — %(Zypa — Y PHO + ZO'.MP)’ (56)

0" -O" = 0" + iai(3zw + AT, (57)

Note that the obtained £##7 is totally antisymmetric; there-
fore, it can be parameterized as

SHpo — —e””‘”S‘V, (58)

where §# denotes the corresponding spin (pseudo)vector.
Thus, the spin density tensor is thus §#¥ = —e#?y S The
main difference between this spin density tensor and that
used in Sect. 3 is that S#¥ contains three degrees of freedom
corresponding to the three spatial spin vectors, whereas S*"
has six degrees of freedom, with three for spatial spin and
three for boost. Thus, in some cases, it is more convenient to
use 47 to construct the spin hydrodynamics. By following
a procedure similar to that adopted in Sect. 3, we can derive
constitutive relations in this context. In doing so, we decom-
pose S¥into S# = o# + nsu*, where o* represents the spatial
spin with the condition ¢ - ¥ = 0, and ns is a pseudoscalar
field (hence subscript 5). We also decompose ©*" into:

O = eufu’ — PA" + C:)f(‘i) +3'u = §u" + M, (59)

where, as in Sect. 3, we assumed the Landau—Lifshitz frame
O"u, = eu, (60)

such that éf(vn is purely transverse to u*. It is important to
note that although we use the same symbols €, P, and u* as
in Sect. 3, their actual values may differ because the
energy—momentum tensors and spin tensors in these two
cases are different (but connected by the pseudo-gauge trans-
formations (56) and (57)). We adopt a power counting

scheme similar to the one we chose in Sect. 3,

&P, T, u" ~0Q1), 61)

§4,q", " ~ 0(0). (62)

Using the same form for the entropy current and the first law
for local thermodynamics presented in Sect. 3, one can then
find the divergence of the entropy current to be
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QMK AUV [~ 3
T9,s" = ©),0u, + 04" (i, +Td,h,) +00).  (63)
We note that in deriving this result, we have utilized the fact
that contracting the equation of motion (49) with u” reveals
that g# is not an independent current, but is determined by
S* through the following relation:

~ | B s
q” = EGM P uvvaO" (64)

This is because when the spin tensor is completely antisym-
metric, the components responsible for the boost are gauged
away, meaning that the corresponding torque for the boost
in the antisymmetric part of the energy—momentum tensor
cannot be an independent current either. Owing to this rela-
tionship, we can show that ns = § - u is actually an O(3°)
quantity (and thus does not appear on the right-hand side of
Eq.(63)). In fact, through direct calculation, one can find that
the higher order terms that are neglected in Eq.(63) contains
only one term: « 75,

L, [0,(D ) + ¥ ,8,(0,8 + D], (65)

which infers that ns & €%%u, [0, (Bfi,,) + V1,0, + D) ~ 0(%) and
thus can be neglected [62]. Therefore, from Eq.(63), we
derive the constitutive relations for spin hydrodynamics
with a completely antisymmetric spin tensor as follows [62]:

(:)ﬁ_’(vl) ={OA" + 2nct, (66)

Ol =() = 1A A (1, = T, ). (67)

Although these relations take the same form as those
obtained in Sect. 3, it is important to note that they apply
specifically to the pseudo-gauge of a completely antisym-
metric spin tensor. These relations are particularly conveni-
ent for describing the evolution of spatial spin degrees of
freedom.

Thus, choosing different forms for the spin tensor (loosely
referred to as different pseudo-gauges) leads to different
forms for the constitutive relations. In an extreme case, one
might even select ®#7° = ¥#7° which completely eliminates
the spin tensor and renders the energy—momentum tensor
totally symmetric (this choice is commonly referred to as
the Belinfante gauge [111-113]). While this may seem to
eliminate all information about spin in hydrodynamics, the
energy density, viscous tensors, and heat current remain
influenced by spin, meaning that the dynamics of spin are
still embedded within these quantities. For discussions on
the transformation from canonical to Belinfante gauges, see
Refs. [69, 71, 75, 99, 114, 115]. In addition, other pseudo-
gauges have been employed and discussed in the context of
spin hydrodynamics [85, 86, 88, 116-119].
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4.2 Spin hydrodynamics for strong vorticity

The power counting scheme employed in the previous dis-
cussions is motivated by the observation that at global equi-
librium, the spin potential y,, is determined by the thermal
vorticity @, = (9,8, — 9,5,)/2, which is naturally assumed
to be an O(d) quantity. However, this assumption may not
hold true because the global equilibrium allows for arbitrar-
ily large rotations (vorticity). When the vorticity is large, the
assignment @w,, ~ O(d) becomes inadequate; instead, it is
more appropriate to consider that @, ~ O(1). We explore
this situation in this subsection, following closely the discus-
sions in Ref. [72]. Before going into the details, it is useful to
compare spin hydrodynamics with magnetohydrodynamics
(MHD), in which the magnetic field is treated as an O(1)
quantity (See Ref. [120] for a review of relativistic MHD).

The MHD describes the coupled evolution of fluid
energy—momentum (or temperature and velocity) and the
electromagnetic field in the low-energy and long-wave-
length regimes. The fundamental equations consist of the
conservation laws for the energy—momentum tensor and
Maxwell’s equations. Owing to the screening effect, the
electric fields within the fluid are gapped and parametri-
cally small compared to the magnetic field. This renders
the electric field inactive in the low-energy, long-wave-
length regime. In contrast, there is no screening of the
magnetic field, allowing it to exhibit its own dynamics
even in this regime. Consequently, the magnetic field can
be large and is treated as an O(1) quantity, despite the fact
that B = V X A involves one spatial gradient. The presence
of an O(1) magnetic field breaks the SO(3) symmetry in
the constitutive relations for ®*", introducing anisotropy
even in ideal hydrodynamics. Specifically, we can define a
normalized vector b* = B* /B, where B = \/—B¥B,,, satis-
fying b> = —land b - u = 0, as an additional building block
for hydrodynamic constitutive relations. For example, for
a parity-even and charge neutral fluid, the energy—momen-
tum tensor can be decomposed into

" =eutu’ — P, E" + P b"b" + @f‘l‘;, (68)

where E#¥ = A" + bYDY is a projector transverse to both u*
and b*. The terms P, and P represent the pressures in direc-
tions transverse and parallel to the magnetic field, respec-
tively. Note that when we allow an environmental parity
violation (e.g., when there is a density imbalance between
the right- and left-hand particles in the fluid) and a finite
charge density, the term u*b") can appear in the zeroth order.
The term @z‘l‘; (which is assumed to be symmetric because
the spin degree of freedom is typically disregarded in MHD)
denotes a collection of terms that are at least of order O(d)
in the gradient expansion and consistent with the Onsager
relations. For a parity-even fluid, all such terms are
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expressed as O] = >, AN ug,

responding transport coefficient [121-123]:

where 4, is the cor-

niww =b b’ bPD°, (69a)
=T (69b)
7 = — BBPLT — EPHDY, (69¢)
nfvpo - z[b("EV)"b" + b(ﬂav)ﬂbﬂ], (69d)
plrT =2 EPHEVT _ BVEPS (69)
ng\/pd = — puprpe _ b("b‘/)"b”, (69f)
ﬂémw —2PhpVe 4 mopWp, (69g)

where b*Y = €""P%u,,b,, is a cross projector that appears only
when charge-conjugation symmetry is violated (e.g., when
a net charge density is presented).

Similar to the discussions above regarding MHD, we
can consider a scenario for spin hydrodynamics where the
vorticity is treated as zeroth-order in gradients, while the
gradients of other thermodynamic quantities are treated
as first-order. In line with the MHD, this framework has
been referred to as gyrohydrodynamics in Ref. [72]. To
simplify the notation, we reuse b* to denote the unit vector
along the vorticity,

P = o[-, wh = o [\[-o,0f, (70)

withw# = —€"""°u,0,6, /2 = fw* the thermal vorticity vec-
tor. We chose the pseudo-gauge such that the spin tensor is
totally antisymmetric. Using u#, b* as well as gH¥, e#"?° as
building blocks, we can decompose ®#* and X#** into the
following irreducible forms:

©" = euu’ — P E" + P bbY + P b

+q"'u’ —utq" + G)f(vl) + ",

(71)

T = — MPAS) = —e P (nguy — Syby + S ). (72)

where P, | , represent pressures (which will be counted as
O(1) quantities in gradient expansion) in different directions,
whose physical meaning will become clear shortly. The
quantity S, = b - S denotes the spin component in the direc-
tion of the vorticity, while Si = EHS, denotes the spin com-
ponent transverse to the vorticity. As before, we chose the
Landau-Lifshitz frame, with ¥, @f(vl), ¢, and S! transverse
to ut. Note again that, with this fully antisymmetric choice

of spin tensor, the g* vector is no longer independent, but is
determined by S* through Eq.(64).

The power counting scheme is such that S is counted as
order one, whereas ¢p*" = —¢"H, Sﬁ, ns, and g* (see Eq.(64))
are counted as at least O(d). Additionally, we will count S*
as O(h) (since spin is totally quantum in nature) in compari-
son with other thermodynamic quantities, which can appear
even at the classical level and are therefore assigned O(7°).
This allows for a double expansion in both 0 and 7. For the
entropy current, we can write s# = su* + sé‘l) and use
Eq.(33). It is straightforward to derive the divergence of the
entropy current, and after some calculations, it was found
that up to O(ho?, 3%) [72]:

0,5 =[s—B(e+P.)]|0— (P =P, —uSb"b"0,p,
+ be’”(aﬂﬂv + ﬂ”ﬂv) + G)if(‘;)a(ﬂﬁw + ¢W(a[uﬂﬂ

+ Buy) + 0, (st = Buins ) + 0(h?, 0°).
(73)
The first line provides the zero-order contribution to the

entropy production, which is expected to vanish so that they
represent non-dissipative contributions. This gives

e+P, =Ts, Py=P +pus, Py=0. (74)
The first relation is the Gibbs—Duhem relation, indicating
that P, can be interpreted as the thermodynamic pressure.
The second relation shows that the pressure along the vor-
ticity direction differs from the thermodynamic pressure by
an amount due to spin polarization 4 S. This term is similar
to the MB term in the magnetohydrodynamic constitutive
relation. The third relation shows that there is no spin torque
at the leading order.

At O(0) order, the requirement of a semi-positive entropy

production gives that

Oty =T 0Py + TE" 7 (01, Po1 + Pty ). (75)
B =Ty (O, By + Bhys) + TE 770, B, (76)
Séll) :ﬂll”ny (77)

where ##Y?° and y#?° are the usual and rotational viscous
tensors representing the response of the symmetric and
antisymmetric parts of the energy—momentum tensor to fluid
shear and expansion, and the difference between vorticity
and spin potential, respectively, and /7 and &' #VP° are two
cross viscous tensors. Note that the cross viscous tensors are
not independent of each other but inter-related according to
Onsager’s reciprocal principle, & #¥7°(b) = £P°HY(—b). By
decomposing these tensors into irreducible structures, one
obtains a number of new transport coefficients (viscosities)

@ Springer



208 Page 100f 17

X.-G. Huang

that characterize the response of the fluid to gradients of
fluid velocity and spin potential [72]:

e = L EVE + (bbb + &, (DHDYEP + B DPDY)
+ 1, (B#7B* + B#°E'? — BFEF")
+ 21 (V*EYPD7 + b D)
+ 2’1HJ_ (Eﬂ(ﬂbd)v + EV(PbU)M)
+ 20 (D"0"Pb7 + 0" b b)),
(78)

yuvpcr =y, (EMPEVU _ Eyo'Evp)

+ 27, (b5 — pYEMP ) (79)
+2yy (b;thl/JbGJ _ bvb"[/’b”J),

EHVPO = 25” (b”EV[”b"] + bVEﬂ[ﬂbﬁ'])
+ 8y EMDP + Ly bbb (80)
+ 28, (b B*1707) + b*bH17D7),

where the #’s, {’s, y’s, and &’s are transport coefficients.
Especially, those with subscript “H" are Hall-type transport
coefficients which do not contribute to the entropy produc-
tion and thus their sign are not constrained by the second law
of local thermodynamics. One may wonder why the term
« b*'bP° (such term would contribute to an O(0d) analog of
P, term in Eq.(71) ) does not appear in y#"#°. This is because
it is not independent of the other terms in y#*#° [121]. Note
that the expression for £#¥7¢ is different from that in Ref. [72]
but equivalently yields the same constitutive relations once
substituted into Eq.(75).

4.3 A spin Cooper-Frye formula

To apply spin hydrodynamics to specific physical systems,
we need to know the appropriate observables for the detec-
tion of spin degrees of freedom in the fluid. In principle,
the presence of the spin degree of freedom in the fluid
should modify the usual hydrodynamic quantities such as
the energy density and fluid velocity, but when the spin
density is not large (nevertheless it is always suppressed by
h comparing to the traditional hydrodynamic quantities),
such modification is small. In heavy ion collisions, the nat-
ural observable is the spin polarization of hadrons, includ-
ing spin-1/2 hyperons and spin-1 vector mesons. Hyperons
are of special interest because they primarily decay via
weak interactions such that the momentum of one of the
daughter particles tends to align with the spin direction of
the hyperon. To obtain the spin polarization observables of
a hadron from spin hydrodynamics, machinery is required
to convert the outcomes of spin hydrodynamics, such as
fluid velocity, temperature, and spin potential, to measur-
able hadronic observables.
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In the application of traditional hydrodynamics to
heavy-ion collisions, the hadron momentum spectra are
typically obtained using the Cooper—Frye formula:

dN; =
E,,d? = [ B, 0p"f(x, p), 81)
where the integral is over the freeze-out hypersurface (where
particlization occurs) &, and f;(x, p) is the distribution func-
tion of species i of the hadrons in the fluid. Any possible
degeneracy of the hadrons should be accounted for in f;.
For example, when dissipative effects are neglected, the dis-
tribution function f; is typically taken as the Fermi-Dirac
or Bose-Einstein functions frz(p - f — p;) with y; is the
chemical potential. The above Cooper—Frye formula has
been widely used in hydrodynamic simulations in heavy-ion
collisions and has proven to be very successful. Therefore,
to extend traditional hydrodynamics to spin hydrodynamics,
we also need to generalize the above Cooper—Frye formula
to a spin Cooper—Frye formula.

Let us consider a system in which thermal equilibrium
is reached locally but not necessarily globally. The den-
sity operator p for the description of such an ensemble is
obtained by maximizing the entropy functional under the
constraints of the given energy-momentum and angular
momentum (or spin) densities:

S[p) =—Tr(pln p) + A(Trp— 1) — / d=, [Tr(56"") — "] p,

1 — ALY, v
+3 [ dB,, [Te(pEH?) = 2| .

(82)
where ©#Y(x) and Z#¥?(x) are the actual local energy—momen-
tum tensor and spin tensor, respectively, and f, (x) and p,,(x)
are the corresponding Lagrange multipliers. The Lagrange
multiplier 4 is introduced to normalize p and is related to the
partition function Z as exp(1 — 1) = Z. The resultant density
operator is the local-equilibrium density operator [124—127]:

Pre = Z—; exp {— / 2,0 W0 = 22 (e )] } (83)

where Z; i denote the local-equilibrium partition function.
Now, we see that p;  is determined by the local thermody-
namic quantities f* and p,,,. If we calculate the spin density
XHP9(x) using this density operator, we obtain a relationship
between X#7°(x) and the local thermodynamic quantities
(and possibly their derivatives). However, this is not particu-
larly useful in the context of heavy-ion collisions because
what is measured is the spin density in momentum space,
rather than the coordinate space. To express such a relation
for the spin density in momentum space or phase space, the
most natural approach is to use the Wigner function.
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To illustrate how this can be achieved, we consider a
Dirac fermion system as an example. The Wigner operator
is defined as follows:

W(x,p) = / d*se Sli/(x +5 ) ® w(x - ;) (84)

where [ ® 1, = ¥, W, with a, b spinor indices. We choose
the canonical pseudo-gauge, in which the energy—momen-
tum tensor operator and spin tensor operator are given by

O =giy" o'y — " L, (85)

o 1 . 1
SHve =—II/{Y” o’ W = —56" POy s (86)

where Z is the Lagrangian (in the following, we consider free
fermions, so that £ = y (iy#9, — m)y is in quadratic form,
and the second term in ®*" vanishes when using the equa-
tion of motion of the field operator) and ¢”° = i[y”,y°]/2.
Note that the second equation indicates that the spin vector
S’{, =(1/ 2)1/:/7/(,3/51/7 is half the axial current. Both (:)”V(x) and
$#v2(x) are local Heisenberg operators. We can extend them
into operators in the phase space by using the Wigner trans-
formation, for example,

M (x, p) = — %6’”"" / d4se‘i”'stf/<x + %)Vﬂsti/(x - %)

=— %e’”””TrD [ygys W(x,p)] ,

(87)
where Try, is the trace over the Dirac space. It is easy to
see that [ d*p/(2x)*£#?(x, p) = £#7(x). The integration
of £#vP(x, p) over a certain spacelike hypersurface gives us
the spin tensor in momentum space (whose exact meaning
will be clarified later), whose ensemble average under p; g
is exactly the quantity that we are looking for. Therefore, we
must calculate the Wigner function under local equilibrium:

W(x,p) = (W(x,p)) = Tr[p e W(x, p)], (88)

where Tr denotes the trace over a complete set of micro-
states in the system. To proceed, the local-equilibrium den-
sity operator can be rewritten as j; ; = exp(A + B)/Z, ; with
the abbreviations

A=—Prp,(x), (89)

- / d=, () [0" ()AL, () — %i””“(ym,,g(y)], (90)

where P* = [ dE,(1)O"(y), AR, = B,(y) — B,(x). The
purpose of rewriting j; i in this form is that, the correlation
length between the spin tensor and the energy—momentum
tensor is typically small. Within this correlation length, we

can assume that local thermodynamic quantities, such as f,
vary only slightly. Given that y,, is also small at the hyper-
surface 2 (which is a reasonable assumption for heavy-ion
collisions, although it may not hold for a strongly polarized
medium), we assign A, ~ p,, ~ O(9), therefore, A~ 0Q),
B ~ 0(9). Using this power-counting scheme, we can expand
the right-hand side of Eq.(88) order by order in d by applying

the identity eA*8 = A + ¢4 /01 die=*Bet 4 ... and obtain
W(x, p) =Wy(x, p) + Wi (x, p) + -+, 91)
where
N 1 AA
Wo(x, p) =(W(x, p))y = Z—Tr(eAW(x,p)), 92)
0
W, (x,p) =(W, p))e) + (WP, » (93)
with
1
(W phe = - /0 a / 4E,()AP, 6HO™ (5 — IAPC)W(E, P
94)

1
EPNTS s% /0 di / A2, ()t (7 (v = iABC)W X, D))o

and Z, = Tre. Here, (+*+)o, means the connected part of the
correlation. The calculation then will depend on the shape
of the hypersurface E. For illustration, we consider E to be
the 3-space at some time ¢ so that its normal direction is
# = (1,0). The calculation is then straightforward using the
free field operator

2

v = Z 2 1)3,2 / P 00,00 + v, R0 0], (95)

where E, = Vk*+m? and a,(k),b,(k) are anni-
hilation operators for particles and antiparti-
cles satisfying the anti-commutation relation
{a,(0).0, (@)} = {b,(k). 5], (@)} = 25,46’k —¢q) and
the relation (i@, @)y = (b (0by @) = 2E6,, 5k - onp(k- p) -
In the following, we consider only the particle branch;
the antiparticle branch is completely similar. The
zeroth-order Wigner function can be easily obtained:
Wy (x, p) = 2z(p + m)O(py)d(p* — m*)np(p - B), which is spin
independent: Tr), [y”y5 Wy (x, p)] =0.
The first-order Wigner function reads

1 3
WP oys, = 2”/ CM/ ZSEk / &q 4< q+k>
0 k (96)
(v -k+mi I (y-q+m)xer* /’(")nF(k) [1 - nF(q)] s

@/

where np(p) = ng[f(x) - pl, ;» 1l ==y [0,8,0] A [m"&‘(q k)] and
I(”Z) = 46”””"y5yvyp053(q k) with A* =g»"v — 3. To
obtain this result, we have used
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5P -9,
o7
which is valid when = is a 3-space. In heavy-ion collisions,
the true freeze-out hypersurface = is of course not a 3-space
and thus correction due to the non-flatness of & would
appear; see discussions in Refs. [128, 129].
Using the first-order Wigner function in Eq. (96), the
local-equilibrium spin vector in the phase space is directly

obtained by finishing the trace over the Dirac space [130,
131]:

/dE”(y)(y — x)%e PO = (2”)32MAZ£
opg

S,(x.p) = — 4x8(p* = mHO(PInp(p)[1 — np(p)]

{ Gewop'n + 21, € + 2 ] }, o9
where X' =e¢,,,,p’1/Qp-1), &, =9,pB, is the ther-
mal shear tensor, and Au#Y = u#¥ — w*” is the difference
between the spin potential and the thermal vorticity tensor.

With this spin vector in phase space, the spin vector per
particle in momentum space is obtained by average over
hypersurface = [130, 131]:

1 [ dE@) - pTrply*r Wx, p)]
2 [dE-pTrplW(x,p)]

[ dE <p{eymﬂpvﬂ”ﬂ +45 [P, (€ + A }nF(l —np)
N 8m [dE-png ’

$,(p)
99

where p* on the right-hand side is on-shell. This is a Cooper-
Frye-type formula for the spin vector, which connects the
momentum-space distribution of the mean spin vector of
particles emitted from E with the fluid properties charac-
terized by u*(x) and f#(x) on E. Thus, once these fluid
variables are obtained from spin hydrodynamics, this spin
Cooper—Frye formula allows us to convert them into the
mean spin vector in momentum space, which is a directly
measurable quantity.

We provide several comments before concluding this
subsection. First, at local equilibrium, the thermal shear
tensor can induce spin polarization, which has important
implications for the spin polarization phenomena in heavy-
ion collisions [128, 132—-134]. Second, when the system
is in global equilibrium, the spin potential is determined
by the thermal vorticity and the thermal shear tensor &,
vanishes. In this case, the spin Cooper—Frye formula is
reduced to that obtained in Refs. [20-22]. Third, we did
not include the effects of finite baryon chemical potential.
Its inclusion is straightforward, with the modification that
the distribution function ng(p - f) = np(p - p — a), where
a = u/T. Additionally, a new term 4 / d= - pZiNaVa should
be added to the numerator of Eq.(99), which is referred to
as the spin Hall effect [135]. Fourth, formula (99) depends
on the choice of pseudo-gauge [130, 131]. In particular,
it is possible to completely eliminate the contributions of
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thermal shear by adopting appropriate pseudo-gauges.
Therefore, when applying this formula to spin hydrody-
namics, it is important to carefully choose a pseudo-gauge
to maintain consistency.

5 Summary and outlooks

This article provides a pedagogical introduction to relativ-
istic spin hydrodynamics. First, we demonstrate how one
can derive a set of hydrodynamic equations from conser-
vation equations based on the requirements of local ther-
modynamic laws, primarily the second law of thermody-
namics. We then extended this framework to include the
conservation of angular momentum, which leads to spin
hydrodynamics. In the framework of spin hydrodynam-
ics, the new (quasi-)hydrodynamic variable is spin den-
sity. Owing to spin-orbit coupling, the spin density is not
a strict hydrodynamic variable but rather a quasi-hydro-
dynamic variable. It relaxes to a local equilibrium value
determined by the local thermal vorticity through dissipa-
tive conversion of the spin and orbital angular momenta.
We demonstrate how such dissipative processes are char-
acterized by two new transport coefficients: one for boost-
ing heat conductivity and the other for rotational viscosity.

We discuss several interesting aspects of spin hydro-
dynamics. First, we address the pseudo-gauge ambiguity
in defining the spin tensor, which reflects the freedom to
separate the total angular momentum into spin and orbital
components. One consequence of this pseudo-gauge ambi-
guity is that we have the flexibility to choose spin tensors
with different symmetries in their indices as the starting
point for the derivation of spin hydrodynamics, leading to
different constitutive relations. Second, we emphasize the
importance of derivative power counting in the formula-
tion of spin hydrodynamics. In particular, for a strongly
vortical (or strongly spin-polarized) fluid, it is natural to
assign the vorticity and spin potential as being of simi-
lar strength to other local thermodynamic quantities,
such as temperature, in terms of derivative powers. This
is analogous to the magnetohydrodynamics. As a result,
anisotropy emerges in the constitutive relations both at
the zeroth order and the first order in derivatives. This
framework is well-suited for describing strongly vortical
or spin-polarized fluids. Third, for potential applications
of spin hydrodynamics, such as in heavy-ion collisions, we
require a method to convert the results of spin hydrody-
namics—specifically, the spin density (or spin potential),
temperature, and fluid velocity—into momentum-space
observables. To this end, we give a spin Cooper-Frye for-
mula for Dirac fermions, and a similar formula can also
be derived for spin-one vector bosons.
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Spin hydrodynamics is an area of intensive study with
many interesting aspects already explored and many more
awaiting investigations. We provide a brief discussion of
some of these topics.

(1) Spin magnetohydrodynamics. When the constitu-
ents of the fluid are charged, the fluid can interact with the
electromagnetic fields and behave like a magnetized fluid.
In this case, it is convenient to extend spin hydrodynam-
ics to spin magnetohydrodynamics [136—140]. As electric
fields are easily screened, they are not typically described
as hydrodynamic variables. Therefore, the new hydrody-
namic variable is the magnetic field (more precisely, the
magnetic flux), B# = F"Vuv, which is counted as an O(1)
quantity in derivative power counting. The conservation
law is simply a Bianchi identity.
9,F"" =0. (100)
Here, F*¥ = (1/2)e"""°F 1o 18 the dual Maxwell tensor. This
equation should be combined with the conservation laws of
energy—momentum and angular momentum to form com-
plete equations of motion for the fluid. Expanding F*" in
terms of hydrodynamic variables yields [120]:

F" = B'u’ = B'u" + F[}}, (101)

where F° é‘lv) and B* are transverse to u”. Local thermodynamic
laws can be imposed, for example, the first law and a gener-
alized Gibbs—Duhem relation, as follows:

1
Tds + -, dS" + H,dB" = de. (102)

Ts + %MWS’” +H,B"=¢+P, (103)
with H, the “magnetic potential" conjugate to the magnetic
flux (physically, it can be interpreted as the in-medium
magnetic field strength). The covariant form for the
Gibbs—Duhem relation is

=P+ O, — TSI, (104)
with y# = pH*. The second law of thermodynamics requires
d,s" > 0, which imposes constraints on the possible forms
of the constitutive relations order by order in the gradient
expansion. Recently, such a framework for spin magnetohy-
drodynamics was discussed (see Refs. [139, 140] for further
detail).

It would be interesting to extend these studies to include
possible parity-violating effects, thereby obtaining spin mag-
netohydrodynamics in a chiral conducting medium. This
provides a bridge between spin magnetohydrodynamics and
chiral magnetohydrodynamics. Another issue that may affect

the formulation of spin magnetohydrodynamics is pseudo-
gauge ambiguity. As we have seen, such an ambiguity is cru-
cial for the formulation of spin hydrodynamics, and it would
be interesting to explore how it influences the formulation of
spin magnetohydrodynamics. Finally, exploring possible col-
lective modes and instabilities in such a fluid is also important.
This would be valuable for potential applications (e.g., pos-
sible dynamo mechanisms owing to spin degrees of freedom)
in what we might call spin plasma, whether in heavy-ion col-
lisions or astrophysical systems.

(2) Calculation of the new transport coefficients. As we
have seen, new transport coefficients appear in spin hydrody-
namics, most notably rotational viscosity #,. Strictly speak-
ing, #,, unlike the typical shear viscosity #, is not a transport
coefficient in the traditional sense. It does not characterize the
ability to transport spin within the fluid; rather, it represents
how quickly the spin density relaxes to its equilibrium value,
which is determined by thermal vorticity. This can be easily
understood by rewriting Eq.(8) in the canonical pseudo-gauge
and in component form (keeping linear terms in spin density
and velocity): 9,8 ~ —n (4’ — w') where ' = €7 ., which
leads to 9, u' = —T'y(u' — w') with [, = 1,/ y, the spin relaxa-
tion rate and y, the spin susceptibility. Nevertheless, the calcu-
lation of T"; and #, is important for understanding the evolution
of spin polarization. Recently, I'; has been computed perturba-
tively for heavy quarks in hot QCD plasma [65, 67] and bary-
ons in hot hadronic plasma [66]. Kinetic theory-based calcula-
tions have also been reported [67]. The results show that, for
heavy quarks, this parameter can be parametrically small, mak-
ing the spin degree of freedom a quasi-hydrodynamic mode.
In future, the calculation of other new transport coefficients,
such as those arising in gyrohydrodynamics [72], could also be
crucial for understanding spin dynamics in different fluids. In
addition, it is important to examine and understand the pseudo-
gauge dependence of these new transport coefficients.

(3) Simulation of spin hydrodynamics. It is important to
develop a suitable numerical framework for performing simu-
lations to apply spin hydrodynamics to heavy-ion collisions.
First-order relativistic hydrodynamic equations are known to
suffer from numerical instabilities and emergence of acausal
modes. The origin of this problem lies in the fact that first-
order constitutive relations are non-dynamical, meaning that
the response of the fluid to thermodynamic forces is instanta-
neous. One solution to this problem is to make the constitutive
relations more dynamic. For example, the constitutive relation
for the shear channel can be modified as

7, (Do) + z#¥ = 2nct, (105)

where ##¥ is the traceless symmetric part of @2‘;),

(Dm)*” = (1/2)[A*P A + A AYP — (2/3)A* AP Dz, is
the traceless part of the co-moving time derivative of z,,,
and 7, represents how quickly 7' relaxes into the
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hydrodynamic constitutive relation. (Note that this proce-
dure introduces a new dynamic mode that is not a hydrody-
namic mode and relaxes on a timescale given by 7,..) The use
of such a modification has been successful in the numerical
simulation of relativistic hydrodynamics. For relativistic
spin hydrodynamics, modifications similar to the constitu-
tive relations may be adopted to implement numerical simu-
lations. This has recently been discussed in Refs. [41, 74, 92,
93, 95, 141, 142]. Essentially, the constitutive relation Eq.
(41) is replaced by a dynamic relation

(DY + P = n A A (,)y — T, ), (106)

where 7 is the relaxation time for the antisymmetric part of
the energy—momentum tensor and (D" = A*? A"’ D¢, is
the transverse part of the co-moving time derivative of ¢,
With these modifications, a numerical simulation of rela-
tivistic spin hydrodynamics can be performed, which will
provide valuable insights into spin polarization phenomena
(see the recent progress in Refs. [143, 144]) such as those
observed in heavy-ion collisions.
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