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Abstract

The synthesis of superheavy nuclei remains a critical area of research in nuclear physics, with the aim of extending the
periodic table and deepening our understanding of the properties of nuclei. This review provides a comprehensive overview
of the latest advancements in superheavy nuclei synthesis, focusing on both the experimental and theoretical developments.
We discuss the primary synthesis methods, including early fusion reactions with light nuclei, cold fusion reactions using
lead and bismuth targets, and hot fusion reactions involving “*Ca projectiles and actinide targets. In addition, we introduce
the major experimental facilities and theoretical models currently employed worldwide. This review also summarizes the
experimental plans and theoretical predictions for the synthesis of new superheavy elements. Furthermore, we discuss future
directions, including the potential of employing heavier projectiles, radioactive beam-induced reactions, and multi-nucleon

transfer reactions, which may offer new pathways for discovering unknown superheavy nuclei.
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1 Introduction

There are 288 naturally existing nuclei on earth, with 238U
being the heaviest among them. Transuranium nuclei, with
atomic numbers greater than 92, can only be produced
through nuclear reactions [1-3]. The first transuranium
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nucleus, 2*Np, was discovered in 1940 among the fission
products resulting from bombardment of 233U with thermal
neutrons [4]. Since then, nuclear physicists have success-
fully synthesized 26 transuranium elements artificially by
utilizing several types of nuclear reactions. Among these
artificial nuclei, transactinide nuclei with Z > 104 are known
as superheavy nuclei (SHNs) [5-7]. These nuclei are located
in the upper-right corner of the nuclear chart and exhibit
extreme instability and short half-lives. Nevertheless, the
synthesis and study of SHNs are crucial for advancing our
understanding of the fundamental properties of nuclear
forces, validating nuclear structural models, and extending
the periodic table of elements.

CAS Key Laboratory of Theoretical Physics, Institute
of Theoretical Physics, Chinese Academy of Sciences,
Beijing 100190, China

Center of Theoretical Nuclear Physics, National Laboratory
of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000,
China

@ Springer


http://orcid.org/0009-0004-0777-7848
http://orcid.org/0000-0002-3839-6042
http://orcid.org/0000-0003-4753-3325
http://orcid.org/0000-0003-0507-0983
http://crossmark.crossref.org/dialog/?doi=10.1007/s41365-025-01781-6&domain=pdf

204 Page2of22

M.-H. Zhang et al.

Although the SHN region lies at the limits of Coulomb
stability, the shell structure effects can influence the fission
barrier, thereby contributing to the existence of SHNs. Fol-
lowing the approach proposed by Strutinsky, which involves
introducing shell corrections to the liquid-drop model, an
“island of stability” at Z = 114 and N = 184 was predicted
separately by Sobiczewski et al. and Meldner [8—12]. Further
predictions from various microscopic approaches, such as
the Skyrme—Hartree—Fock and relativistic mean-field meth-
ods, suggest that this “island of stability”” could be located at
Z=114,120, 124 or 126 and N= 172 or 184 [13-15, 15-20].
These theoretical predictions are supported by the observed
increase in a-decay half-lives of isotopes with increasing neu-
tron number [8, 21].

The primary mechanism for synthesizing SHNs involves
fusion reactions using stable beams and long-lived targets.
Early fusion reactions utilizing lighter projectiles and actinide
targets were selected to produce superheavy elements (SHESs)
with Z = 93 — 106 at LBNL and JINR [22-26]. Subsequent
advancements in cold fusion reactions employing 2°*Pb
or 29Bi targets facilitated the synthesis of SHEs with Z =
107-113 at GSI and RIKEN [27, 28]. In contrast, hot fusion
reactions using “*Ca beams and actinide targets conducted in
JINR at Dubna led to the successful synthesis of SHEs with
Z = 114-118 [29-33]. Currently, the synthesis of new SHEs
with Z = 119-122 represents a highly competitive frontier in
nuclear research.

This review provides a comprehensive overview of the cur-
rent state of research on the synthesis of SHNs, focusing on
both experimental accomplishments and theoretical advance-
ments. We discuss the latest achievements and breakthroughs
in the synthesis of SHN, experimental facilities, and theoreti-
cal methods employed. Furthermore, this review discusses the
challenges encountered in synthesizing new SHN and explores
the potential directions for future research.

This article is organized as follows: In Sect. 2, we introduce
the discovered SHN and the methods used for their synthesis.
Section 3 covers the current experimental facilities, including
both existing and underconstruction accelerators and separa-
tors. In Sect. 4, we discuss the widely applied microscopic and
phenomenological models used in theoretical predictions. Sec-
tion 5 reviews the latest experimental and theoretical advance-
ments in the synthesis of new SHEs. Section 6 addresses the
current experimental challenges in synthesizing new SHN and
explores potential future developments. Finally, Sect. 7 pro-
vides a summary of this study.

@ Springer

2 The discovery of superheavy nuclei

2.1 Early fusion reactions with C, N, O, Ne, Mg
and Ar beams

There are 3386 discovered nuclei of 118 known elements,
including 119 artificial SHNs [34]. The discovery of
superheavy isotopes began in 1969 at Berkeley, where the
fusion reactions '>13C + ?4Cf led to the identification of
257-259Rf [22]. By changing the projectile into ’N and '#0,
the elements with Z = 105 and 106 were also synthesized
[23, 24]. JINR also independently produced the 104th and
105th elements via reactions 2*Ne + 2*?Pu, 2 Am [25, 26].
Additionally, based on the actinide targets **Cm and >*°
Bk, researchers have successfully synthesized new super-
heavy nuclei 2°0-202Rf and 26?Db [35, 36].

In 2000, the reaction ??Ne + ! Am was investigated at
the Institute of Modern Physics (IMP) in China, leading
to the discovery of 2°Db [37]. In 2006, using the reac-
tion Mg + 2*Cm, ?%?"'Hs were produced at GSI, with
26626750 identified in the a-decay descendants [38, 39].
Most recently, in 2024, JINR researchers employed the
reaction “*Ar + 238U, resulting in the synthesis of 2’*Ds
[40]. Experimental results suggest that more asymmet-
ric reaction systems can enhance both the fusion prob-
ability and evaporation residue (ER) cross sections when
forming the same compound nucleus. For instance, in the
5n-emission channel leading to the formation of 2°Ds, the
ER cross section for the reaction 3*S + ?*Pu is 0.4 pb
[41], while for the reaction °Ar + 238U, it is 0.18pb [40].
Similarly, the fusion cross sections for producing **>Cm
and ?*Hs via reactions ¥Cl + 7 Au and Mg + **Cm
are higher than those produced through reactions “°Ca +
1205 and *°S + 28U [42-46].

In the early stages of fusion reactions involving
extremely asymmetric reaction partners, the formed com-
pound nuclei possess high excitation energies, requir-
ing the evaporation of three to five neutrons to reach the
ground state. However, strong competition from fission
during the de-excitation process significantly suppressed
the yield of the desired nuclei. The limited atomic number
of the light projectiles also constrains the atomic number
of the SHE that can be synthesized experimentally. There-
fore, there is a need to explore new reaction mechanisms to
improve the synthesis efficiency of new elements.

2.2 Superheavy nuclei produced by cold fusion
reactions

In 1974, researchers at JINR explored an alternative
reaction mechanism to synthesize new SHNs [47]. By
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employing 2°029%Pb targets and *°Ti and *Cr projectiles,
they discovered new isotopes of 2>2%Rf and 2°Sg [48,
49]. Because of the reduced mass asymmetry of these
reaction systems and the high binding energies of the
reaction partners, the excitation energies of the formed
compound nuclei were suppressed. This resulted in a
de-excitation process requiring the emission of only one
or two neutrons, thereby reducing competition from fis-
sion. Compared to reactions involving actinide targets and
light projectiles, this new reaction mechanism exhibited
enhanced ER cross sections. This approach, characterized
by low excitation energy and fewer neutron emission, is
referred to as “cold fusion reaction”.

Another advantage of cold fusion reactions is that the
commonly used 2*®Pb and 2% Bi targets are more readily
available in large quantities than actinide targets. In addi-
tion, the experimental conditions can be simplified as
they are stable target nuclei. Therefore, GSI in Germany
had selected this reaction mechanism to investigate the
synthesis of new SHEs. In 1981, researchers at GSI man-
aged to synthesize element with Z = 107 via the reaction
4Cr + 2%Bi — 292Bh + n [50]. Following this, through the
reactions >®Fe+2%Pb—205Hs+n, 8 Fe+29Bi—2Mt+n, 6264
Ni+28pp—269271Dg 4, 0Zn+298Pb—2""Cn+n, the SHEs
with Z = 108-112 were successfully synthesized [51-55].

Based on the cold fusion reaction, dozens of super-
heavy nuclei with Z = 104-110 were also synthesized
in the GSI [54, 56-61]. In addition, Berkely synthe-
sized 2'Ds in the 1n-emission channel of the reaction *
Co+2Bi [62]. The synthesis of ?’'Ds via the reaction %
Ni+2%8Pb was also studied by researchers at IMP [63].

In 2004, RIKEN employed the reaction °Zn + 2”Bi
and successfully synthesized the element with Z = 113 in
the 1n-evaporation channel [27]. However, the ER cross
section was only 0.03pb, which is 107 times smaller than
the ER cross section for synthesizing Bohrium. As shown
in Fig. 1, there is an exponentially decreasing trend in
the ER cross sections as the proton number of the formed
compound nucleus increases [64]. This decrease is pri-
marily due to the strong hindrance to the fusion of collid-
ing nuclei caused by increasing Coulomb repulsion [65],
as well as the deviation of the deformed subshell with Z
= 108 and Z = 162 [66, 67]. The synthesis of SHN with
Z > 113 encounters significant challenges owing to the
extremely small ER cross sections, which have reached
the limitation of experimental detection. In addition, the
limited number of neutrons in heavy projectiles results
in the formation of compound nuclei closer to the proton
drip line, which decreases their stability and makes detec-
tion even more challenging.
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Fig.1 (Color online) The measured ER cross sections for produc-
ing SHN via cold fusion reactions. Open symbols mark the data of
the In-emission channel in cold fusion reactions based on different
projectiles and 2%8Pb, 2%Bi targets. The solid symbol represent data
provided by SHANS2 experiments. Dashed line is drawn to guide the
eye. Reproduced from Ref. [64]

2.3 Superheavy nuclei produced by “®Ca-induced
hot fusion reactions

To reduce the hindrance caused by Coulomb repulsion,
researchers at JINR explored combinations of *Ca projec-
tile and actinide targets. The selection of **Ca as a projec-
tile is due to its doubly magic nature with a high binding
energy, which enhances fusion probabilities and lowers
the excitation energy of the formed compound nuclei.
Moreover, the high neutron excess of 48Ca contributes to
the formation of neutron-rich compound nuclei. These
neutron-rich nuclei tend to exhibit greater stability due to
the reduced Coulomb repulsion among protons, a factor
that is particularly crucial for superheavy elements, which
possess large atomic numbers and therefore significant
Coulomb forces acting against their stability.

In Table 1, the characteristics of the three types of
fusion reaction are presented. Although the excitation
energies in hot fusion reactions are higher than those in
cold fusion reactions, leading to a lower survival prob-
ability of compound nuclei, the fusion probability in hot
fusion reactions is enhanced by the high mass asymme-
try of the reaction systems. Additionally, the neutron-rich

@ Springer
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Table 1 Comparative summary of early fusion, cold fusion, and hot fusion reactions

Aspect Early fusion reactions Cold fusion reactions Hot fusion reactions
Projectile Light nuclei with Z = 6-18 Heavy nuclei with Z = 22-30 Double magic nucleus **Ca
Target Actinide targets Pb or Bi targets Actinide targets

Excitation energy Higher, leading to 3—5 neutron emis-
sion

ER cross section range  From microbarn range to picobarn
range

Neutron-deficient, Z = 104-110,

less stable

Elements 104 to 106

Character of products

Successful synthesis

From microbarn range to femtobarn
range

Neutron-deficient, Z = 104113,

less stable

Elements 107 to 113

Lower, leading to 1-2 neutron emission Higher, leading to 3—5 neutron

emission

Picobarn range

Neutron-rich, Z = 104-118,
potentially more stable

Elements 114 to 118
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Fig.2 (Color online) The measured ER cross sections for producing
SHN via reactions induced by the “*Ca beam. The measured data are
shown by solid squares. Dashed line is drawn to guide the eye. Repro-
duced from Ref. [65]

projectile “*Ca results in the formation of compound nuclei
with a greater neutron excess. The increased neutron-to-
proton ratio in these compound nuclei enhanced their bind-
ing energy and stability.

The first hot fusion reactions began with the **Pu tar-
get, leading to the discovery of three isotopes of Flerovium,
287-289F] [68]. Subsequently, elements with Z = 115-118
were synthesized using targets of 2*Am, 2#%Cm, 4Bk, and
249Cf, thereby completing the seventh period of the periodic
table [29, 31-33, 69]. The maximal ER cross sections for
the hot fusion reactions are shown in Fig. 2. This reveals
that the maximal ER cross sections increase as the proton
number of the formed compound nucleus approaches the
predicted shell closure at Z = 114, which is consistent with
the increased fission barrier height predicted by macro-
microscopic theory [70, 71]. Moreover, a new isotope of
element 113 was discovered through the reaction *¥Ca + 237
Np, with an ER cross section of 0.9pb, which is an order of
magnitude higher than that for synthesizing element 113 via
cold fusion reactions [72].

Figure 3 illustrates the SHNs synthesized through three
types of fusion reactions, including those identified in the
decay products. Compared with the other two types of fusion
reactions, hot fusion reactions are particularly effective in
synthesizing nuclei with higher proton numbers and greater

Fig.3 (Color online) The
superheavy nuclei chart. The
yellow, red and blue squares 120+
denote SHN synthesized via 3
Ca-induced hot fusion reaction,
cold fusion reaction and early
fusion reaction, respectively.
The predicted centers of the
“island of stability” are indi-
cated by the black dashed lines
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neutron excess. Consequently, hot fusion reactions have
become increasingly favored for the synthesis of new SHNs
in recent years.

In 2021, GSI investigated the reaction *3Ca + 24224py
and discovered a new isotope, 2*°Ds, from decay descend-
ants [73]. In 2022, researchers at Dubna identified 2°Mc
in the Sn-emission channel of the reaction **Ca + **Am
[74]. In 2023, they explored the reaction **Ca + 2*’Th and
discovered a new isotope 2"°Ds, with 2>Hs and 28Sg identi-
fied among the decay products [75]. This reaction was reat-
tempted in 2024, leading to the discovery of ?’>Ds in the
Sn-emission channel [40].

3 Experimental facilities

Modern heavy ion research centers such as HIRFL in China,
RIKEN in Japan, GSI in Germany, JINR in Russia, GANIL
in France, LBNL, and LLNL in the USA have made signifi-
cant progress in the synthesis of new isotopes with Z < 118
[27, 63, 67, 74, 76-80]. The largest heavy ion research facil-
ity in China is HIRFL at IMP [81, 82]. Its accelerator sys-
tem consists of two cyclotrons (SFC and SSC), a synchro-
tron (CSRm), and a storage ring spectrometer (CSRe), as
depicted in Fig. 4. Typically, the SFC is used as an injector
for the SSC. Ions generated by the ion sources are first accel-
erated by the SFC and then injected into the SSC for further
acceleration. The heavy ions provided by both cyclotrons
can be accumulated, cooled, and accelerated in CSRm, then
extracted to produce radioactive ion beams (RIB) or highly
charged heavy ions. These secondary beams are accepted
and stored in CSRe for various internal target experiments.
In recent years, researchers at IMP have successfully syn-
thesized 38 new nuclei, including 23 heavy and superheavy
nuclei, based on HIRFL and other accelerators [83-95].
The UNILAC installed in 1975 at GSI is capable of accel-
erating all ion species from protons to uranium with energies

|

T SFC (K=69)
SSC (K=450) :
1988 ’@”N" o 1961

Fig.4 (Color online) The layout of HIRFL complex. Reproduced
from Ref. [82]

ranging from 1.4 MeV/u to 11.4 MeV/u [96, 97]. Over the
past 40 years, experiments using beams from UNILAC have
successfully produced elements with Z = 107-112 and more
than four hundred new isotopes [5]. Additionally, UNILAC
along with the Heavy Ion Synchrotron SIS18, will serve as
a high-current heavy ion injector for the new Facility for
Antiproton and Ion Research (FAIR) Synchrotron SIS100
[98, 99].

The linear accelerator RILAC, constructed in 1975 at
RIKEN, successfully synthesized approximately 200 new
isotopes and made significant contributions to the synthesis
and discovery of Nihonium [5, 100]. To facilitate the syn-
thesis of new SHEs with Z = 119, RILAC was upgraded
to a superconducting linear accelerator system (SRILAC)
in 2020 [101, 102]. The beam energy was increased from
5.5 MeV/uto 6.5 MeV/u, enabling SRILAC to play a major
role in the synthesis of even heavier new elements.

The Flerov Laboratory of Nuclear Reactions (FLNR)
in JINR has produced more than 200 new isotopes using
two primary cyclotrons, DC-280 and U-400 [69, 103]. The
U-400 accelerator, established in 1979 and continuously
upgraded, plays a significant role in the synthesis of ele-
ments with Z = 113-118. To further explore the SHE region,
DC-280 was developed in 2018, offering beam energies
ranging from 4 MeV/u to 8 MeV/u and beam intensities up
to 10 ppA, making it particularly suitable for the synthesis
of new SHN [104-106].

The 88-inch Cyclotron Facility at LBNL was first com-
missioned in 1961 and has been in operation for over six
decades. It has played a crucial role in the discovery of more
than 600 isotopes [5, 100, 107]. In 2022, the construction of
the Facility for Rare Isotope Beams (FRIB) was completed.
The superconducting driver linac in the recently developed
FRIB at MSU can accelerate the 2**U isotope with a beam
energy greater than 200 MeV/u, which provides access to the
production of thousands of new nuclei [108-111].

Progressive and expansive research in nuclear phys-
ics continues to drive the upgradation and modernization
of accelerators. The High-Intensity Heavy Ion Accelera-
tor Facility (HIAF) is a next-generation storage ring-based
heavy ion facility developed by IMP, with expected comple-
tion by 2025 [112, 113]. HIAF integrates a linear accelerator
and a synchrotron accelerator to deliver high-energy heavy
ion beams ranging from hydrogen to uranium. The principal
goal of HIAF is to synthesize new superheavy nuclei and
elements [114, 115]. In parallel, other advanced accelerator
facilities, such as the FAIR SIS 100 at GSI, NICA-Booster in
Dubna, and EURISOL in Europe, are currently under design
and construction [116-118]. The comprehensive beam
parameters for these facilities are detailed in Ref. [114].

For the synthesis of a new SHN, the expected ER cross
sections are on the order of picobarns, with half-lives
ranging from microseconds to several days [119]. The

@ Springer
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predominant decay modes for these unknown nuclei are
predicted to be alpha decay and spontaneous fission.
Therefore, decay products are typically separated and
implanted into radiation-sensitive Si detectors. The detec-
tion of rare alpha-decay events from the synthesized SHN
is then carried out against a significant background of
side reaction products.

Currently, several kinematic separators have been
employed in the study of heavy nuclei. Velocity filter
SHIP at GSI and SHELS at JINR are notable examples
[120, 121]. These facilities specialize in the separa-
tion and identification of heavy nuclei fragments using
velocity filtering techniques. In addition, gas-filled mag-
netic separators, such as DGFRS-2 at JINR, TASCA at
GSI, BGS at LBNL, GARIS-II at RIKEN, and SHANS
at HIRFL, are employed to enhance the separation and
detection of SHEs [122-127]. The detailed design of gas-
filled recoil separators is described in Ref. [77]. These
separators enable effective separation and high-sensitiv-
ity detection, which are critical for advancing the SHE
research.

In recent years, the next generation of separators
has been gradually put into operation. The GARIS-III
at RIKEN was completed as part of an upgrade project
in 2020. With enhanced resolution and advanced detec-
tor arrays, the aim was to investigate reactions with ER
cross sections as low as 10 fb [102, 128]. In 2022, the
CAFE2 Program at IMP initiated the development of a
new gas-filled recoil separator, SHANS?2, as illustrated
in Fig. 5. Through a series of performance tests involving
the reactions ““Ar + "Lu, °Ar + Tm, “°Ca + 'Tm,
and >°Mn + "°Tb, SHANS?2 demonstrated its effective-
ness and reliability, highlighting SHANS?2 as a critical
tool for advancing research in the field of SHE synthesis
[129, 130].

Incident Rotating
Beam target

Differential 1

pumping ﬁ—
L = 2 = k

Detector

4 Theoretical models

Currently, experiments aimed at investigating superheavy
regions encounter several challenges. The target materials
available are rare, expensive, and prone to contamination
during experiments. Additionally, the limited beam inten-
sity of accelerators requires long irradiation times, and the
expected ER cross sections have already reached the detec-
tion limits. As a result, it is necessary to develop theoreti-
cal models that can provide precise predictions for optimal
projectile-target combinations, incident energies, expected
yields, and assess the feasibility of experimental plans.

Based on extensive experimental data, two main types
of theoretical approaches have been developed to describe
fusion-evaporation reactions. One type is the microscopic
models, such as the quantum molecular dynamics (QMD)
model [131-133] and time-dependent Hartree-Fock (TDHF)
theory [134—-138]. The other type is the macroscopic phe-
nomenological models, including the fusion-by-diffusion
(FBD) model [134, 139, 140], dynamical cluster-decay
model (DCM) [141, 142], two-step model [143-146], statis-
tical model [147], multidimensional Langevin-type dynami-
cal equations [148—151], and dinuclear system (DNS) model
[9, 152-161].

4.1 Microscopic models

Microscopic models start with basic nucleon-nucleon
interactions, often described by effective potentials such
as Skyrme potentials. These models require self-consistent
field calculations, in which each nucleon moves within the
mean field generated by all other nucleons. Microscopic
models offer a deep understanding of nucleon behavior and
can explain and predict a wide range of nuclear phenom-
ena. However, they often require significant computational

Fig.5 (Color online) Schematic view (left) and photo (right) of SHANS2. Reproduced from Ref. [130]
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resources and are limited by the accuracy of the interaction
models.

TDHEF theory can be derived from the time-dependent
variational principle [162]. In the TDHF, the many-body
wave function is approximated as a Slater determinant, auto-
matically ensuring the Pauli exclusion principle. The TDHF
method is a fully microscopic, parameter-free theory that
unifies the nuclear structure and reactions within a single
framework. Dynamic and quantum effects are automatically
incorporated into this approach [163].

By constraining the density distribution obtained from
the dynamical evolution in the TDHF method, the density-
constrained time-dependent Hartree-Fock (DC-TDHF)
model can be derived, allowing for the extraction of nucleus-
nucleus potentials in heavy ion reactions. Using this method,
Ref. [164] investigated the feasibility of forming a com-
pound nucleus with Z = 119 via the °Ti+?*’Bk reaction.

The TDHF model can also be combined with phenom-
enological models to obtain more accurate predictions. In
Ref. [165], the isotopic dependence of quasi-fission and
fusion-fission in the production of flerovium isotopes was
investigated. The TDHF method was applied for fusion
and quasi-fission dynamics, while the statistical evapora-
tion model HIVAP was used for fusion-fission dynamics.
Reference [134] examined the orientation effects of the 48
Ca+?3U reaction with the reaction dynamics described by

(@) t=0 fm/c, v¢ =0.0723c

z (fm)

(b) t=192 fm/c, v¢=0.0331c

z (fm)

(g-wy) d

(c) t=324 fm/c, vc = 0.0002¢c

-20 -15 =10 =5 0 5
x (fm)

z (fm)

Fig.6 (Color online) Time evolution of the density density of fusion
reaction **Ca + 238U with 2*U being tip orientation within the frame-
work of TDHF model. Reproduced from Ref. [134]

TDHEF theory, as illustrated in Fig. 6. This study combines
the TDHF model with coupled-channel and FBD models,
and predicts that the tip orientation is more favorable for
both the capture process and formation of the compound
nucleus in this reaction. Additionally, Ref. [137] combined
the TDHF method with the Langevin equation, suggesting
that differences in the probabilities of evaporation residue
formation among reaction systems primarily originate from
the evaporation process, which is sensitive to the fission bar-
rier height and excitation energy of the compound nucleus.

The QMD model is a microscopic model derived from the
classical molecular dynamics (CMD) model and the many-
body Schrodinger equation [166]. In the QMD model, each
nucleon is represented by a Gaussian wave packet, incorpo-
rating both mean-field effects and two-body collisions [167].
Advanced variations of the QMD model, such as the isospin-
dependent quantum molecular dynamics (IQMD) model
and the improved quantum molecular dynamics (ImQMD)
model, are particularly effective in describing the processes
of low-energy heavy ion collisions.

Within the QMD model framework, the fusion process
is considered to occur when two independent nuclei suc-
cessfully overcome the Coulomb barrier and maintain a
stable monomer density during rotation or oscillation of
the compound nucleus. By simulating a large number of
events, the fusion cross section at a specific incident energy
can be statistically determined. In Ref. [131], the excita-
tion functions predicted by the InQMD model for the reac-
tion 3Ca+2%Pu were compared with the results obtained
from the DNS model and experimental data, as depicted in
Fig. 7. This work confirmed the reliability of the InQMD
model and predicted the optimal projectile-target combina-
tions for synthesizing >432**No isotopes. Additionally, Ref.
[133] applied the IQMD model to investigate the enhanced
fusion probabilities in reactions with 44(Ca beams, attribut-
ing the enhancement to the rapid development of the neck
region and the higher neutron-to-proton ratio. The study also
predicted the optimal projectile-target combinations for pro-
ducing new 24-29Lr isotopes, along with the corresponding
incident energies.

4.2 Phenomenological models

In phenomenological models, dynamical evolution equations
are established by incorporating certain collective degrees
of freedom to describe the dynamics of nuclear reactions.
These approaches simplify the computational process by
neglecting the intricate interactions among the nucleons.
With the de-excitation process treated using statistical mod-
els, the HIVAP code, the KEWPIE code or the GEMINI++
model [143, 168—171], phenomenological models can be
effectively applied to heavy ion collision reactions near the
Coulomb barrier.

@ Springer
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One approach for describing the fusion process consid-
ers the dynamic evolution of the formed mononucleus,
proposing that once the projectile and target nuclei come
into contact, they rapidly lose their individuality and
form a highly deformed nucleus. Fusion is considered to
occur when the deformed nucleus gradually evolves into
a spherical compound nucleus; otherwise, quasi-fission
occurs. The macroscopic dynamical model was the first
to describe the fusion mechanism based on this concept
[172-175]. In this model, the nucleus is treated as a vis-
cous liquid drop, and the fusion process is regarded as a
purely dynamic phenomenon that can be described using
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N —>
Projectile
Qg

Dinuclear
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classical equations of motion. However, this model faced
challenges in reproducing the ER cross sections for fusion
reactions, as it did not account for the competition between
fusion and quasi-fission, nor did it incorporate the shell
effect [176]. To address these limitations, the two-step
model [143-145, 177] and fusion-by-diffusion model
[139, 140] introduced shell effects in the calculation of the
potential energy surface, along with statistical fluctuations
in the interaction of colliding nuclei [178]. These enhance-
ments have allowed for more accurate reproduction and
prediction of ER cross sections in fusion reactions.
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Fig.8 (Color online) Schematic illustration of heavy ion collisions within the DNS model framework. Reproduced from Ref. [179]
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Another description of the fusion process focuses on the
degree of freedom of the mass asymmetry. In these models,
the two nuclei retain their individuality and nucleon transfer
occurs within the formed dinuclear system, as depicted in
Fig. 8. Fusion is considered to occur when all the nucleons
from the projectile are successfully transferred to the target
nucleus. Conversely, quasi-fission process takes place when
nucleons are transferred from the target nucleus to the pro-
jectile [179].

Based on this assumption, the DNS model was devel-
oped. The nucleon transfer process within the DNS model
is treated by solving a set of master equations, which are
governed by the potential energy surface considering nuclear
structure effects [154]. The calculated results for cold and
hot fusion reactions using the dinuclear system model match
well with available experimental data [157, 180]. However,
this approach initially did not consider the dynamic factors
influencing the fusion stage. To address this, Ref. [153] cou-
pled the dynamic deformation of the nucleus with nucleon
transfer within the DNS model, and predicted the ER cross
sections for the synthesis of a new SHE. In recent years,
neural networks and machine learning methods have been
introduced to optimize nuclear data and refine the param-
eters of the theoretical model [181-184].

The nucleon collectivization model offers an intermediate
approach for describing the fusion process compared with
the previously mentioned methods [185]. In this model,
within the formed dinuclear system, a portion of nucleons
is considered to become “common" nucleon, shared by
both nuclei. Fusion is thought to occur when all nucleons
are transformed into common nucleons; otherwise, quasi-
fission occurs. Although this model successfully describes
the excitation function of hot fusion reactions, the physical
concept of the introduced common nucleons remains highly
controversial.

Given the significant difference in the descriptions of
the fusion process across various models, some research-
ers have attempted to combine fusion mechanisms from dif-
ferent theoretical models and experimental observations to
develop relatively simple empirical formulas for calculating
fusion probability [186—191]. These formulas, informed by

Table 2 The experimental progress of the synthesis of SHEs with Z > 118

experimental phenomena and theoretical approaches, iden-
tify several influential factors in the fusion process, includ-
ing the excitation energy, quasi-fission barrier, compound
nucleus mass or charge number, and mass asymmetry [186,
188, 189]. These empirical formulas effectively reproduce
the experimental results of the known fusion reactions.
Recently, a model-independent method, based on the Cou-
lomb barrier height of side-side collisions and Q value,
was established to predict the optimal incident energies
for unknown reaction systems [192]. This approach allows
the estimation of optimal incident energies with minimal
uncertainty.

5 Efforts in the Synthesis of New
Superheavy Elements withZ=119, 120

Since the synthesis of Oganesson through the reaction *®
Ca+2*Cf— 2**0g+3n, the seventh period of the periodic
table was completed. However, for the synthesis of SHE
with atomic numbers Z > 118, the “®Ca-induced fusion reac-
tions are restricted by the limited availability of Einsteinium
and Fermium targets. Consequently, heavier beams, such as
304, 31V, and 3*Cr, must be applied.

The experimental attempts to synthesize a new SHE are
summarized in Table 2. Initially, GSI attempted to synthe-
size the SHE with Z = 120 using the reaction **Ni+?¥U in
2008 [193], and JINR attempted the reaction ®Fe + >**Pu
in 2009 [194]. However, no corresponding a decay chains
were observed in these experiments. In 2016, GSI attempted
to synthesize element with Z = 120 via the reaction >*Cr
+ 2%Cm [195, 196], observing three a decay chains attrib-
uted to 2°°120. Unfortunately, these were later identified as
random events [197]. Additionally, in 2020, GSI conducted
experiments to search for the new elements with Z = 119
and Z = 120 using the reactions *°Ti 4 2**Bk and *°Ti + 24
Cf, respectively, but no evidence of a new SHE was found
[198]. In 2022, RIKEN investigated the quasielastic bar-
rier distribution for the reaction >'V+2Cm and deduced
the optimal reaction energy for synthesizing element with
Z = 119 through this reaction [199].

Element Year Laboratory Reaction Results Detection Ref.
limit

Z =120 2008 GSI 64Ni+238U No observed a decay chain 0.09 pb [193]
Z=120 2009 JINR S8 Fe4 24Py No observed a decay chain 0.4 pb [194]
Z=120 2016 GSI S4Cr+2¥Cm Three observed random a decay chains 0.58 pb [195]
Z =119 2020 GSI SOTj+249Bk No observed a decay chain 0.065 pb [198]
Z =120 2020 GSI SOTi4+249Cf No observed a decay chain 0.2 pb [198]
Z=119 2022 RIKEN Sly4248Cm Optimal reaction energy estimated [199]
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In 2024, the reaction *’Ti+?*Pu was investigated at the 0
LBNL 88-Inch Cyclotron Facility, producing an isotope
20Ly with an ER cross section of 0.44 pb [200]. Although
the ER cross section is lower than that of the **Ca-induced =
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0Ti beam for the production of a new SHE [201]. Recently,

the upgraded experimental facility HIFRL-CAFE2 was 10
tested using the reaction ¥*Ca + 2**Am. The synthesis of

the element with Z = 119 via the reaction >*Cr + **Am is 10°° '
currently underway. JINR has also planned to explore the L | N O A P LI
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54Cr + 248Cm for the 120th element [202]. The nuclei to be N

searched are summarized in Fig. 9. | | ;
. . . . Fig. 10 (Color online) Comparison of the optimal reaction energy
Various theoretical models have predicted the optimal predicted by DNS model and estimated by RIKEN [199] for the reac-

projectile-target combinations and corresponding incident o 5y 4 28Cm. Reproduced from Ref. [157]

energies for new elements beyond Oganesson via fusion

reactions [140, 142, 143, 153, 157, 188, 189, 203-210].

Figure 10 shows the optimal reaction energies predicted in Recently, researchers proposed high-energy alpha par-
Ref. [157] and estimated by RIKEN for the reaction >'V ticle emission as a novel mechanism for synthesizing new
+ 2%Cm, with a strong agreement between the predicted ~ elements [212]. In the experiments conducted at JINR, the
and estimated energies. As summarized in Ref. [157] and  energy spectra of a particles emitted from the reactions Ar
Ref. [200], most models identify the reactions °Ti + 2Bk~ + **Th and **Ca + **U at near-barrier energies were meas-
and °Ti 4 2*°Cf as advantageous for producing SHE with ~ ured. The results indicated that at the kinematic limit, the
Z = 119and Z = 120. The predicted maximal ER cross sec-  observed cross sections were in the picobarn range. These
tions from different models generally fall within the feto- ~ experiments revealed that two-body reactions facilitate the
barn range, although the optimal incident energies can differ ~ production of heavy residue nuclei with minimal excita-
by several MeV for certain reactions. Additionally, based  tion energy, thereby enhancing their survival probability.
on measurements of the mass and angular distributions of ~ Consequently, this reaction mechanism can potentially pro-
fission fragments, Ref. [211] also predicted that the reac- ~ duce SHN with ER cross sections that are several orders of
tion *°Ti 4 24°Cf shows promise for synthesizing SHE with ~ magnitude greater than those achieved through traditional
Z = 120. For the synthesis of SHE with Z = 121, Ref. [156] ~ fusion-evaporation reactions.

suggested that the reactions “°Ti 4+ 2?Es and “6Ti + >*Es

could be feasible in future experiments, with maximal ER

cross sections expected to reach several fetobarns.
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Fig.9 (Color online) SHN region with Z > 114. Green, purple and predicted most feasible reactions for synthesizing elements with
yellow colors represent the synthesized SHNs, SHNs planned to be Z =119 and 120 are marked with red boxes. Reproduced from Ref.
searched and SHNs with a clear path to discovery. The theoretically [202]

@ Springer



Progress on the synthesis of superheavy nuclei

Page 110f22 204

6 Current Challenges and Future Directions

The synthesis of new SHNSs faces several challenges, includ-
ing short half-lives and high instability of both the target
materials and the produced nuclei [213, 214]. The maximal
ER cross sections in the hot fusion reactions also approached
the detection limit. Moreover, the limited availability of acti-
nide targets requires the use of heavier projectiles in future
experiments [200], which is expected to further suppress
ER cross sections compared to those induced by **Ca. To
address these challenges, nuclear physics laboratories world-
wide are upgrading their equipment, as discussed in Sect. 3,
to achieve higher beam intensities and enhanced detection
precision.

In various theoretical models, many assumptions and
approximations have been adopted, such as employing the
double-folding potential with a sudden approximation to cal-
culate the nuclear potential, assuming quadrupole or hexa-
decapole deformations of the nucleus, and using empirical
surface diffusion coefficients. The fission barrier in the de-
excitation process is typically described in one-dimensional
parameterized form. Precise nuclear masses of superheavy
nuclei are also crucial [215-217]. As demonstrated in Refs.
[218, 219], even predictions made using the same model
can vary significantly when based on different mass tables.

Although these assumptions and approximations are nec-
essary because of the current limitations in computational
resources and theoretical development, the uncertainties
introduced by empirical parameters and approximations
constrain the extrapolative capability of the models and can-
not be ignored. Some studies have attempted to estimate the
uncertainties originating from these empirical parameters
or to constrain them using microscopic approaches [146,
157, 158, 220]. However, a comprehensive evaluation of
the uncertainties introduced by these empirical methods is
required.

Calculations in the SHN region using microscopic models
involve handling the interactions among a large number of
nucleons, often resulting in computation times ranging from
several months to years. This limitation significantly restricts
the application of microscopic models in SHE research.
While advancements in computational power, as predicted
by Moore’s law, may alleviate this issue, the introduction
of new parallel computing methods presents a more imme-
diate solution. Researchers are exploring ways to identify
the key physical degrees of freedom in nuclear reactions
to develop new phenomenological models. Additionally,
the limited amount of experimental data from *3Ca-induced
reactions hinders the verification of theoretical models, rais-
ing concerns regarding their reliability when extrapolating to
reactions involving heavier projectiles. More experimental

data from a variety of projectile-target combinations are also
needed to develop more robust theoretical models.

Currently, @ decay tagging is the primary technique for
identifying reaction products, but it is limited by the require-
ment that synthesized nuclei have suitable half-lives and
unambiguous decay chains. As a result, many SHNS in the
neutron-rich region cannot be identified using this method.
Therefore, new identification techniques, such as high-pre-
cision mass measurements, laser resonance ionization, and a
combination of mass separation with decay tagging, should
be considered [221-223].

The relatively low neutron-to-proton ratio in both the pro-
jectile and target nuclei during the fusion reactions leads to
the formation of a compound nucleus with a reduced neutron
number. Additionally, the compound nucleus must undergo
neutron evaporation to reach its ground state, resulting in
the production of nuclei that are typically neutron-deficient.
Such conditions present a significant challenge for the pro-
duction of neutron-rich superheavy nuclei, as the heaviest
available targets are currently 2*’Cf and >*°Bk.

The actinide target nuclei used in fusion reactions are
produced through the intense neutron irradiation of targets
composed of mixed Pu, Am, and Cm in high-flux reactors, as
illustrated in Fig. 11. Currently, reactors capable of provid-
ing these actinide materials include the High Flux Isotope
Reactor (HFIR) at the Oak Ridge National Laboratory [224],
the Advanced Test Reactor (ATR) at Idaho National Labora-
tory [225], and the SM-3 Reactor at the Research Institute
of Advanced Reactors (RIAR) in Dimitrovgrad [226]. Addi-
tionally, the Jules Horowitz Reactor (JHR) [227] and the
Tsinghua High Flux Reactor (THFR) [228], which are cur-
rently under construction, will also provide heavy actinide
targets. In future experiments, new actinide target materi-
als, particularly neutron-rich targets, such as 23'Cf and >>*
Es, could be produced and applied in fusion reactions [202].

Theoretical studies suggest an “island of stability” where
enhanced shell effects lead to long-lived nuclei. However,
the precise location of this area remains uncertain because of
the varying predictions from different nuclear models. Mac-
roscopic-microscopic models employing different poten-
tials, such as Nilsson, Woods-Saxon, and folded Yukawa,
typically locate the center at Z= 114, Z =184 [11, 12, 229,
230]. Depending on the selected parameters, self-consistent
models using Skyrme-Hartree-Fock or relativistic mean field
interactions predict various combinations of Z = 114, 120,
124, or 126, and Z = 172 or 184 [14, 15, 15-20]. In recent
years, researchers have been investigating novel reaction
mechanisms to explore the neutron-rich superheavy region
and reach the center of the “island of stability”. Radioactive
beam-induced fusion reactions have been proposed as meth-
ods for synthesizing neutron-rich SHN [159, 190, 222, 231,
232]. Additionally, multi-nucleon transfer (MNT) reactions
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Fig. 11 (Color online) Reactor production of transcurium actinides
from multiple neutron captures and beta decays. The light-colored
squares represent the target isotopes irradiated under ORNL’s Pluto-

Fig. 12 (Color online) a The log,, value of the half-lives (s) and b
of the beam intensities (p/s) for the nuclei with 10 < Z < 25. Repro-
duced from Ref. [159]

have been suggested as promising approaches for producing
neutron-rich isotopes [1-3, 222, 232-238].

6.1 Radioactive beams
Compared to stable beams, neutron-rich radioactive projec-

tiles have higher neutron-to-proton ratios, enabling explora-
tion of the neutron-rich SHN region. Figure 12 summarizes

@ Springer

nium-238 Supply Program and Californium-252 Program. The dark-
colored squares represent the heavy actinide target isotopes that can
be produced. Reproduced from Ref. [202]

the possible radioactive beams that can be generated at the
Argonne Tandem Linac Accelerator System (ATLAS). How-
ever, a significant challenge for radioactive beam-induced
fusion reactions is low beam intensity. Although stable beam
intensities can reach the order of 10'2 p/s, the intensities of
radioactive beams are currently much weaker. To address
this limitation, modern radioactive beam accelerator facili-
ties, such as the Radioactive Isotope Beam Factory (RIBF)
and the Second-generation System On-Line Production of
Radioactive Ions (SPIRAL?2) [239, 240], are working on
upgrading their capabilities to achieve high-intensity exotic
ion beams [222, 241].

Many theoretical studies have investigated the mecha-
nisms of radioactive beam-induced fusion reactions. Ref-
erence [242] predicted that the reaction induced by the
neutron-rich radioactive beam “°Ar could produce new
neutron-rich nuclei 2°=2°?Fl, provided that the beam inten-
sity was sufficient. Reference [159] explored the production
of neutron-rich SHN with Z = 105-118 through radioac-
tive beam-induced fusion reactions. Additionally, Ref. [243]
examined the possibility of reaching the “island of stability"
via radioactive beams and **Pu, >*Cm, >*°Cf targets.

6.2 Multi-nucleon transfer reactions
Several MNT reaction experiments have been conducted in

recent years. In 2018, significant a particle emission was
observed in the reaction 233U+232Th [244]. A comparison
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Fig. 13 (Color online) The measured a particle energy and half-life
in the U + ?»’Th experiment (diamonds). Previous experimental
results are indicated by the circles and triangles, the theoretical pre-
dictions are denoted by the squares. Reproduced from Ref. [244]

between the experimental results and theoretical calcu-
lations suggested the possible formation of unknown
neutron-rich nuclei with atomic numbers of up to 116, as
depicted in Fig. 13. However, owing to limitations in the
detection methods, the cross section information for these
formed nuclei was not measured. Significant advancement
in the production of new nuclei via MNT reactions was
achieved in 2015 at the UNILAC accelerator at GSI, where
the reaction ¥Ca+2*3Cm was studied. This experiment
resulted in the identification of five new neutron-deficient
isotopes: 219U, 21°Np, 2°Am, 2> Am and 23*Bk [245]. These
findings demonstrate that the MNT reactions can be effec-
tively utilized to synthesize neutron-deficient transuranium
nuclei. In 2023, RIKEN discovered a new neutron-rich
nucleus, >*!'U, through the MNT reaction 33U+!9%Pt, dem-
onstrating the feasibility of MNT reactions for producing
neutron-rich nuclei near the N = 152 subshell [246].
Several theoretical models, such as the DNS model
[6, 247-251], GRAZING model [252-254], QMD model
[252, 255, 256], Langevin equations [257, 258], time-
dependent covariant density functional theory [259], and
TDHF model [256, 260-264] have also been applied to
investigate MNT reactions. In Ref. [265], the reliability
of DNS model in MNT reactions was validated, predict-
ing the production cross sections of four new Rf isotopes
through the 233U+22Cf reaction. Reference [266] com-
bined the GRAZING model framework with the DNS
model, significantly enhancing the theoretical descrip-
tions of experimental results for MNT reactions. Reference
[267] introduced the deformation degree of freedom and
Monte Carlo de-excitation methods, leading to the devel-
opment of an improved DNS-sysu model, and explored
the feasibility of reaching the “island of stability” through
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Fig. 14 (Color online) Comparison of the production cross sections
and cross-section X beam intensity factors for producing the predicted
double magic nucleus 2°®Fl via the radioactive beam-induced and
MNT reactions. Reproduced from Ref. [267]

radioactive beam-induced fusion reactions and MNT reac-
tions, as shown in Fig. 14.

Based on the ImQMD model, Ref. [268] studied the
production cross sections of superheavy isotopes formed in
the 23U +238 U reaction, finding that the isospin depend-
ence of the fission barrier results in production cross sec-
tions for neutron-rich isotopes 24~2°Cf being nearly three
orders of magnitude lower than those of 24°Cf. Reference
[252] presents a comparison of the mass distributions of
primary binary fragments predicted by the ImQMD, DNS,
and GRAZING models with experimental data, as shown
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Fig. 15 (Color online) Mass distributions of primary binary frag-
ments calculated with the ImQMD (thick solid line), DNS (thin solid
line), and GRAZING (dash-dot line) model. The experimental data
taken from Ref. [254] is represented by the open circles. Reproduced
from Ref. [252]
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in Fig. 15. The study reveals that the DNS and GRAZ-
ING models are primarily suitable for describing transfer
processes involving only a few nucleons between the pro-
jectile and target. In contrast, the ImQMD model shows a
high level of agreement with experimental results across
most mass regions.

For the TDHF model, Ref. [262] observed that in the
238U +124 Sn reaction, owing to the inverse quasi-fission
process, '2#Sn can transfer a large number of nucleons to
2380, leading to the formation of new isotopes. By employ-
ing a multidimensional dynamical model based on Langevin
equations, Ref. [269] explored the production of heavy
transuranium nuclei during collisions with actinide nuclei.
The results suggest the feasibility of synthesizing several
neutron-rich heavy actinide isotopes, with production cross
sections surpassing 1 pb. Additionally, new methods based
on the master and Langevin equations have been applied to
MNT reactions [270, 271]. The feasibility of MNT reactions
with radioactive beams has been investigated in several stud-
ies [272-275].

7 Summary

The search for new superheavy nuclei achieved significant
success, particularly with the completion of the seventh
period of the periodic table. Despite these accomplishments,
the synthesis of elements beyond Z = 118 remains a substan-
tial challenge, largely because of the limited availability of
actinide targets and rapidly decreasing ER cross sections.
Employing heavier projectiles is a promising approach for
the synthesis of new superheavy elements. The feasibility
of the 3°Ti projectile is experimentally validated. The inves-
tigation of new reaction mechanisms, including radioactive
beam-induced fusion reactions and multi-nucleon transfer
reactions, presents promising pathways for producing neu-
tron-rich superheavy nuclei and for approaching the next
shell closure. Recent developments in theoretical models
have provided valuable predictions for optimizing experi-
mental conditions. However, the reliability of these models
requires further validation. Continued upgrades to accelera-
tor beam intensities and detector efficiencies, coupled with
the development of more precise theoretical models, will be
crucial for overcoming the challenges associated with the
synthesis of new superheavy elements.
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