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Abstract

To investigate the structural configuration of °He and ®Be in a three-cluster system and to highlight dinucleon correlations,
we performed a two-cluster overlap amplitude (TCOA) calculation, which is an extension of the RWA formalism. The total
wave functions were obtained using the generator coordinate method with microscopic cluster wave functions. Based on
these wave functions, we calculated the overlap amplitudes to extract the relative motion and spatial correlations between
clusters. The computed energy spectra showed reasonable agreement with the experimental data, emphasizing the effective-
ness of the present framework for investigating dinucleon correlations in light nuclei. Our results revealed the presence of
both dinucleon-like and cigar-like configurations in the ground states of He and ®Be, indicating a coexistence of compact
and extended cluster structures. Furthermore, the ZT state of ®He revealed a pronounced dineutron structure, with strong
spatial correlations between the two valence neutrons. We also performed calculations for the higher-lying 27 state, which
showed a more spatially extended structure and provided potential references for future experimental investigations. These
findings demonstrated that the TCOA method served as a powerful tool to explore cluster dynamics and dinucleon features
in light, weakly bound nuclear systems.
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1 Introduction

Clustering is a fundamental phenomenon in the
nucleus [1-8]. Cluster models are widely used and have
been shown to be effective in describing the characteristics
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of light nuclei [9, 10]. With the cluster model, the study of
diproton and dineutron correlations is crucial for understand-
ing nucleon-nucleon interactions and the underlying nuclear
structure, providing information on pairing mechanisms and
the behavior of nucleons in short-range interactions, which
are essential for understanding phenomena such as nuclear
stability and reaction dynamics [11-14].

®He, the lightest Borromean halo nucleus, together with
its mirror nucleus ®Be, the lightest two-proton emitter, has
attracted extensive studies on the dinucleon correlations in
their decaying modes and structures [15-21]. Previous stud-
ies have described the structure of ®°He [22—24], a more pre-
cise description can be found in [25], which addresses both
six-body correlations and clustering in the °He ground state
using the no-core shell model with continuum (NCSMC),
where the “dineutron” configuration is shown to prevail over
the “cigar" structure. Recently, the ZT state of ®He was sug-
gested to exhibit a dineutron correlation based on simula-
tions of its decay mode [16]. Regarding its mirrored nucleus,
Be stands out as the lightest two-proton emitter featuring a
distinct structure of o and two protons [26, 27]. This charac-
teristic, in accordance with Golandsky’s framework, estab-
lishes a robust benchmark for conducting comprehensive
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investigations of two-proton decay and diproton correlations
within nuclear structure [28, 29].

Dineutron and diproton correlations have been intensively
discussed through 2n and 2p emissions from unbound nuclei
in connection with recent experiments [30-33]. In the case
of ®He, experiments have investigated the decay mode of
its 27 resonant state via the “He breakup reaction by '*C at
240 MeV/nucleon, revealing the coexistence of dineutron
decay and democratic decay, which suggests the possible
existence of a dineutron structure in the 2T state of °He [34].
For °Be, experiments using a high-resolution array to detect
its a+p+p three-body decay have provided precise three-
body correlation data that agree well with theoretical mod-
els, thereby validating the theoretical approach over a wide
range of energies [13, 28, 35-38].

The main objective of this study was to investigate the
correlations between diprotons and dineutrons in ®He and
®Be in several low-lying states of He and %Be at the struc-
tural level using a microscopic nuclear model. We employed
the generator coordinate method (GCM) with Brink wave
functions [39, 40] as a robust framework to model and ana-
lyze these correlations.

By calculating the two-cluster overlap amplitude
(TCOA), we aim to quantify the spatial distribution and cor-
relation strength of nucleon pairs, providing insights into the
nucleon-nucleon interactions within these nuclei [41, 42].
This approach enables detailed examination of the structural
and correlation properties of He and °Be, contributing to a
deeper understanding of nucleon correlations in light nuclear
systems [43, 44].

2 Theoretical framework

In the present GCM calculations, the total wave function
of ®He (°Be) can be written as the superposition of angu-
lar-momentum-projected and parity-projected Brink wave
functions

T =Y ¢, Pl PTOP((R))),

i,K
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where %K and P* are the angular-momentum and parity
projectors, respectively. The index i indicates a specified
set of generator coordinates {R;, R,, R;}. An illustration of
®He is shown in Fig. 1. The Brink wave function is fully
antisymmetrized, and the wave function of the k-th nucleon
is defined as a Gaussian wave packet
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Fig.1 (Color online) Schematic diagram of a+n+n clustering struc-
ture of the Brink wave function of ®He

In the present calculation, the oscillator parameter for the
single-particle wave functions was set to b = 1.46 fm, which
is the same as that used in Refs. [45, 46]. The Hamiltonian
of the system includes kinetic, central N-N, spin-orbit, and
Coulomb parts

~ n2 )
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The Volkov No.2 potential [47] was taken as the central
N-N potential
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with a; =101fm, a,=18fm, v, =61.14MeV,
v, = —60.65 MeV,W =1—-M,M =0.6andB = H = 0.125.
The G3RS potential [48, 49] is used for the spin-orbit term
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where P(30) is the projection operator onto a triplet odd
state, strength v, = 2000 MeV, and parameters d,; and d, are
set to 5.0 fm™2 and 2.778 fm~2, respectively. The coefficients
{c; x} in Eq. (1) are determined by solving the Hill-Wheeler
equation as follows:

TCOA was introduced as an extension of the RWA
method to quantitatively analyze the spatial distribu-
tion and correlation strength of nucleon pairs [50]. This
approach has been successfully applied to study core +
N + N + N structures [51], providing a detailed description
of clustering dynamics.

To illustrate the three-cluster structure, the TCOA [52]
of ®He is defined as:
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where a,_,, and a,, represent the distances from the center
of mass(c.0.m.) of the two neutrons to the o cluster, and the
distance between the two neutrons, respectively, as shown in
Fig. 1.1, and [,; correspond to the orbital angular momenta
associated with distances a,_,, and a,,, respectively, while
L denotes the total angular momentum obtained from their
coupling. The reference wave function for the a cluster is
denoted by ®,,.

To characterize the relative motion between the o cluster
and the two neutrons, we introduce the relative-motion coor-
dinates r; and r,3, which are defined as

nn’

X, +X;
”1=X1_T’ sy =Xy = X3, (7N
where X is the c.o.m. of the physical coordinates of the «
and neutrons. (Similarly, the structure of %Be is analogous,
with two valence neutrons replaced by two valence protons.)

The TCOA provides the spatial distribution of valence
nucleons in terms of the distance between the two valence
nucleons, ayy, and the distance between their center and
the a-core nucleus, a,_yy- It should be noted that the other
degrees of freedom are integrated into in Eq. 6. The descrip-
tion provided by the TCOA can be viewed as the averaged
isosceles triangle configuration. This allows us to estimate
the opening angle 6 = 2arctan (ayy/2d,_xn)» Of the two
nucleons with respect to the core. The opening angle 6 is a
key measure for dinucleon correlations; for instance, 8 = 90°
corresponds to two non-correlated nucleons.

3 Results and discussion

By superposing 600 distinct three-body spatial configura-
tions, a +n + n and o + p + p, we obtained clustering wave
functions for both ®He and ®Be. The resulting positive-
parity low-lying state energy spectra are shown in Fig. 2,
exhibiting an overall shift compared with the experimen-
tal data. The calculated positive-parity low-lying energy
spectra (Fig. 2) exhibited qualitative consistency with the
experimentally observed 0" and 27 states. For example, the
calculated excitation energy of the 2} state for ®He agrees
well with the experimental observations—corresponding
to very narrow resonances—showing only a small devia-
tion of approximately 0.3 MeV. Moreover, the mirror sym-
metry breaking for *He and °Be in the ground state energy
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Fig.2 The calculated energy spectra of ®He and °Be compared with
the corresponding experimental values. The gray dashed lines repre-
sent thresholds

was also well reproduced. This consistency indicates that
mirror symmetry breaking caused by isospin effects and
Coulomb interactions, as well as the spatial extension of
the valence nucleons, is effectively described. In the fol-
lowing section, we focus on the detailed spatial distribu-
tion of the valence nucleons relative to the a-core nucleus.

Based on the definition of the TCOA discussed above,
this framework effectively characterizes critical three-body
cluster correlations, with specific emphasis on the dineu-
tron correlation in ®He and the diproton correlation in °Be.
Figures 3 and 4 present the TCOA distributions for three-
cluster systems in %He and °Be, where the orbital angular
momenta quantum numbers [, =[l,; =0 and [} =3 =1
were chosen because these specific combinations exhibited
the most pronounced TCOA distribution amplitudes. In a
purely non-correlated scenario, the distributions would
exhibit equal weights on both sides of the dashed lines in
the figure, which divide two distinct regions in the hyper-
spherical description of three-body nuclei [53]. For the
ground states of °He and °Be, two distinct peaks were
observed: a dinucleon-like peak in the region
au_nN > ann/2 and a cigar-like peak in the region
ay NN < ann/2. These peaks arise from the two valence
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Fig.3 (Color online) TCOA
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nucleons that predominantly occupy the p-shell. The
TCOA further indicates that a dinucleon-like configuration
is favored, as evidenced by its higher maximum TCOA and
asymmetric distribution. For example, in %He, the dineu-
tron-like peak is characterized by ))l’]”lnL({aa_nn, an} =
{2.1fm,3fm}) = 0.32, which is consistent with the ab ini-
tio results in Ref. [25], whereas the cigar-like peak is given
by 3’1’,'}23L({aa_nn, a,,} = {44fm, 1.1fm}) = —0.26.

The conclusion of the favored dineutron correlation in the
ground state of ®He is consistent with a recent experimental
work [15], which extracted B(E1) values to infer an average
opening angle of the two valence neutrons of approximately
56°, supporting the presence of a dineutron correlation. The
TCOA for °Be exhibits similar behavior, with a maximum
characterizsdbyyl';ﬁL({aa_pp, ay} = {2.1fm,3fm}) = 0.28,
and another peak given by yl];lBL({aﬂ—Pp’ ap} =
(4.5fm, 1.1fm}) = —0.23: However, the peak amplitudes are
suppressed owing to the Coulomb repulsion. Additionally,
a halo(-like) nature was revealed in the TCOA, as indicated
by the diffuse distribution. For ®He and °Be, the TCOA
extends up to a,_yy ~ 10 fm, whereas heavier '°Be exhibits
a more compact distribution using a 2n overlap
function [54].
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Compared to the ground states, the 0] states of both ®He
and ®Be, there are mainly three main peak regions: dinu-
cleon-like and cigar-like retained, while a stronger third peak
emerged in the acute opening angle region. The three peaks
might be due to significant d—wave occupation in the O;r
states; for example, the ground state in 80 nucleus in [55].
Compared with the ground state, this state is more diffuse
and exhibits a gas-like feature, which indicates a more com-
plex correlation structure.

For the first excited state 2} in both ®He and ®Be, as shown
in Fig. 4, we found that there was only one peak, predomi-
nantly distributed in the dinucleon correlation region, that is,
ann > 20, N (Onn = 2arctan(any /20, nN) < 90°). The
maximum value is characterized by yl’l ”123 Qo ——

{3.8fm, 2.1 fm}) = 0.16 for *He, corresponding to an opening
angle of Oy = 85°. This result is consistent with a recent
three-body model calculation using the complex-scaling
method, which shows a peak in the opening angle density pro-
file at approximately 60° ~ 80°. For ®Be, the peak is character-
ized by V), | ({aypps app} = {4.0fm, 2.2fm}) = 0.13, with
a noticeably smaller amplitude. This difference represents the
observed mirror symmetry breaking in the dinucleon correla-
tions, where the effects of the Coulomb interaction result in a
weaker diproton correlation.
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Fig.4 (Color online) TCOA
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The TCOA distributions of the 27 states in both °Be and
®He exhibited remarkably similar gas-like characteristics,
manifested as diffuse patterns without distinct peaks. Notably,
both nuclei showed a single dominant peak in their respec-
tive distributions, with suppressed two-nucleon correlations
compared to their 2;“ states. For ®Be, this corresponds to a
weakened diproton correlation in the 2;“ state, whereas for °He
the analogous suppression occurs in the dineutron component.

4 Summary

In this study, we investigated the diproton and dineutron
correlations in the ground and low-lying 2* states of ®Be
and ®He using the TCOA method within the GCM frame-
work. Our calculations reveal that both *Be and *He exhibit
pronounced diproton and dineutron correlations in their
ground states, characterized by a cigar-like spatial configu-
ration with a localized nucleon pair. The TCOA distributions
for the 2;“ states also show a single-peak structure, which is
indicative of dinucleon correlations consistent with previous
descriptions.

0 2 46 8101214
a,, (fm)

The present theoretical framework, combining the GCM
with TCOA analysis, has proven effective in providing a
detailed description of nucleon-nucleon correlations and
clustering behavior in light nuclear systems, offering insights
into the structural evolution of mirror nuclei across different
excitation energies.
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