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Abstract
Spin polarization and spin transport are common phenomena in many quantum systems. Relativistic spin hydrodynamics 
provides an effective low-energy framework to describe these processes in quantum many-body systems. The fundamental 
symmetry underlying relativistic spin hydrodynamics is angular momentum conservation, which naturally leads to inter-
conversion between spin and orbital angular momenta. This inter-conversion is a key feature of relativistic spin hydrodynam-
ics, which is closely related to entropy production and introduces ambiguity in the construction of constitutive relations. 
In this article, we present a pedagogical introduction of relativistic spin hydrodynamics. We demonstrate how to derive 
constitutive relations by applying local thermodynamic laws and explore several distinctive aspects of spin hydrodynamics. 
These include pseudo-gauge ambiguity, the behavior of the system in the presence of strong vorticity, and the challenges 
of modeling the freeze-out of spin in heavy-ion collisions. We also outline some future prospects for spin hydrodynamics.
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1  Introduction

Spin is a fundamental property of particles arising from 
quantum mechanics, and it plays a central role in numerous 
phenomena within the quantum regime. As a form of angu-
lar momentum, spin naturally couples to rotation, allowing 
it to become polarized by rotational motion. Similarly, for 
a charged particle with nonzero spin, or a neutral particle 
with a non-trivial charge form factor, spin can couple to an 

external magnetic field as well. Additionally, for a particle 
in motion (i.e., with finite momentum), its spin may cou-
ple to acceleration, electric fields, or gradients of external 
potentials, such as chemical potential and temperature. In 
the case of massless particles, the spin state is specified by 
its helicity state, meaning that it is intrinsically slaved by the 
motion of the particle. As a result, spin can be manipulated 
by rotating fields, magnetic fields, electric fields, and several 
other external influences. Conversely, detecting the spin of 
a particle provides invaluable insights into the environment 
or underlying dynamics of the system.

In heavy-ion collision physics, the primary interest lies 
in the creation of deconfined quark-gluon matter, com-
monly referred to as the quark-gluon plasma (QGP) [1–5]. 
To uncover the properties of the QGP in heavy-ion colli-
sion experiments, it is essential to design specific hadronic 
observables that are sensitive to particular features of the 
QGP. Because charged particles are typically the easiest to 
detect, many observables rely on the charge of the hadrons. 
For instance, the total multiplicity of the detected charged 
hadrons reflects the initial energy of QGP. Meanwhile, the 
anisotropy in the momentum-space distribution of charged 
hadrons corresponds to the initial anisotropy in the spatial 
distribution of partons, leading to well-known harmonic 
flow parameters [6]. By measuring these hadronic observa-
bles, researchers have revealed several novel properties of 
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hot and dense matter created during heavy-ion collisions. 
One significant finding is that the QGP must be extremely 
hot, with a typical temperature reaching 300-500 MeV at 
RHIC and LHC, indicating an extremely high energy den-
sity. Additionally, the QGP medium was found to interact 
strongly, with a very small shear viscosity to entropy density 
ratio �∕s . This low ratio is required to explain the observed 
harmonic flow parameters [4, 5]. In fact, the �∕s of the QGP 
is the lowest among all known fluids.

Since 2017, it has been established that the spin degree 
of freedom can be used to probe the properties of QGP [7]. 
This is achieved by measuring the spin polarization of spin-
ful hadrons, such as hyperons and vector mesons [8–10]. 
Notably, it has been observed that the Λ and Λ̄ hyperons can 
exhibit significant spin polarization at collision energies of 
tens of GeV [7, 11–14]. Similarly, the � and J∕� mesons 
exhibited considerable spin alignment [15, 16] 1. These dis-
coveries open new avenues for studying the QGP through 
the spin degree of freedom. For instance, we now understand 
that the global spin polarization (i.e., the total amount of spin 
polarization with respect to the reaction plane) of hyperons 
arises from angular momentum conservation through the 
formation of fluid vortices within the QGP: In non-central 
heavy-ion collisions, the system possesses substantial orbital 
angular momentum, which subsequently induces strong 
fluid vorticity in the QGP [17–19], thereby polarizing the 
spins of quarks via spin-rotation coupling [20–35]. How-
ever, to fully understand the spin polarization phenomenon, 
a dynamical theory of spin polarization and spin transport 
in a hot medium is essential, analogous to the necessity of 
a dynamical theory of the bulk medium for understanding 
harmonic flows. Naturally, such a dynamical theory of spin 
transport can be derived from either kinetic or hydrodynamic 
theory. In recent years, both spin kinetic theory and spin 
hydrodynamics have made significant advancements. In this 
article, we focus on spin hydrodynamics and refer readers 
to Refs. [36] for a review of spin kinetic theory and Refs. 
[37–44, 44–49] for a review of spin polarization phenomena 
in heavy-ion collisions. In addition, we will focus only on 
spin polarization in hot and dense medium rather than in 
systems created in, for example, electron-ion collisions [50].

Throughout  this  ar t icle ,  we use the natu-
ral units c = ℏ = kB = 1 and the metric convention 
��� = ��� = diag(1,−1,−1,−1).

2 � Relativistic hydrodynamics as an effective 
theory

Before discussing spin hydrodynamics, let us first briefly 
review the general structure of relativistic hydrodynamics 
from the perspective of effective field theory. The hydro-
dynamic theory describes the low-energy behavior of inter-
acting many-body systems, where only conserved charge 
densities exhibit their dynamics. Because the conserved 
charge densities do not vanish, they redistribute themselves 
in space according to their equations of motion (EOMs). 
When expressed in a manner of spatial gradient expansion, 
these EOMs constitute hydrodynamic equations.

Let us consider the hydrodynamic theory of a system with 
space-time translation symmetry and global U(1) symme-
try. The corresponding conserved charge densities are the 
energy density �(x) , momentum density �i(x), i = 1 − 3 , and 
the U(1) charge density n(x). We want to derive dynamical 
equations for these conserved charge densities. Sometimes, 
it is more convenient to work with potential variables con-
jugated to charge densities. These are the temperature T(x) 
(or its inverse �(x) = 1∕T(x) ), fluid velocity u�(x) normalized 
as u�u���� = 1 , and chemical potential of n(x), �(x) . These 
conserved charge densities (or equivalently their conjugates) 
are hydrodynamic variables in hydrodynamics. Our starting 
point is conservation laws:

where Θ�� is the energy–momentum tensor, and J� is the 
U(1) current. As an effective field theory, we express Θ�� 
and J� in terms of the conserved charged density (or equiva-
lently, their conjugates) and their various gradient orders. 
We assume spatial isotropy of the system, that is, there are 
no external forces breaking the SO(3) symmetry. The build-
ing blocks are the fluid velocity u� and various quantities 
that can be classified into different representations of SO(3) 
in the fluid rest frame. Up to the first-order gradients, these 
quantities are

where D ≡ u ⋅ � is the co-moving time derivative, � is the 
expansion rate of the fluid, ∇� = Δ���

� is the spatial gradient 
operator, Δ�� ≡ ��� − u�u� is the spatial projector, ��� is the 
shear tensor that is traceless, and ��� is the vorticity tensor. 
Note that the co-moving time derivatives will eventually be 
replaced by spatial gradients using the EOMs in the leading 

(1)��Θ
�� = 0,

(2)��J
� = 0,

(3)

Scalar ∶ �, n, D�,Dn, � ≡ ∇ ⋅ u = � ⋅ u,

Vector ∶ Du�, ∇��,∇�n, ��� ≡ −(1∕2)(∇�u� − ∇�u�),

Tensor ∶ ��� ≡ (1∕2)[∇�u� + ∇�u� − (2∕3)Δ���],

1  The spin alignment of a vector meson is quantified by the deviation 
of �

00
 from 1/3, where �

00
 is the 00-component of the vector meson’s 

spin density matrix.
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order. Note that the vorticity tensor transforms in the same 
way as a three-vector under proper three-rotations (i.e., a 
three-rotation R with detR = 1 ) because it can be substituted 
by a three pseudo-vector �� ≡ −(1∕2)�����u���� . Conse-
quently, we can write the most general structure decomposi-
tion up to O(�) for Θ�� and J� as follows 2:

with all the coefficients (playing the roles of the Wilson coef-
ficients in the effective field theory, as short-distance phys-
ics are encoded in these coefficients) functions of � and n. 
They are constructed by first decomposing with respect to u� 
and then with respect to different representations of SO(3). 
In these decompositions, the terms with f0,m0, n0, o0, p0 in 
Θ�� and F0 in J� as coefficients transform differently from 
Θ�� and J� under parity (P), respectively, meaning that they 
can appear only when the system contains parity violating 
content. Under time reversal transformation (T), all the terms 
of first-order gradients on the right-hand sides of Θ�� and J� 
except for terms with coefficients f0,m0, n0, o0, p0,F0 trans-
form differently from Θ�� and J� , respectively. This means 
that these terms must be dissipative (i.e., these terms are 
responsible for entropy generation in the fluid), while terms 
with coefficients f0,m0, n0, o0, p0,F0 can appear without 
generating entropy, that is, they could arise in ideal hydro-
dynamics despite being at first order in gradients. Thus, the 
terms with coefficients f0,m0, n0, o0, p0,F0 are especially 
interesting. In fact, some of them have been intensively stud-
ied, and it was found that they contain very rich quantum 
phenomena (usually dubbed chiral anomalous transports) 
that are closely related to the chiral anomaly of the sys-
tem if the underlying physics is governed by the quantum 
gauge theory. Recently, such chiral anomalous transport 
has become an active subject in condensed matter phys-
ics, astrophysics, and heavy-ion collision physics (see Refs. 
[41, 51–56] for recent reviews focusing on heavy-ion colli-
sion physics). Similarly, we can also examine the balance 

(4)

Θ�� = (a
0
+ b�

0
D� + bn

0
Dn + bu

0
�)u�u�

+ c
0
(u�∇�� + u�∇��) + d

0
(u�∇�n + u�∇�n)

+ e
0
(u�Du� + u�Du�) + f

0
(u��� + u���)

+ (g
0
+ h�

0
D� + hn

0
Dn + hu

0
�)Δ�� + i

0
���

+ j
0
(u�∇�� − u�∇��) + k

0
(u�∇�n − u�∇�n)

+ l
0
(u�Du� − u�Du�) + m

0
(u��� − u���)

+ n
0
�����u�∇�� + o

0
�����u�∇�n + p

0
�����u�Du�

+ q
0
��� + O(�2),

(5)
J
� =(A

0
+ B

�
0
D� + B

n

0
Dn + B

u

0
�)u� + C

0
∇�� + D

0
∇�

n + E
0
Du

� + F
0
�� + O(�2),

between the right-hand and left-hand sides of Eqs. (4)-(5) 
under charge conjugation (C) transformation. The terms with 
coefficients bn

0
, d0, h

n
0
, k0, o0,A0,B

�
0
,Bu

0
,C0,E0,F0 must vanish 

if there is no environmental charge-conjugation violation 
(naturally, the presence of a nonzero charge density n vio-
lates the C symmetry and allows these terms to be present). 
The antisymmetric terms in Θ�� are particularly interesting. 
To reveal their meaning, we consider the angular momentum 
conservation law:

where M��� is the angular momentum tensor

and Σ��� is the spin tensor. We can re-write Eq.(6) in the 
following form:

Thus, the antisymmetric part of Θ�� provides a source for 
spin generation (one may more clearly see this by integrating 
Eq.(8) over space). This will be the focus of this study, and 
we return to it in the next section. In the remainder of this 
section, for the purpose of demonstrating the construction of 
the hydrodynamic theory, we simply assume that the system 
does not possess a spin tensor, so that Θ�� is symmetric, 
Θ�� = Θ�� , and assume that there is no environmental parity 
violation, so that terms with coefficients f0,m0, n0, o0, p0,F0 
must vanish. Thus, the most general decomposition of Θ�� 
and J� up to the first order in gradients into different com-
ponents with respect to u� , and subsequently, for the compo-
nents orthogonal to u� , with respect to different irreducible 
tensor structures under SO(3) are as follows:

Up to this point, expressions (9)–(10) are merely param-
eterizations of Θ�� and J� , and such a parameterization is 
ambiguous at O(�) order (and higher orders in gradients). To 
see this, we consider to re-express Θ�� and J� in terms of a 
redefinition of the hydrodynamic variables �′, n′, u′� which 
differ from �, n, u� by O(�)-order shifts:

(6)��M
��� = 0,

(7)M��� = x�Θ�� − x�Θ�� + Σ���,

(8)��Σ
��� = Θ�� − Θ��.

(9)

Θ�� =(a
0
+ b�

0
D� + bn

0
Dn + bu

0
�)u�u�

+ c
0
(u�∇�� + u�∇��) + d

0
(u�∇�n + u�∇�n) + e

0
(u�Du� + u�Du�)

+ (g
0
+ h�

0
D� + hn

0
Dn + hu

0
�)Δ��

+ i
0
���

+ O(�2),

(10)
J
� =(A

0
+ B

�
0
D� + B

n

0
Dn + B

u

0
�)u� + C

0
∇��

+ D
0
∇�

n + E
0
Du

� + O(�2).

(11)�� = � + ��, n� = n + �n, u�� = u� + �u�,
2  One can start without including the co-moving time-derivative 
terms as those terms are eventually replaced by the spatial gradients 
up on using leading-order hydrodynamic EOMs. But we keep them to 
make the discussions more transparent.
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where ��, �n, �u� are order-O(�) quanti t ies and 
u��u

� = O(�2) so that u�2 = 1 is maintained at O(�) . This 
can be seen by noting that u�2 = u2 + 2u��u

� + �u2 which 
leads to 2u��u� + �u2 = O(�2) and therefore u��u� must be 
O(�2) . In terms of the primed variables, we obtain

where a�
0
= a0(�

�, n�) and similarly for g′
0
,A′

0
 and all second-

order terms are omitted. By observing the expressions in the 
three square brackets, one can see that by suitably choosing 
�� and �n , one can eliminate the first-order terms in two of 
the three square brackets. For example, one can solve out �� 
and �n by requiring the first-order terms in square brackets 
in Θ�� to vanish. However, it is more convenient to elimi-
nate the first-order terms in the coefficients of u′�u′� in Θ�� 
and u′� in J� . Similarly, by suitably choosing �u� , one can 
eliminate either the second line in Θ�� (this choice is called 
the Landau–Lifshitz frame for u� ) or the second line in J� 
(this choice is called the Eckart frame for u� ). Therefore, we 
can always choose the following simpler forms for Θ�� and 
J� (Landau–Lifshitz frame),

Contracting with u� , we can identify that a0 = u�u�Θ
�� 

which is the local energy density � and A0 = u ⋅ J which is 
the local U(1) charge density n. [Sometimes, this is also 
considered as the matching condition because this means 
that u�u�Θ�� = u�u�Θ

��

(0)
 and u�J� = u�J

�

(0)
 with Θ��

(0)
 and J�

(0)
 

is the zeroth order energy–momentum tensor and charge 
current.]

Let us first consider the zeroth-order terms, which, as we 
have already discussed, correspond to ideal hydrodynamics:

(12)

Θ�� =

[

a�
0
−

(

�a
0

��
�� +

�a
0

�n
�n

)

+ b�
0
D� + bn

0
Dn + bu

0
�

]

u��u��

+ c
0
(u�∇�� + u�∇��) + d

0
(u�∇�n + u�∇�n)+

e
0
(u�Du� + u�Du�) + (g

0
− a

0
)(�u�u� + u��u�)

+

[

g�
0
−

(

�g
0

��
�� +

�g
0

�n
�n

)

+ h�
0
D� + hn

0
Dn + hu

0
�

]

Δ���

+ i
0
��� + O(�2),

(13)

J� =

[

A�
0
−

(

�A0

��
�� +

�A0

�n
�n

)

+ B�
0
D� + Bn

0
Dn + Bu

0
�

]

u��

− A0�u
� + C0∇

�� + D0∇
�n + E0Du

�

+ O(�2),

(14)Θ�� = a
0
u�u� + (g

0
+ h�

0
D� + hn

0
Dn + hu

0
�)Δ�� + i

0
��� + O(�2),

(15)J� =A0u
� + C0∇

�� + D0∇
�n + E0Du

� + O(�2).

(16)Θ
��

(0)
=�u�u� + g0Δ

�� ,

In the rest frame of the fluid, u�=(1, 0), it becomes 
Θ

��

(0)
= diag(�,−g0,−g0,−g0) which identifies −g0 as the 

thermodynamic pressure P. In the zeroth order, the conser-
vation laws are

To close these equations, we need to know the thermody-
namic relation among P, �, n , that is, the equation of state, 
P = P(�, n).

Let us then consider the first-order terms that correspond 
to dissipative hydrodynamics. From Eqs. (18)-(20), we 
notice that we could replace D� and Dn in the first order 
terms by −(� + P)� and −n� and Du� by ∇�P∕(� + P) . This 
allows us to re-write the energy–momentum tensor and 
charge current as

wi th  h
0
= (� + P)h�

0
+ nh

n

0
− h

u

0
 ,  C

�
0
= C

0
+ E

0(�P∕��)n∕(� + P) ,  and 
D

�
0
= D

0
+ E

0(�P∕�n)�∕(� + P) . Further constraints can be imposed, 
based on the laws of local thermodynamics. For a fluid at 
rest, we have the first law of thermodynamics as

where s denotes the entropy density. To proceed, we 
propose the covariant generalization of the second one 
(Gibbs–Duhem relation):

where �� = �u� ( � = 1∕T  ), � = �∕T  , and s� is the entropy 
current, such that u ⋅ s = s . The divergence of s� (multiplied 
by T) can be calculated directly as:

The second law of local thermodynamics requires that 
T��s

� ≥ 0 for any configuration of the velocity field u� , 
temperature T, and chemical potential � , which imposes the 
following constraints:

(17)J
�

(0)
=nu�.

(18)(� + P)Du� − ∇�P = 0,

(19)D� + (� + P)� = 0,

(20)Dn + n� = 0.

(21)Θ�� =�u�u� − (P + h0�)Δ
�� + i0�

�� + O(�2),

(22)J� =nu� + C�
0
∇�� + D�

0
∇�n + O(�2),

(23)Tds + �dn = d�,

(24)Ts + �n = � + P,

(25)s� = P�� + Θ���� − �J�,

(26)T��s
� = Θ

��

(1)
∇�u� − TJ

�

(1)
∇��.

(27)h0 = −� ≤ 0, i0 = 2� ≥ 0, J
�

(1)
= �∇��,
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where � and � are the bulk and shear viscosities, respec-
tively, and � is charge conductivity. This also shows that 
the coefficients C′

0
 and D′

0
 are fixed in such a way that 

C�
0
∇�� + D�

0
∇�n = �∇�� . The EOMs of the first-order dis-

sipative hydrodynamics are then read

The first equation is the relativistic Navier–Stokes equation. 
The above procedure can continue to a higher order in gradi-
ents and provide higher-order hydrodynamics. However, we 
did not discuss these more complicated situations. Readers 
can find discussions in Refs. [57–61].

3 � Construction of relativistic spin 
hydrodynamics

With the above preparation, we now discuss the construction 
of relativistic spin hydrodynamics, in which the conserva-
tion of angular momentum is explicitly encoded within a 
(quasi)-hydrodynamic framework. The fundamental con-
servation laws are the energy–momentum conservation (1) 
and angular momentum conservation (8). Before delving 
into the detailed construction, we note that if we assign spin 
density S�� = u�Σ

��� as a dynamic variable in our frame-
work, Eq. (8) indicates that it is generally not conserved. 
This reflects the fact that the spin angular momentum can be 
transformed into orbital angular momentum, thus disquali-
fying it as a true hydrodynamic mode. Consequently, spin 
hydrodynamics is not a strict hydrodynamic theory for the 
gapless modes. Instead, it should be categorized as quasi-
hydrodynamics, where the low-energy dynamic variables 
comprise true hydrodynamic modes and some gapped modes 
(quasi-hydrodynamic modes) whose gap in the low-momen-
tum region is parametrically small compared with other 
microscopic modes (the hard modes of the system) [62]. 
This results in spectrum separation; for physics at energy 
scales comparable to these modes, we can only consider 
the quasi-hydrodynamic modes alongside the true hydrody-
namic modes. Generalized hydrodynamics [63] and Hydro+ 
[64] near the QCD critical point fall into this category. The 
spin hydrodynamics that we will discuss also belongs to this 
type of theory. This framework requires that spin excitations, 
despite being gapped, remain low-energy excitations com-
pared with other microscopic modes [62]. For instance, if 
the system contains massive fermions, the spins of these fer-
mions are difficult to relax because the spin-orbit coupling is 

(28)(� + P − ��)Du� − ∇�(P − ��) + 2�Δ�
�
���

�� = 0 ,

(29)D� + (� + P − ��)� − 2�����
�� = 0,

(30)Dn + n� + �∇2� = 0.

inversely suppressed by the mass of the fermions compared 
to the typical energy transfer [65–67]. Thus, these spins are 
quasi-conserved, and we can formulate a quasi-hydrody-
namic theory for it, which is called spin hydrodynamics.

We consider a charge-neutral system such as the quark 
gluon plasma or the usual electric plasma, in which some 
of the constituent particles are spinful particles. The sym-
metry considered is space-time translation symmetry and 
Lorentz symmetry. This leads to the energy–momen-
tum conservation and angular momentum conservation, 
as given by Eq.(1) and Eq.(8). Now, the spin tensor Σ��� 
plays the role of the charge current J� and we can write it as 
Σ��� = S��u� + higher order terms , with the spin density 
S�� playing a similar role to the charge density n in Eq.(22). 
To proceed, we need to choose a suitable power-counting 
scheme for all (quasi-)hydrodynamic variables. If we con-
sider the QGP in heavy ion collisions, from the measure-
ments of global spin polarization of hyperons, we know that 
the spin density in the QGP should be small because the 
hyperon spin polarization is only a few percent. Thus, it is 
reasonable to assume that the spin density S�� is parametri-
cally smaller than the true hydrodynamic modes described 
by variables � and u� . Thus, we take the following power-
counting scheme:

Analogous to the fact that the chemical potential � is con-
jugate to the charge density n, we can introduce the spin 
potential ��� to be conjugate thermodynamically to the spin 
density S�� and propose the first law for local thermodynam-
ics as (analogous to Eq.(23)):

Following the discussions on the fluid local frame, we real-
ize that the same discussions are still valid for the symmetric 
part of the energy–momentum tensor; thus, we still choose 
the definition of u� such that it is the eigenvector of the sym-
metric part of the energy–momentum tensor, Θ��

s
 (we still 

call it the Landau–Lifshitz frame) 3:

(31)�,P, T , u� ∼ O(1),

(32)S�� ∼ O(�).

(33)Tds +
1

2
���dS

�� = d�,

(34)Ts +
1

2
���S

�� = � + P.

3  Since S�� is counted as O(�) quantities, the term S��u� is unchanged 
at O(�) under a re-definition of u� → u

� + �u� with �u� ∼ O(�) . 
Therefore, Eq.(35) is automatically satisfied at O(�) up on using the 
zeroth-order EOM for u� [68]. But when there appear other conserved 
charges, such as a global U(1) charge, Eq.(35) is a proposal to fix the 
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Because the EOM for spin density involves only the antisym-
metric part of the energy–momentum tensor Θ��

a
 , the sym-

metric part Θ��
s

 , still takes the same tensor decomposition 
up to the first order in gradients, as in Eq.(21):

To determine the form of Θ��
a

 , we used the second law of 
local thermodynamics. The covariant entropy current is (an 
analog of Eq.(25))

with ��� = ���∕T . The production rate of entropy then reads

The semi-positiveness of the first term on the right-hand 
side is guaranteed when both the bulk and shear viscosities 
are semi-positive. The requirement of the semi-positiveness 
of the second term gives the constitutive relation for Θ��

a
 at 

O(�) order [68]

The quantity

is the thermal vorticity tensor. The quantities � and �s must 
be semi-positive to guarantee the semi-positivity of the 
entropy production. These are called boost heat conductiv-
ity and rotational viscosity, respectively [68]. Using these 
constitutive relations, we obtain the spin hydrodynamic 
equations up to O(�2) order:

(35)Θ��
s
u� = �u�.

(36)Θ��
s

= �u�u� − (P − ��)Δ�� + 2���� + O(�2).

(37)s� = P�� + Θ���� −
1

2
���Σ

��� ,

(38)T��s
� = Θ

��

s(1)
�(�u�) + Θ��

a

(

��� + T�[���]
)

+ O(�3).

(39)Θ��
a

=q�u� − q�u� + ��� ,

(40)q� =�
[

�∇�T + Du� − 2���u�
]

,

(41)��� =�sΔ
��Δ��

(

��� − T���

)

.

(42)��� = (1∕2)
(

���� − ����
)

(43)
(� + P − ��)Du� − ∇�(P − ��) + 2�Δ�

�
���

��

+ q ⋅ �u� − Δ�
�
Dq

� − q
�� + Δ�

�
���

�� = 0 ,

(44)
D� + (� + P − ��)� − 2�����

��

+ � ⋅ q + q�Du
� + ������ = 0,

(45)DS�� + S��� + 2Θ��
a

= 0.

In this section, we present a detailed derivation of the consti-
tutive relations for relativistic spin hydrodynamics up to first 
order. For related discussions that follow a similar approach, 
see Refs. [62, 69–78]. Other methodologies for deriving and 
analyzing the constitutive relations of spin hydrodynamics 
have also been discussed in the literature, including utiliz-
ing the hydrostatic partition function with constraints from 
the entropy current and Onsager relations [79, 80], using 
local equilibrium and non-equilibrium statistical operators 
[73, 77, 81–83], and employing kinetic theories [76, 84–95]. 
Relativistic spin hydrodynamics have become a vibrant area 
of research, attracting intense discussion in recent years. In 
the following section, we will explore some of these devel-
opments; further insights can be found in Refs. [96–110].

4 � Discussions

We developed spin hydrodynamics based on local thermo-
dynamic laws. Spin hydrodynamics exhibit several novel 
features that differ significantly from those found in conven-
tional relativistic hydrodynamics for other types of conser-
vation laws (e.g., the energy–momentum conservation and 
baryon number conservation). In this section, we explore 
and discuss certain intriguing characteristics.

4.1 � Pseudo‑gauge ambiguity

The definition of conserved current is not unique. One exam-
ple is the magnetization current and dipole charge density. 
Let J� = (�, J) represent the conserved conductive elec-
tric current. For a polarizable and magnetizable material, 
the total charge density and electric current are given by 
𝜌̃ = 𝜌 + � ⋅ P and J̃ = J + � ×M , respectively, where P is 
the electric dipole density, and M is the magnetization den-
sity. In the covariant form, we have:

Obviously, the total current J̃𝜇 is conserved if the conduction 
current J� is conserved, and the total electric charge remains 
unchanged provided the surface dipole density vanishes. The 
transformation of a conserved current that preserves both 
the original conservation law and total conserved charge is 
called a pseudo-gauge transformation. The example above 
demonstrates that the total current and conduction current 
differ by a pseudo-gauge transformation (with the magneti-
zation M�� serving as the pseudo-gauge field). This example 
also highlights that a pseudo-gauge transformation is not 
a true gauge transformation because it alters the physical 
content of the transformed current. Further insight into the 
pseudo-gauge transformation can be obtained by examining 
Maxwell’s equations:

(46)J̃𝜇 = J𝜇 + 𝜕𝜈M
𝜇𝜈 with M

𝜇𝜈 = −M𝜈𝜇.

local rest frame of the fluid.
Footnote 3 (continued)
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One could subtract −��M
�� from both sides and find

where the new field-strength tensor is defined as 
H�� ≡ F�� +M

�� . This demonstrates that without impos-
ing additional constraints, the two sets of fields, (F𝜇𝜈 , J̃𝜇) 
and (H�� , J�) , describe the same physical laws, and one can 
freely choose which set to use. (If further constraints are 
imposed, such as the Bianchi equation �[�F��] = 0 , which is 
not preserved under a general pseudo-gauge transformation, 
then only certain pseudo-gauges that respect the Bianchi 
equation are permitted.)

Similarly, let us consider angular momentum conser-
vation (note the analogy with Eq.(48), where Σ��� and 
Θ�� − Θ�� are analogous to H�� and J� in Eq.(48)):

which is preserved under the transformation

with Φ��� = −Φ��� denotes an arbitrary local field. How-
ever, this transformation violates the conservation law of 
the energy–momentum tensor. It can be modified as follows:

which preserves Eq.(49) and Eq.(1). Given a spacelike 
hypersurface Ξ , the total energy–momentum and total angu-
lar momentum across Ξ are

One can check that P� and M�� are invariant under pseudo-
gauge transformation (52) and (53) if the pseudo-gauge field 
Φ��� vanishes at the boundary of Ξ 4.

(47)𝜕𝜇F
𝜇𝜈 = J̃𝜈 .

(48)��H
�� = J� ,

(49)��Σ
��� = Θ�� − Θ��,

(50)Σ𝜇𝜌𝜎
→Σ̃𝜇𝜌𝜎 ≡ Σ𝜇𝜌𝜎 − Φ𝜇𝜌𝜎 ,

(51)Θ𝜇𝜈
→Θ̃𝜇𝜈 ≡ Θ𝜇𝜈 +

1

2
𝜕𝜆Φ

𝜆𝜇𝜈 ,

(52)Σ𝜇𝜌𝜎
→Σ̃𝜇𝜌𝜎 ≡ Σ𝜇𝜌𝜎 − Φ𝜇𝜌𝜎 ,

(53)Θ𝜇𝜈
→Θ̃𝜇𝜈 ≡ Θ𝜇𝜈 +

1

2
𝜕𝜆
(

Φ𝜆𝜇𝜈 − Φ𝜇𝜆𝜈 − Φ𝜈𝜆𝜇
)

,

(54)P� =∫ dΞ�Θ
�� ,

(55)
M

�� =∫ dΞ�M
���

= ∫ dΞ�(x
�Θ�� − x

�Θ�� + Σ���).

One consequence of the pseudo-gauge transformation is 
the freedom to choose the symmetry properties of the spin 
tensor. To illustrate this, we consider an example in which 
we aim to transform the general spin tensor Σ��� = −Σ��� 
into a completely antisymmetric form. We can choose 
Φ��� = Σ(��)� −

1

2
Σ��� . After applying the pseudo-gauge 

transformation, we obtain

Note that the obtained Σ̃𝜇𝜌𝜎 is totally antisymmetric; there-
fore, it can be parameterized as

where S̃𝜇 denotes the corresponding spin (pseudo)vector. 
Thus, the spin density tensor is thus S̃𝜇𝜈 = −𝜖𝜇𝜈𝜌𝜎u𝜌S̃𝜎 . The 
main difference between this spin density tensor and that 
used in Sect. 3 is that S̃𝜇𝜈 contains three degrees of freedom 
corresponding to the three spatial spin vectors, whereas S�� 
has six degrees of freedom, with three for spatial spin and 
three for boost. Thus, in some cases, it is more convenient to 
use Σ̃𝜇𝜌𝜎 to construct the spin hydrodynamics. By following 
a procedure similar to that adopted in Sect. 3, we can derive 
constitutive relations in this context. In doing so, we decom-
pose S̃𝜇 into S̃𝜇 = 𝜎𝜇 + n5u

𝜇 , where �� represents the spatial 
spin with the condition � ⋅ u = 0 , and n5 is a pseudoscalar 
field (hence subscript 5). We also decompose Θ̃𝜇𝜈 into:

where, as in Sect. 3, we assumed the Landau–Lifshitz frame

such that Θ̃𝜇𝜈

s(1)
 is purely transverse to u� . It is important to 

note that although we use the same symbols � , P, and u� as 
in Sect.  3, their actual values may differ because the 
energy–momentum tensors and spin tensors in these two 
cases are different (but connected by the pseudo-gauge trans-
formations (56) and (57)). We adopt a power counting 
scheme similar to the one we chose in Sect. 3,

Using the same form for the entropy current and the first law 
for local thermodynamics presented in Sect. 3, one can then 
find the divergence of the entropy current to be

(56)Σ𝜇𝜌𝜎
→Σ̃𝜇𝜌𝜎 =

1

2
(Σ𝜇𝜌𝜎 − Σ𝜌𝜇𝜎 + Σ𝜎𝜇𝜌),

(57)Θ𝜇𝜈
→Θ̃𝜇𝜈 = Θ𝜇𝜈 +

1

4
𝜕𝜆
(

3Σ𝜈𝜇𝜆 + Σ𝜇𝜈𝜆 − Σ𝜆𝜈𝜇
)

.

(58)Σ̃𝜇𝜌𝜎 = −𝜖𝜇𝜌𝜎𝜈 S̃𝜈 ,

(59)Θ̃𝜇𝜈 = 𝜀u𝜇u𝜈 − PΔ𝜇𝜈 + Θ̃
𝜇𝜈

s(1)
+ q̃𝜇u𝜈 − q̃𝜈u𝜇 + 𝜙̃𝜇𝜈 ,

(60)Θ̃𝜇𝜈
s
u𝜈 = 𝜀u𝜇,

(61)�,P, T , u� ∼ O(1),

(62)S̃𝜇, q̃𝜇, 𝜙̃𝜇𝜈 ∼ O(𝜕).

4  This can be checked by noting that for A��� = −A��� we have 
∫ dΞ���A

��� = ∫ dΞ��
⟂

�
A
��� + ∫ dΞn�n�n ⋅ �A

��� = ∫ dΞ��
⟂

�
A
��� with n� the 

norm of Ξ and �⟂
�
= �� − n�n ⋅ � . Then, one can use the Gauss theorem 

to transform it to an integral over the boundary of Ξ.
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We note that in deriving this result, we have utilized the fact 
that contracting the equation of motion (49) with u� reveals 
that q̃𝜇 is not an independent current, but is determined by 
S̃𝜇 through the following relation:

This is because when the spin tensor is completely antisym-
metric, the components responsible for the boost are gauged 
away, meaning that the corresponding torque for the boost 
in the antisymmetric part of the energy–momentum tensor 
cannot be an independent current either. Owing to this rela-
tionship, we can show that n5 = S̃ ⋅ u is actually an O(�3) 
quantity (and thus does not appear on the right-hand side of 
Eq.(63)). In fact, through direct calculation, one can find that 
the higher order terms that are neglected in Eq.(63) contains 
only one term: ∝ n5,

which infers that n
5
∝ 𝜖𝜇𝜈𝜌𝜎u𝜎

[

𝜕𝜇(𝛽𝜇̃𝜈𝜌) + ∇𝜇u𝜌(𝜕𝜈𝛽 + D𝛽𝜈 )
]

∼ O(𝜕3) and 
thus can be neglected [62]. Therefore, from Eq.(63), we 
derive the constitutive relations for spin hydrodynamics 
with a completely antisymmetric spin tensor as follows [62]:

Although these relations take the same form as those 
obtained in Sect. 3, it is important to note that they apply 
specifically to the pseudo-gauge of a completely antisym-
metric spin tensor. These relations are particularly conveni-
ent for describing the evolution of spatial spin degrees of 
freedom.

Thus, choosing different forms for the spin tensor (loosely 
referred to as different pseudo-gauges) leads to different 
forms for the constitutive relations. In an extreme case, one 
might even select Φ��� = Σ��� , which completely eliminates 
the spin tensor and renders the energy–momentum tensor 
totally symmetric (this choice is commonly referred to as 
the Belinfante gauge [111–113]). While this may seem to 
eliminate all information about spin in hydrodynamics, the 
energy density, viscous tensors, and heat current remain 
influenced by spin, meaning that the dynamics of spin are 
still embedded within these quantities. For discussions on 
the transformation from canonical to Belinfante gauges, see 
Refs. [69, 71, 75, 99, 114, 115]. In addition, other pseudo-
gauges have been employed and discussed in the context of 
spin hydrodynamics [85, 86, 88, 116–119].

(63)T𝜕𝜇s
𝜇 = Θ̃

𝜇𝜈

s(1)
𝜕(𝜇u𝜈) + Θ̃𝜇𝜈

a

(

𝜇̃𝜇𝜈 + T𝜕[𝜇𝛽𝜈]
)

+ O(𝜕3).

(64)q̃𝜇 =
1

2
𝜖𝜇𝜈𝜌𝜎u𝜈∇𝜌S̃𝜎 .

(65)
1

2
n5𝜖

𝜇𝜈𝜌𝜎u𝜎
[

𝜕𝜇(𝛽𝜇̃𝜈𝜌) + ∇𝜇u𝜌(𝜕𝜈𝛽 + D𝛽𝜈)
]

,

(66)Θ̃
𝜇𝜈

s(1)
=𝜁𝜃Δ𝜇𝜈 + 2𝜂𝜎𝜇𝜈 ,

(67)Θ̃
𝜇𝜈

a(1)
=𝜙̃

𝜇𝜈

(1)
= 𝜂sΔ

𝜇𝜌Δ𝜈𝜎
(

𝜇𝜌𝜎 − T𝜛𝜌𝜎

)

.

4.2 � Spin hydrodynamics for strong vorticity

The power counting scheme employed in the previous dis-
cussions is motivated by the observation that at global equi-
librium, the spin potential ��� is determined by the thermal 
vorticity ��� = (���� − ����)∕2 , which is naturally assumed 
to be an O(�) quantity. However, this assumption may not 
hold true because the global equilibrium allows for arbitrar-
ily large rotations (vorticity). When the vorticity is large, the 
assignment ��� ∼ O(�) becomes inadequate; instead, it is 
more appropriate to consider that ��� ∼ O(1) . We explore 
this situation in this subsection, following closely the discus-
sions in Ref. [72]. Before going into the details, it is useful to 
compare spin hydrodynamics with magnetohydrodynamics 
(MHD), in which the magnetic field is treated as an O(1) 
quantity (See Ref. [120] for a review of relativistic MHD).

The MHD describes the coupled evolution of fluid 
energy–momentum (or temperature and velocity) and the 
electromagnetic field in the low-energy and long-wave-
length regimes. The fundamental equations consist of the 
conservation laws for the energy–momentum tensor and 
Maxwell’s equations. Owing to the screening effect, the 
electric fields within the fluid are gapped and parametri-
cally small compared to the magnetic field. This renders 
the electric field inactive in the low-energy, long-wave-
length regime. In contrast, there is no screening of the 
magnetic field, allowing it to exhibit its own dynamics 
even in this regime. Consequently, the magnetic field can 
be large and is treated as an O(1) quantity, despite the fact 
that B = � × A involves one spatial gradient. The presence 
of an O(1) magnetic field breaks the SO(3) symmetry in 
the constitutive relations for Θ�� , introducing anisotropy 
even in ideal hydrodynamics. Specifically, we can define a 
normalized vector b� = B�∕B , where B =

√

−B�B�  , satis-
fying b2 = −1 and b ⋅ u = 0 , as an additional building block 
for hydrodynamic constitutive relations. For example, for 
a parity-even and charge neutral fluid, the energy–momen-
tum tensor can be decomposed into

where Ξ�� = Δ�� + b�b� is a projector transverse to both u� 
and b� . The terms P

⟂
 and P∥ represent the pressures in direc-

tions transverse and parallel to the magnetic field, respec-
tively. Note that when we allow an environmental parity 
violation (e.g., when there is a density imbalance between 
the right- and left-hand particles in the fluid) and a finite 
charge density, the term u(�b�) can appear in the zeroth order. 
The term Θ��

(1)
 (which is assumed to be symmetric because 

the spin degree of freedom is typically disregarded in MHD) 
denotes a collection of terms that are at least of order O(�) 
in the gradient expansion and consistent with the Onsager 
relations. For a parity-even fluid, all such terms are 

(68)Θ�� =�u�u� − P
⟂
Ξ�� + P∥b

�b� + Θ
��

(1)
,
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expressed as Θ��

(1)
=
∑7

i=1
�i�

����

i
∇�u� , where �i is the cor-

responding transport coefficient [121–123]: 

 where b�� = �����u�b� is a cross projector that appears only 
when charge-conjugation symmetry is violated (e.g., when 
a net charge density is presented).

Similar to the discussions above regarding MHD, we 
can consider a scenario for spin hydrodynamics where the 
vorticity is treated as zeroth-order in gradients, while the 
gradients of other thermodynamic quantities are treated 
as first-order. In line with the MHD, this framework has 
been referred to as gyrohydrodynamics in Ref. [72]. To 
simplify the notation, we reuse b� to denote the unit vector 
along the vorticity,

with �� = −�����u�����∕2 = ��� the thermal vorticity vec-
tor. We chose the pseudo-gauge such that the spin tensor is 
totally antisymmetric. Using u�, b� as well as g�� , ����� as 
building blocks, we can decompose Θ�� and Σ��� into the 
following irreducible forms:

where P
⟂,∥,× represent pressures (which will be counted as 

O(1) quantities in gradient expansion) in different directions, 
whose physical meaning will become clear shortly. The 
quantity S∥ = b ⋅ S denotes the spin component in the direc-
tion of the vorticity, while S�

⟂
= Ξ��S� denotes the spin com-

ponent transverse to the vorticity. As before, we chose the 
Landau–Lifshitz frame, with q� , Θ��

s(1)
 , ��� , and S�

⟂
 transverse 

to u� . Note again that, with this fully antisymmetric choice 

(69a)�
����

1
=b�b�b�b� ,

(69b)�
����

2
=Ξ��Ξ�� ,

(69c)�
����

3
= − Ξ��b�b� − Ξ��b�b� ,

(69d)�
����

4
= − 2

[

b(�Ξ�)�b� + b(�Ξ�)�b�
]

,

(69e)�
����

5
=2Ξ�(�Ξ�)� − Ξ��Ξ�� ,

(69f)�
����

6
= − b(�b�)�b� − b(�b�)�b�,

(69g)�
����

7
=Ξ�(�b�)� + Ξ�(�b�)�,

(70)b� = ��∕
√

−���
� = ��∕

√

−���
�,

(71)
Θ�� = �u�u� − P

⟂
Ξ�� + P∥b

�b� + P×b
��

+ q�u� − u�q� + Θ
��

s(1)
+ ���

,

(72)Σ��� = − �����S� = −�����(n5u� − S∥b� + S
⟂�),

of spin tensor, the q� vector is no longer independent, but is 
determined by S� through Eq.(64).

The power counting scheme is such that S∥ is counted as 
order one, whereas ��� = −��� , S�

⟂
 , n5 , and q� (see Eq.(64)) 

are counted as at least O(�) . Additionally, we will count S� 
as O(ℏ) (since spin is totally quantum in nature) in compari-
son with other thermodynamic quantities, which can appear 
even at the classical level and are therefore assigned O(ℏ0) . 
This allows for a double expansion in both � and ℏ . For the 
entropy current, we can write s� = su� + s

�

(1)
 and use 

Eq.(33). It is straightforward to derive the divergence of the 
entropy current, and after some calculations, it was found 
that up to O(ℏ�2, �3) [72]:

The first line provides the zero-order contribution to the 
entropy production, which is expected to vanish so that they 
represent non-dissipative contributions. This gives

The first relation is the Gibbs–Duhem relation, indicating 
that P

⟂
 can be interpreted as the thermodynamic pressure. 

The second relation shows that the pressure along the vor-
ticity direction differs from the thermodynamic pressure by 
an amount due to spin polarization �∥S∥ . This term is similar 
to the MB term in the magnetohydrodynamic constitutive 
relation. The third relation shows that there is no spin torque 
at the leading order.

At O(�) order, the requirement of a semi-positive entropy 
production gives that

where ����� and ����� are the usual and rotational viscous 
tensors representing the response of the symmetric and 
antisymmetric parts of the energy–momentum tensor to fluid 
shear and expansion, and the difference between vorticity 
and spin potential, respectively, and ����� and �′���� are two 
cross viscous tensors. Note that the cross viscous tensors are 
not independent of each other but inter-related according to 
Onsager’s reciprocal principle, ������(b) = �����(−b) . By 
decomposing these tensors into irreducible structures, one 
obtains a number of new transport coefficients (viscosities) 

(73)

��s
� =

[

s − �
(

� + P
⟂

)]

� − (P∥ − P
⟂
− �∥S∥)b

�
b
�����

+ P×b
��(���� + ����) + Θ

��

s(1)
�(���) + ���(�[���]

+ ����) + ��

(

s
�

(1)
− ���

n
5

)

+ O(ℏ�2, �3).

(74)� + P
⟂
= Ts, P∥ = P

⟂
+ �∥S∥, P× = 0.

(75)Θ
��

s(1)
=T������(���) + T�����(�[���] + ����),

(76)��� =T�����(�[���] + ����) + T�������(���),

(77)s
�

(1)
=���n5,
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that characterize the response of the fluid to gradients of 
fluid velocity and spin potential [72]:

where the �’s, �’s, �’s, and � ’s are transport coefficients. 
Especially, those with subscript “H" are Hall-type transport 
coefficients which do not contribute to the entropy produc-
tion and thus their sign are not constrained by the second law 
of local thermodynamics. One may wonder why the term 
∝ b��b�� (such term would contribute to an O(�) analog of 
P× term in Eq.(71) ) does not appear in ����� . This is because 
it is not independent of the other terms in ����� [121]. Note 
that the expression for ����� is different from that in Ref. [72] 
but equivalently yields the same constitutive relations once 
substituted into Eq.(75).

4.3 � A spin Cooper–Frye formula

To apply spin hydrodynamics to specific physical systems, 
we need to know the appropriate observables for the detec-
tion of spin degrees of freedom in the fluid. In principle, 
the presence of the spin degree of freedom in the fluid 
should modify the usual hydrodynamic quantities such as 
the energy density and fluid velocity, but when the spin 
density is not large (nevertheless it is always suppressed by 
ℏ comparing to the traditional hydrodynamic quantities), 
such modification is small. In heavy ion collisions, the nat-
ural observable is the spin polarization of hadrons, includ-
ing spin-1/2 hyperons and spin-1 vector mesons. Hyperons 
are of special interest because they primarily decay via 
weak interactions such that the momentum of one of the 
daughter particles tends to align with the spin direction of 
the hyperon. To obtain the spin polarization observables of 
a hadron from spin hydrodynamics, machinery is required 
to convert the outcomes of spin hydrodynamics, such as 
fluid velocity, temperature, and spin potential, to measur-
able hadronic observables.

(78)

����� = �
⟂
Ξ��Ξ�� + �∥b

�
b
�
b
�
b
� + �×

(

b
�
b
�Ξ�� + Ξ��

b
�
b
�
)

+ �
⟂

(

Ξ��Ξ�� + Ξ��Ξ�� − Ξ��Ξ��
)

+ 2�∥
(

b
�Ξ�(�

b
�) + b

�Ξ�(�
b
�)
)

+ 2�
H

⟂

(

Ξ�(�
b
�)� + Ξ�(�

b
�)�

)

+ 2�
H∥

(

b
�
b
�(�
b
�) + b

�
b
�(�

b
�)
)

,

(79)

����� = �
⟂

(

Ξ��Ξ�� − Ξ��Ξ��
)

+ 2�∥
(

b
�Ξ�[�

b
�] − b

�Ξ�[�
b
�]
)

+ 2�
H

(

b
�
b
�[�
b
�] − b

�
b
�[�

b
�]
)

,

(80)

����� = 2�∥
(

b
�Ξ�[�

b
�] + b

�Ξ�[�
b
�]
)

+ �
H

⟂

Ξ��
b
�� + �

H∥b
�
b
�
b
��

+ 2�
H

(

b
�
b
�[�
b
�] + b

�
b
�[�

b
�]
)

,

In the application of traditional hydrodynamics to 
heavy-ion collisions, the hadron momentum spectra are 
typically obtained using the Cooper–Frye formula:

where the integral is over the freeze-out hypersurface (where 
particlization occurs) Ξ , and fi(x, p) is the distribution func-
tion of species i of the hadrons in the fluid. Any possible 
degeneracy of the hadrons should be accounted for in fi . 
For example, when dissipative effects are neglected, the dis-
tribution function fi is typically taken as the Fermi-Dirac 
or Bose–Einstein functions fF,B(p ⋅ � − �i) with �i is the 
chemical potential. The above Cooper–Frye formula has 
been widely used in hydrodynamic simulations in heavy-ion 
collisions and has proven to be very successful. Therefore, 
to extend traditional hydrodynamics to spin hydrodynamics, 
we also need to generalize the above Cooper–Frye formula 
to a spin Cooper–Frye formula.

Let us consider a system in which thermal equilibrium 
is reached locally but not necessarily globally. The den-
sity operator 𝜌̂ for the description of such an ensemble is 
obtained by maximizing the entropy functional under the 
constraints of the given energy-momentum and angular 
momentum (or spin) densities:

where Θ��(x) and Σ���(x) are the actual local energy–momen-
tum tensor and spin tensor, respectively, and ��(x) and ���(x) 
are the corresponding Lagrange multipliers. The Lagrange 
multiplier � is introduced to normalize 𝜌̂ and is related to the 
partition function Z as exp(1 − �) = Z . The resultant density 
operator is the local-equilibrium density operator [124–127]:

where ZLE denote the local-equilibrium partition function. 
Now, we see that 𝜌̂LE is determined by the local thermody-
namic quantities �� and ��� . If we calculate the spin density 
Σ���(x) using this density operator, we obtain a relationship 
between Σ���(x) and the local thermodynamic quantities 
(and possibly their derivatives). However, this is not particu-
larly useful in the context of heavy-ion collisions because 
what is measured is the spin density in momentum space, 
rather than the coordinate space. To express such a relation 
for the spin density in momentum space or phase space, the 
most natural approach is to use the Wigner function.

(81)Ep

dNi

dp3
= ∫Ξ

dΞ�(x)p
�fi(x, p),

(82)

S[𝜌̂] = − Tr(𝜌̂ ln 𝜌̂) + 𝜆(Tr𝜌̂ − 1) − ∫Ξ

dΞ𝜇

[

Tr(𝜌̂Θ̂𝜇𝜈) − Θ𝜇𝜈
]

𝛽𝜈

+
1

2 ∫Ξ

dΞ𝜇

[

Tr(𝜌̂Σ̂𝜇𝜈𝜌) − Σ𝜇𝜈𝜌
]

𝜇𝜈𝜌,

(83)𝜌̂LE =
1

ZLE

exp

{

−∫Ξ

dΞ𝜇(x)
[

Θ̂𝜇𝜈 (x)𝛽𝜈 (x) −
1

2
Σ̂𝜇𝜌𝜎 (x)𝜇𝜌𝜎 (x)

]

}

,
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To illustrate how this can be achieved, we consider a 
Dirac fermion system as an example. The Wigner operator 
is defined as follows:

where [ ̄̂𝜓 ⊗ 𝜓̂]ab ≡ ̄̂𝜓b𝜓̂a with a, b spinor indices. We choose 
the canonical pseudo-gauge, in which the energy–momen-
tum tensor operator and spin tensor operator are given by

where L̂ is the Lagrangian (in the following, we consider free 
fermions, so that L = 𝜓̄

(

i𝛾𝜇𝜕𝜇 − m
)

𝜓 is in quadratic form, 
and the second term in Θ̂𝜇𝜈 vanishes when using the equa-
tion of motion of the field operator) and ��� = i[��, ��]∕2 . 
Note that the second equation indicates that the spin vector 
Ŝ𝜎 = (1∕2) ̄̂𝜓𝛾𝜎𝛾5𝜓̂ is half the axial current. Both Θ̂𝜇𝜈(x) and 
Σ̂𝜇𝜈𝜌(x) are local Heisenberg operators. We can extend them 
into operators in the phase space by using the Wigner trans-
formation, for example,

where TrD is the trace over the Dirac space. It is easy to 
see that ∫ d4p∕(2𝜋)4Σ̂𝜇𝜈𝜌(x, p) = Σ̂𝜇𝜈𝜌(x) . The integration 
of Σ̂𝜇𝜈𝜌(x, p) over a certain spacelike hypersurface gives us 
the spin tensor in momentum space (whose exact meaning 
will be clarified later), whose ensemble average under 𝜌̂LE 
is exactly the quantity that we are looking for. Therefore, we 
must calculate the Wigner function under local equilibrium:

where Tr denotes the trace over a complete set of micro-
states in the system. To proceed, the local-equilibrium den-
sity operator can be rewritten as 𝜌̂LE = exp(Â + B̂)∕ZLE with 
the abbreviations

where P̂𝜇 = ∫ dΞ𝜈(y)Θ̂
𝜈𝜇(y) , Δ��(y) = ��(y) − ��(x) . The 

purpose of rewriting 𝜌̂LE in this form is that, the correlation 
length between the spin tensor and the energy–momentum 
tensor is typically small. Within this correlation length, we 

(84)Ŵ(x, p) =∫ d4se−ip⋅s ̄̂𝜓
(

x +
s

2

)

⊗ 𝜓̂

(

x −
s

2

)

,

(85)Θ̂𝜇𝜈 = ̄̂𝜓 i𝛾𝜇𝜕𝜈𝜓̂ − 𝜂𝜇𝜈L̂,

(86)Σ̂𝜇𝜈𝜌 =
1

4
̄̂𝜓{𝛾𝜇, 𝜎𝜌𝜎}𝜓̂ = −

1

2
𝜖𝜇𝜈𝜌𝜎 ̄̂𝜓𝛾𝜎𝛾5𝜓̂ .

(87)

Σ̂𝜇𝜈𝜌(x, p) = −
1

2
𝜖𝜇𝜈𝜌𝜎 ∫ d4se−ip⋅s ̄̂𝜓

(

x +
s

2

)

𝛾𝜎𝛾5𝜓̂

(

x −
s

2

)

= −
1

2
𝜖𝜇𝜈𝜌𝜎TrD

[

𝛾𝜎𝛾5Ŵ(x, p)
]

,

(88)W(x, p) = ⟨Ŵ(x, p)⟩ = Tr
�

𝜌̂LEŴ(x, p)
�

,

(89)Â = − P̂𝜇𝛽𝜇(x),

(90)B̂ = − ∫ dΞ𝜇(y)
[

Θ̂𝜇𝜈(y)Δ𝛽𝜈(y) −
1

2
Σ̂𝜇𝜌𝜎(y)𝜇𝜌𝜎(y)

]

,

can assume that local thermodynamic quantities, such as �� , 
vary only slightly. Given that ��� is also small at the hyper-
surface Ξ (which is a reasonable assumption for heavy-ion 
collisions, although it may not hold for a strongly polarized 
medium), we assign Δ�� ∼ ��� ∼ O(�) , therefore, Â ∼ O(1) , 
B̂ ∼ O(𝜕) . Using this power-counting scheme, we can expand 
the right-hand side of Eq.(88) order by order in � by applying 
the identity eÂ+B̂ = eÂ + eÂ ∫ 1

0
d𝜆e−𝜆ÂB̂e𝜆Â + ⋅ ⋅ ⋅ , and obtain

where

with

and Z0 = TreÂ . Here, ⟨⋯⟩0,c means the connected part of the 
correlation. The calculation then will depend on the shape 
of the hypersurface Ξ . For illustration, we consider Ξ to be 
the 3-space at some time t so that its normal direction is 
t̂𝜇 = (1, 0) . The calculation is then straightforward using the 
free field operator

where Ek =
√

k2 + m2  and â𝜎(k), b̂𝜎(k) are  anni-
hilation operators for par ticles and antipar ti-
cles sat isfying the ant i-commutation relat ion 
{â𝜎(k), â

†

𝜎� (q)} = {b̂𝜎(k), b̂
†

𝜎� (q)} = 2Ek𝛿𝜎𝜎�𝛿3(k − q)  a n d 
the relation 

⟨â
†
𝜎
(k)â𝜎� (q)⟩0 = ⟨b̂

†
𝜎
(k)b̂𝜎� (q)⟩0 = 2E

k
𝛿𝜎𝜎� 𝛿

3(k − q)n
F
(k ⋅ 𝛽) . 

In the following, we consider only the particle branch; 
the antiparticle branch is completely similar. The 
zeroth-order Wigner function can be easily obtained: 
W0(x, p) = 2�(p∕ + m)�(p0)�(p

2 − m2)nF(p ⋅ �) , which is spin 
independent: TrD

[

���5W0(x, p)
]

= 0.
The first-order Wigner function reads

where nF(p) = nF[�(x) ⋅ p] , I�
(Θ)

= −��p�
[

���� (x)
]

Δ�
�

[

i�
�
q �

3(q − k)
] , and 

I
�

(Σ)
=

1

4
������5������

3(q − k) with Δ𝜇𝜈 = 𝜂𝜇𝜈 − t̂𝜇 t̂𝜈 . To 
obtain this result, we have used

(91)W(x, p) =W0(x, p) +W1(x, p) +⋯ ,

(92)W0(x, p) =⟨Ŵ(x, p)⟩0 ≡ 1

Z0
Tr
�

eÂŴ(x, p)
�

,

(93)W1(x, p) ≡⟨Ŵ(x, p)⟩(Θ) + ⟨Ŵ(x, p)⟩(Σ) ,

(94)
⟨Ŵ(x, p)⟩(Θ) ≡ −�

1

0

d𝜆� dΞ𝜌(y)Δ𝛽𝜈 (y)⟨Θ̂
𝜌𝜈 (y − i𝜆𝛽(x))Ŵ(x, p)⟩

0,c,

⟨Ŵ(x, p)⟩(Σ) ≡ 1

2 �
1

0

d𝜆� dΞ𝜈 (y)𝜇𝜌𝜎 (y)⟨Σ̂
𝜈𝜌𝜎 (y − i𝜆𝛽(x))Ŵ(x, p)⟩

0,c,

(95)𝜓̂(x) =

2
∑

𝜎=1

1

(2𝜋)3∕2 ∫
d
3k

2E
k

[

u𝜎 (k)e
−ik⋅x

â𝜎 (k) + v𝜎 (k)e
ik⋅x

b̂
†
𝜎
(k)

]

,

(96)
⟨Ŵ(x, p)⟩(Θ∕Σ) = 2𝜋 ∫

1

0

d𝜆∫
d3k

2Ek
∫

d3q

2Eq

𝛿4
�

p −
q + k

2

�

(𝛾 ⋅ k + m)t̂𝜇I
𝜇

(Θ∕Σ)
(𝛾 ⋅ q + m) × e𝜆(k−q)⋅𝛽(x)nF(k)

�

1 − nF(q)
�

,
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which is valid when Ξ is a 3-space. In heavy-ion collisions, 
the true freeze-out hypersurface Ξ is of course not a 3-space 
and thus correction due to the non-flatness of Ξ would 
appear; see discussions in Refs. [128, 129].

Using the first-order Wigner function in Eq. (96), the 
local-equilibrium spin vector in the phase space is directly 
obtained by finishing the trace over the Dirac space [130, 
131]:

where Σt̂
𝜇𝜈

= 𝜖𝜇𝜈𝜌𝜎p
𝜌 t̂𝜎∕(2p ⋅ t̂) , ��� = �(���) is the ther-

mal shear tensor, and Δ��� = ��� −��� is the difference 
between the spin potential and the thermal vorticity tensor.

With this spin vector in phase space, the spin vector per 
particle in momentum space is obtained by average over 
hypersurface Ξ [130, 131]:

where p� on the right-hand side is on-shell. This is a Cooper-
Frye-type formula for the spin vector, which connects the 
momentum-space distribution of the mean spin vector of 
particles emitted from Ξ with the fluid properties charac-
terized by ���(x) and ��(x) on Ξ . Thus, once these fluid 
variables are obtained from spin hydrodynamics, this spin 
Cooper–Frye formula allows us to convert them into the 
mean spin vector in momentum space, which is a directly 
measurable quantity.

We provide several comments before concluding this 
subsection. First, at local equilibrium, the thermal shear 
tensor can induce spin polarization, which has important 
implications for the spin polarization phenomena in heavy-
ion collisions [128, 132–134]. Second, when the system 
is in global equilibrium, the spin potential is determined 
by the thermal vorticity and the thermal shear tensor ��� 
vanishes. In this case, the spin Cooper–Frye formula is 
reduced to that obtained in Refs. [20–22]. Third, we did 
not include the effects of finite baryon chemical potential. 
Its inclusion is straightforward, with the modification that 
the distribution function nF(p ⋅ �) → nF(p ⋅ � − �) , where 
� = �∕T  . Additionally, a new term 4 ∫ dΞ ⋅ pΣt̂

𝜇𝜈
𝜕𝜈𝛼 should 

be added to the numerator of Eq.(99), which is referred to 
as the spin Hall effect [135]. Fourth, formula (99) depends 
on the choice of pseudo-gauge [130, 131]. In particular, 
it is possible to completely eliminate the contributions of 

(97)
∫ dΞ𝜇(y)(y − x)𝛼e−i(p−q)⋅(y−x) = (2𝜋)3 t̂𝜇Δ

𝛼
𝛽

i𝜕

𝜕p𝛽
𝛿3(p − q),

(98)
S𝜇(x, p) = − 4𝜋𝛿(p2 − m2)𝜃(p

0
)nF(p)[1 − nF(p)]

{

1

4
𝜖𝜇𝜈𝜌𝜎p

𝜈𝜇𝜌𝜎 + Σt̂
𝜇𝜈

[

(𝜉𝜈𝜆 + Δ𝜇𝜈𝜆)p𝜆
]

}

,

(99)
S𝜇(p) =

1

2

∫ dΞ(x) ⋅ pTrD[𝛾
𝜇𝛾5W(x, p)]

∫ dΞ ⋅ pTrD[W(x, p)]

= −
∫ dΞ ⋅ p

{

𝜖𝜇𝜈𝛼𝛽p
𝜈𝜇𝛼𝛽 + 4Σt̂

𝜇𝜈

[

p𝜆(𝜉
𝜈𝜆 + Δ𝜇𝜈𝜆)

]

}

nF(1 − nF)

8m ∫ dΞ ⋅ p nF
,

thermal shear by adopting appropriate pseudo-gauges. 
Therefore, when applying this formula to spin hydrody-
namics, it is important to carefully choose a pseudo-gauge 
to maintain consistency.

5 � Summary and outlooks

This article provides a pedagogical introduction to relativ-
istic spin hydrodynamics. First, we demonstrate how one 
can derive a set of hydrodynamic equations from conser-
vation equations based on the requirements of local ther-
modynamic laws, primarily the second law of thermody-
namics. We then extended this framework to include the 
conservation of angular momentum, which leads to spin 
hydrodynamics. In the framework of spin hydrodynam-
ics, the new (quasi-)hydrodynamic variable is spin den-
sity. Owing to spin-orbit coupling, the spin density is not 
a strict hydrodynamic variable but rather a quasi-hydro-
dynamic variable. It relaxes to a local equilibrium value 
determined by the local thermal vorticity through dissipa-
tive conversion of the spin and orbital angular momenta. 
We demonstrate how such dissipative processes are char-
acterized by two new transport coefficients: one for boost-
ing heat conductivity and the other for rotational viscosity.

We discuss several interesting aspects of spin hydro-
dynamics. First, we address the pseudo-gauge ambiguity 
in defining the spin tensor, which reflects the freedom to 
separate the total angular momentum into spin and orbital 
components. One consequence of this pseudo-gauge ambi-
guity is that we have the flexibility to choose spin tensors 
with different symmetries in their indices as the starting 
point for the derivation of spin hydrodynamics, leading to 
different constitutive relations. Second, we emphasize the 
importance of derivative power counting in the formula-
tion of spin hydrodynamics. In particular, for a strongly 
vortical (or strongly spin-polarized) fluid, it is natural to 
assign the vorticity and spin potential as being of simi-
lar strength to other local thermodynamic quantities, 
such as temperature, in terms of derivative powers. This 
is analogous to the magnetohydrodynamics. As a result, 
anisotropy emerges in the constitutive relations both at 
the zeroth order and the first order in derivatives. This 
framework is well-suited for describing strongly vortical 
or spin-polarized fluids. Third, for potential applications 
of spin hydrodynamics, such as in heavy-ion collisions, we 
require a method to convert the results of spin hydrody-
namics—specifically, the spin density (or spin potential), 
temperature, and fluid velocity—into momentum-space 
observables. To this end, we give a spin Cooper-Frye for-
mula for Dirac fermions, and a similar formula can also 
be derived for spin-one vector bosons.
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Spin hydrodynamics is an area of intensive study with 
many interesting aspects already explored and many more 
awaiting investigations. We provide a brief discussion of 
some of these topics.

(1) Spin magnetohydrodynamics. When the constitu-
ents of the fluid are charged, the fluid can interact with the 
electromagnetic fields and behave like a magnetized fluid. 
In this case, it is convenient to extend spin hydrodynam-
ics to spin magnetohydrodynamics [136–140]. As electric 
fields are easily screened, they are not typically described 
as hydrodynamic variables. Therefore, the new hydrody-
namic variable is the magnetic field (more precisely, the 
magnetic flux), B𝜇 = F̃𝜇𝜈u𝜈 , which is counted as an O(1) 
quantity in derivative power counting. The conservation 
law is simply a Bianchi identity.

Here, F̃𝜇𝜈 = (1∕2)𝜖𝜇𝜈𝜌𝜎F𝜌𝜎 is the dual Maxwell tensor. This 
equation should be combined with the conservation laws of 
energy–momentum and angular momentum to form com-
plete equations of motion for the fluid. Expanding F̃𝜇𝜈 in 
terms of hydrodynamic variables yields [120]:

where F̃𝜇𝜈

(1)
 and B� are transverse to u� . Local thermodynamic 

laws can be imposed, for example, the first law and a gener-
alized Gibbs–Duhem relation, as follows:

with H� the “magnetic potential" conjugate to the magnetic 
flux (physically, it can be interpreted as the in-medium 
magnetic field strength). The covariant form for the 
Gibbs–Duhem relation is

with �� = �H� . The second law of thermodynamics requires 
��s

� ≥ 0 , which imposes constraints on the possible forms 
of the constitutive relations order by order in the gradient 
expansion. Recently, such a framework for spin magnetohy-
drodynamics was discussed (see Refs. [139, 140] for further 
detail).

It would be interesting to extend these studies to include 
possible parity-violating effects, thereby obtaining spin mag-
netohydrodynamics in a chiral conducting medium. This 
provides a bridge between spin magnetohydrodynamics and 
chiral magnetohydrodynamics. Another issue that may affect 

(100)𝜕𝜇F̃
𝜇𝜈 = 0.

(101)F̃𝜇𝜈 = B𝜇u𝜈 − B𝜈u𝜇 + F̃
𝜇𝜈

(1)
,

(102)Tds +
1

2
���dS

�� + H�dB
� = d�,

(103)Ts +
1

2
���S

�� + H�B
� = � + P,

(104)s𝜇 =P𝛽𝜇 + Θ𝜇𝜈𝛽𝜈 −
1

2
Σ𝜇𝜌𝜎𝛼𝜌𝜎 + F̃𝜇𝜈𝛾𝜈 ,

the formulation of spin magnetohydrodynamics is pseudo-
gauge ambiguity. As we have seen, such an ambiguity is cru-
cial for the formulation of spin hydrodynamics, and it would 
be interesting to explore how it influences the formulation of 
spin magnetohydrodynamics. Finally, exploring possible col-
lective modes and instabilities in such a fluid is also important. 
This would be valuable for potential applications (e.g., pos-
sible dynamo mechanisms owing to spin degrees of freedom) 
in what we might call spin plasma, whether in heavy-ion col-
lisions or astrophysical systems.

(2) Calculation of the new transport coefficients. As we 
have seen, new transport coefficients appear in spin hydrody-
namics, most notably rotational viscosity �s . Strictly speak-
ing, �s , unlike the typical shear viscosity � , is not a transport 
coefficient in the traditional sense. It does not characterize the 
ability to transport spin within the fluid; rather, it represents 
how quickly the spin density relaxes to its equilibrium value, 
which is determined by thermal vorticity. This can be easily 
understood by rewriting Eq.(8) in the canonical pseudo-gauge 
and in component form (keeping linear terms in spin density 
and velocity): �tSi ≈ −�s(�

i −� i) where �i = �ijk�ik , which 
leads to �t�i = −Γs(�

i −� i) with Γs = �s∕�s the spin relaxa-
tion rate and �s the spin susceptibility. Nevertheless, the calcu-
lation of Γs and �s is important for understanding the evolution 
of spin polarization. Recently, Γs has been computed perturba-
tively for heavy quarks in hot QCD plasma [65, 67] and bary-
ons in hot hadronic plasma [66]. Kinetic theory-based calcula-
tions have also been reported [67]. The results show that, for 
heavy quarks, this parameter can be parametrically small, mak-
ing the spin degree of freedom a quasi-hydrodynamic mode. 
In future, the calculation of other new transport coefficients, 
such as those arising in gyrohydrodynamics [72], could also be 
crucial for understanding spin dynamics in different fluids. In 
addition, it is important to examine and understand the pseudo-
gauge dependence of these new transport coefficients.

(3) Simulation of spin hydrodynamics. It is important to 
develop a suitable numerical framework for performing simu-
lations to apply spin hydrodynamics to heavy-ion collisions. 
First-order relativistic hydrodynamic equations are known to 
suffer from numerical instabilities and emergence of acausal 
modes. The origin of this problem lies in the fact that first-
order constitutive relations are non-dynamical, meaning that 
the response of the fluid to thermodynamic forces is instanta-
neous. One solution to this problem is to make the constitutive 
relations more dynamic. For example, the constitutive relation 
for the shear channel can be modified as

where ��� is the traceless symmetric part of Θ��

(1)
 , 

(D�)�� ≡ (1∕2)[Δ��Δ�� + Δ��Δ�� − (2∕3)Δ��Δ��]D��� is 
the traceless part of the co-moving time derivative of ��� , 
and �� represents how quickly ��� relaxes into the 

(105)��(D�)
�� + ��� = 2���� ,
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hydrodynamic constitutive relation. (Note that this proce-
dure introduces a new dynamic mode that is not a hydrody-
namic mode and relaxes on a timescale given by �� .) The use 
of such a modification has been successful in the numerical 
simulation of relativistic hydrodynamics. For relativistic 
spin hydrodynamics, modifications similar to the constitu-
tive relations may be adopted to implement numerical simu-
lations. This has recently been discussed in Refs. [41, 74, 92, 
93, 95, 141, 142]. Essentially, the constitutive relation Eq. 
(41) is replaced by a dynamic relation

where �� is the relaxation time for the antisymmetric part of 
the energy–momentum tensor and (D�)�� ≡ Δ��Δ��D��� is 
the transverse part of the co-moving time derivative of ��� . 
With these modifications, a numerical simulation of rela-
tivistic spin hydrodynamics can be performed, which will 
provide valuable insights into spin polarization phenomena 
(see the recent progress in Refs. [143, 144]) such as those 
observed in heavy-ion collisions.
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