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Abstract
The synthesis of superheavy nuclei remains a critical area of research in nuclear physics, with the aim of extending the 
periodic table and deepening our understanding of the properties of nuclei. This review provides a comprehensive overview 
of the latest advancements in superheavy nuclei synthesis, focusing on both the experimental and theoretical developments. 
We discuss the primary synthesis methods, including early fusion reactions with light nuclei, cold fusion reactions using 
lead and bismuth targets, and hot fusion reactions involving 48 Ca projectiles and actinide targets. In addition, we introduce 
the major experimental facilities and theoretical models currently employed worldwide. This review also summarizes the 
experimental plans and theoretical predictions for the synthesis of new superheavy elements. Furthermore, we discuss future 
directions, including the potential of employing heavier projectiles, radioactive beam-induced reactions, and multi-nucleon 
transfer reactions, which may offer new pathways for discovering unknown superheavy nuclei.

Keywords  Heavy ion physics · Superheavy nuclei · Reaction mechanism · Fusion reactions · Multi-nucleon transfer 
reaction

1  Introduction

There are 288 naturally existing nuclei on earth, with 238 U 
being the heaviest among them. Transuranium nuclei, with 
atomic numbers greater than 92, can only be produced 
through nuclear reactions [1–3]. The first transuranium 

nucleus, 239Np, was discovered in 1940 among the fission 
products resulting from bombardment of 238 U with thermal 
neutrons [4]. Since then, nuclear physicists have success-
fully synthesized 26 transuranium elements artificially by 
utilizing several types of nuclear reactions. Among these 
artificial nuclei, transactinide nuclei with Z ≥ 104 are known 
as superheavy nuclei (SHNs) [5–7]. These nuclei are located 
in the upper-right corner of the nuclear chart and exhibit 
extreme instability and short half-lives. Nevertheless, the 
synthesis and study of SHNs are crucial for advancing our 
understanding of the fundamental properties of nuclear 
forces, validating nuclear structural models, and extending 
the periodic table of elements.
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Although the SHN region lies at the limits of Coulomb 
stability, the shell structure effects can influence the fission 
barrier, thereby contributing to the existence of SHNs. Fol-
lowing the approach proposed by Strutinsky, which involves 
introducing shell corrections to the liquid-drop model, an 
“island of stability” at Z = 114 and N = 184 was predicted 
separately by Sobiczewski et al. and Meldner [8–12]. Further 
predictions from various microscopic approaches, such as 
the Skyrme–Hartree–Fock and relativistic mean-field meth-
ods, suggest that this “island of stability” could be located at 
Z = 114, 120, 124 or 126 and N = 172 or 184 [13–15, 15–20]. 
These theoretical predictions are supported by the observed 
increase in �-decay half-lives of isotopes with increasing neu-
tron number [8, 21].

The primary mechanism for synthesizing SHNs involves 
fusion reactions using stable beams and long-lived targets. 
Early fusion reactions utilizing lighter projectiles and actinide 
targets were selected to produce superheavy elements (SHEs) 
with Z = 93 − 106 at LBNL and JINR [22–26]. Subsequent 
advancements in cold fusion reactions employing 208Pb 
or 209Bi targets facilitated the synthesis of SHEs with Z = 
107–113 at GSI and RIKEN [27, 28]. In contrast, hot fusion 
reactions using 48Ca beams and actinide targets conducted in 
JINR at Dubna led to the successful synthesis of SHEs with 
Z = 114–118 [29–33]. Currently, the synthesis of new SHEs 
with Z = 119–122 represents a highly competitive frontier in 
nuclear research.

This review provides a comprehensive overview of the cur-
rent state of research on the synthesis of SHNs, focusing on 
both experimental accomplishments and theoretical advance-
ments. We discuss the latest achievements and breakthroughs 
in the synthesis of SHN, experimental facilities, and theoreti-
cal methods employed. Furthermore, this review discusses the 
challenges encountered in synthesizing new SHN and explores 
the potential directions for future research.

This article is organized as follows: In Sect. 2, we introduce 
the discovered SHN and the methods used for their synthesis. 
Section 3 covers the current experimental facilities, including 
both existing and underconstruction accelerators and separa-
tors. In Sect. 4, we discuss the widely applied microscopic and 
phenomenological models used in theoretical predictions. Sec-
tion 5 reviews the latest experimental and theoretical advance-
ments in the synthesis of new SHEs. Section 6 addresses the 
current experimental challenges in synthesizing new SHN and 
explores potential future developments. Finally, Sect. 7 pro-
vides a summary of this study.

2 � The discovery of superheavy nuclei

2.1 � Early fusion reactions with C, N, O, Ne, Mg 
and Ar beams

There are 3386 discovered nuclei of 118 known elements, 
including 119 artificial SHNs [34]. The discovery of 
superheavy isotopes began in 1969 at Berkeley, where the 
fusion reactions 12,13 C + 249 Cf led to the identification of 
257−259 Rf [22]. By changing the projectile into 15 N and 18 O, 
the elements with Z = 105 and 106 were also synthesized 
[23, 24]. JINR also independently produced the 104th and 
105th elements via reactions 22 Ne + 242Pu, 243 Am [25, 26]. 
Additionally, based on the actinide targets 248 Cm and 249
Bk, researchers have successfully synthesized new super-
heavy nuclei 260−262 Rf and 262 Db [35, 36].

In 2000, the reaction 22 Ne + 241 Am was investigated at 
the Institute of Modern Physics (IMP) in China, leading 
to the discovery of 259 Db [37]. In 2006, using the reac-
tion 26 Mg + 248Cm, 270,271 Hs were produced at GSI, with 
266,267 Sg identified in the �-decay descendants [38, 39]. 
Most recently, in 2024, JINR researchers employed the 
reaction 40 Ar + 238 U, resulting in the synthesis of 273 Ds 
[40]. Experimental results suggest that more asymmet-
ric reaction systems can enhance both the fusion prob-
ability and evaporation residue (ER) cross sections when 
forming the same compound nucleus. For instance, in the 
5n-emission channel leading to the formation of 273Ds, the 
ER cross section for the reaction 34 S + 244 Pu is 0.4 pb 
[41], while for the reaction 40 Ar + 238 U, it is 0.18pb [40]. 
Similarly, the fusion cross sections for producing 232 Cm 
and 274 Hs via reactions 35 Cl + 197 Au and 26 Mg + 248 Cm 
are higher than those produced through reactions 40 Ca + 
192 Os and 36 S + 238 U [42–46].

In the early stages of fusion reactions involving 
extremely asymmetric reaction partners, the formed com-
pound nuclei possess high excitation energies, requir-
ing the evaporation of three to five neutrons to reach the 
ground state. However, strong competition from fission 
during the de-excitation process significantly suppressed 
the yield of the desired nuclei. The limited atomic number 
of the light projectiles also constrains the atomic number 
of the SHE that can be synthesized experimentally. There-
fore, there is a need to explore new reaction mechanisms to 
improve the synthesis efficiency of new elements.

2.2 � Superheavy nuclei produced by cold fusion 
reactions

In 1974, researchers at JINR explored an alternative 
reaction mechanism to synthesize new SHNs [47]. By 
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employing 206−208 Pb targets and 50 Ti and 54 Cr projectiles, 
they discovered new isotopes of 255,256 Rf and 260 Sg [48, 
49]. Because of the reduced mass asymmetry of these 
reaction systems and the high binding energies of the 
reaction partners, the excitation energies of the formed 
compound nuclei were suppressed. This resulted in a 
de-excitation process requiring the emission of only one 
or two neutrons, thereby reducing competition from fis-
sion. Compared to reactions involving actinide targets and 
light projectiles, this new reaction mechanism exhibited 
enhanced ER cross sections. This approach, characterized 
by low excitation energy and fewer neutron emission, is 
referred to as “cold fusion reaction”.

Another advantage of cold fusion reactions is that the 
commonly used 208 Pb and 209 Bi targets are more readily 
available in large quantities than actinide targets. In addi-
tion, the experimental conditions can be simplified as 
they are stable target nuclei. Therefore, GSI in Germany 
had selected this reaction mechanism to investigate the 
synthesis of new SHEs. In 1981, researchers at GSI man-
aged to synthesize element with Z = 107 via the reaction 
54 Cr + 209 Bi → 262 Bh + n [50]. Following this, through the 
reactions 58Fe+208Pb→265Hs+n, 58Fe+209Bi→266Mt+n, 62,64
Ni+208Pb→269,271Ds+n, 70Zn+208Pb→277Cn+n, the SHEs 
with Z = 108–112 were successfully synthesized [51–55].

Based on the cold fusion reaction, dozens of super-
heavy nuclei with Z = 104–110 were also synthesized 
in the GSI [54, 56–61]. In addition, Berkely synthe-
sized 267 Ds in the 1n-emission channel of the reaction 59
Co+209 Bi [62]. The synthesis of 271 Ds via the reaction 64
Ni+208 Pb was also studied by researchers at IMP [63].

In 2004, RIKEN employed the reaction 70 Zn + 209 Bi 
and successfully synthesized the element with Z = 113 in 
the 1n-evaporation channel [27]. However, the ER cross 
section was only 0.03pb, which is 107 times smaller than 
the ER cross section for synthesizing Bohrium. As shown 
in Fig. 1, there is an exponentially decreasing trend in 
the ER cross sections as the proton number of the formed 
compound nucleus increases [64]. This decrease is pri-
marily due to the strong hindrance to the fusion of collid-
ing nuclei caused by increasing Coulomb repulsion [65], 
as well as the deviation of the deformed subshell with Z 
= 108 and Z = 162 [66, 67]. The synthesis of SHN with 
Z ≥ 113 encounters significant challenges owing to the 
extremely small ER cross sections, which have reached 
the limitation of experimental detection. In addition, the 
limited number of neutrons in heavy projectiles results 
in the formation of compound nuclei closer to the proton 
drip line, which decreases their stability and makes detec-
tion even more challenging.

2.3 � Superheavy nuclei produced by 48Ca‑induced 
hot fusion reactions

To reduce the hindrance caused by Coulomb repulsion, 
researchers at JINR explored combinations of 48 Ca projec-
tile and actinide targets. The selection of 48 Ca as a projec-
tile is due to its doubly magic nature with a high binding 
energy, which enhances fusion probabilities and lowers 
the excitation energy of the formed compound nuclei. 
Moreover, the high neutron excess of 48 Ca contributes to 
the formation of neutron-rich compound nuclei. These 
neutron-rich nuclei tend to exhibit greater stability due to 
the reduced Coulomb repulsion among protons, a factor 
that is particularly crucial for superheavy elements, which 
possess large atomic numbers and therefore significant 
Coulomb forces acting against their stability.

In Table 1, the characteristics of the three types of 
fusion reaction are presented. Although the excitation 
energies in hot fusion reactions are higher than those in 
cold fusion reactions, leading to a lower survival prob-
ability of compound nuclei, the fusion probability in hot 
fusion reactions is enhanced by the high mass asymme-
try of the reaction systems. Additionally, the neutron-rich 

Fig. 1   (Color online) The measured ER cross sections for produc-
ing SHN via cold fusion reactions. Open symbols mark the data of 
the 1n-emission channel in cold fusion reactions based on different 
projectiles and 208Pb, 209 Bi targets. The solid symbol represent data 
provided by SHANS2 experiments. Dashed line is drawn to guide the 
eye. Reproduced from Ref. [64]
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projectile 48 Ca results in the formation of compound nuclei 
with a greater  neutron excess. The increased neutron-to-
proton ratio in these compound nuclei enhanced their bind-
ing energy and stability.

The first hot fusion reactions began with the 244 Pu tar-
get, leading to the discovery of three isotopes of Flerovium, 
287−289 Fl [68]. Subsequently, elements with Z = 115–118 
were synthesized using targets of 243Am, 248Cm, 249Bk, and 
249Cf, thereby completing the seventh period of the periodic 
table [29, 31–33, 69]. The maximal ER cross sections for 
the hot fusion reactions are shown in Fig. 2. This reveals 
that the maximal ER cross sections increase as the proton 
number of the formed compound nucleus approaches the 
predicted shell closure at Z = 114 , which is consistent with 
the increased fission barrier height predicted by macro-
microscopic theory [70, 71]. Moreover, a new isotope of 
element 113 was discovered through the reaction 48 Ca + 237
Np, with an ER cross section of 0.9pb, which is an order of 
magnitude higher than that for synthesizing element 113 via 
cold fusion reactions [72].

Figure 3 illustrates the SHNs synthesized through three 
types of fusion reactions, including those identified in the 
decay products. Compared with the other two types of fusion 
reactions, hot fusion reactions are particularly effective in 
synthesizing nuclei with higher proton numbers and greater 

Table 1   Comparative summary of early fusion, cold fusion, and hot fusion reactions

Aspect Early fusion reactions Cold fusion reactions Hot fusion reactions

Projectile Light nuclei with Z = 6–18 Heavy nuclei with Z = 22–30 Double magic nucleus 48Ca
Target Actinide targets Pb or Bi targets Actinide targets
Excitation energy Higher, leading to 3–5 neutron emis-

sion
Lower, leading to 1–2 neutron emission Higher, leading to 3–5 neutron 

emission
ER cross section range From microbarn range to picobarn 

range
From microbarn range to femtobarn 

range
Picobarn range

Character of products Neutron-deficient, Z = 104–110,
less stable

Neutron-deficient, Z = 104–113,
less stable

Neutron-rich, Z = 104–118,
potentially more stable

Successful synthesis Elements 104 to 106 Elements 107 to 113 Elements 114 to 118

Fig. 2   (Color online) The measured ER cross sections for producing 
SHN via reactions induced by the 48 Ca beam. The measured data are 
shown by solid squares. Dashed line is drawn to guide the eye. Repro-
duced from Ref. [65]

Fig. 3   (Color online) The 
superheavy nuclei chart. The 
yellow, red and blue squares 
denote SHN synthesized via 48
Ca-induced hot fusion reaction, 
cold fusion reaction and early 
fusion reaction, respectively. 
The predicted centers of the 
“island of stability” are indi-
cated by the black dashed lines
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neutron excess. Consequently, hot fusion reactions have 
become increasingly favored for the synthesis of new SHNs 
in recent years.

In 2021, GSI investigated the reaction 48 Ca + 242,244 Pu 
and discovered a new isotope, 280Ds, from decay descend-
ants [73]. In 2022, researchers at Dubna identified 286 Mc 
in the 5n-emission channel of the reaction 48 Ca + 243 Am 
[74]. In 2023, they explored the reaction 48 Ca + 232 Th and 
discovered a new isotope 276Ds, with 272 Hs and 268 Sg identi-
fied among the decay products [75]. This reaction was reat-
tempted in 2024, leading to the discovery of 275 Ds in the 
5n-emission channel [40].

3 � Experimental facilities

Modern heavy ion research centers such as HIRFL in China, 
RIKEN in Japan, GSI in Germany, JINR in Russia, GANIL 
in France, LBNL, and LLNL in the USA have made signifi-
cant progress in the synthesis of new isotopes with Z ≤ 118 
[27, 63, 67, 74, 76–80]. The largest heavy ion research facil-
ity in China is HIRFL at IMP [81, 82]. Its accelerator sys-
tem consists of two cyclotrons (SFC and SSC), a synchro-
tron (CSRm), and a storage ring spectrometer (CSRe), as 
depicted in Fig. 4. Typically, the SFC is used as an injector 
for the SSC. Ions generated by the ion sources are first accel-
erated by the SFC and then injected into the SSC for further 
acceleration. The heavy ions provided by both cyclotrons 
can be accumulated, cooled, and accelerated in CSRm, then 
extracted to produce radioactive ion beams (RIB) or highly 
charged heavy ions. These secondary beams are accepted 
and stored in CSRe for various internal target experiments. 
In recent years, researchers at IMP have successfully syn-
thesized 38 new nuclei, including 23 heavy and superheavy 
nuclei, based on HIRFL and other accelerators [83–95].

The UNILAC installed in 1975 at GSI is capable of accel-
erating all ion species from protons to uranium with energies 

ranging from 1.4 MeV/u to 11.4 MeV/u [96, 97]. Over the 
past 40 years, experiments using beams from UNILAC have 
successfully produced elements with Z = 107–112 and more 
than four hundred new isotopes [5]. Additionally, UNILAC 
along with the Heavy Ion Synchrotron SIS18, will serve as 
a high-current heavy ion injector for the new Facility for 
Antiproton and Ion Research (FAIR) Synchrotron SIS100 
[98, 99].

The linear accelerator RILAC, constructed in 1975 at 
RIKEN, successfully synthesized approximately 200 new 
isotopes and made significant contributions to the synthesis 
and discovery of Nihonium [5, 100]. To facilitate the syn-
thesis of new SHEs with Z = 119 , RILAC was upgraded 
to a superconducting linear accelerator system (SRILAC) 
in 2020 [101, 102]. The beam energy was increased from 
5.5 MeV/u to 6.5 MeV/u, enabling SRILAC to play a major 
role in the synthesis of even heavier new elements.

The Flerov Laboratory of Nuclear Reactions (FLNR) 
in JINR has produced more than 200 new isotopes using 
two primary cyclotrons, DC-280 and U-400 [69, 103]. The 
U-400 accelerator, established in 1979 and continuously 
upgraded, plays a significant role in the synthesis of ele-
ments with Z = 113–118. To further explore the SHE region, 
DC-280 was developed in 2018, offering beam energies 
ranging from 4 MeV/u to 8 MeV/u and beam intensities up 
to 10 pμA , making it particularly suitable for the synthesis 
of new SHN [104–106].

The 88-inch Cyclotron Facility at LBNL was first com-
missioned in 1961 and has been in operation for over six 
decades. It has played a crucial role in the discovery of more 
than 600 isotopes [5, 100, 107]. In 2022, the construction of 
the Facility for Rare Isotope Beams (FRIB) was completed. 
The superconducting driver linac in the recently developed 
FRIB at MSU can accelerate the 238 U isotope with a beam 
energy greater than 200 MeV/u, which provides access to the 
production of thousands of new nuclei [108–111].

Progressive and expansive research in nuclear phys-
ics continues to drive the upgradation and modernization 
of accelerators. The High-Intensity Heavy Ion Accelera-
tor Facility (HIAF) is a next-generation storage ring-based 
heavy ion facility developed by IMP, with expected comple-
tion by 2025 [112, 113]. HIAF integrates a linear accelerator 
and a synchrotron accelerator to deliver high-energy heavy 
ion beams ranging from hydrogen to uranium. The principal 
goal of HIAF is to synthesize new superheavy nuclei and 
elements [114, 115]. In parallel, other advanced accelerator 
facilities, such as the FAIR SIS 100 at GSI, NICA-Booster in 
Dubna, and EURISOL in Europe, are currently under design 
and construction [116–118]. The comprehensive beam 
parameters for these facilities are detailed in Ref. [114].

For the synthesis of a new SHN, the expected ER cross 
sections are on the order of picobarns, with half-lives 
ranging from microseconds to several days [119]. The 

Fig. 4   (Color online) The layout of HIRFL complex. Reproduced 
from Ref. [82]
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predominant decay modes for these unknown nuclei are 
predicted to be alpha decay and spontaneous fission. 
Therefore, decay products are typically separated and 
implanted into radiation-sensitive Si detectors. The detec-
tion of rare alpha-decay events from the synthesized SHN 
is then carried out against a significant background of 
side reaction products.

Currently, several kinematic separators have been 
employed in the study of heavy nuclei. Velocity filter 
SHIP at GSI and SHELS at JINR are notable examples 
[120, 121]. These facilities specialize in the separa-
tion and identification of heavy nuclei fragments using 
velocity filtering techniques. In addition, gas-filled mag-
netic separators, such as DGFRS-2 at JINR, TASCA at 
GSI, BGS at LBNL, GARIS-II at RIKEN, and SHANS 
at HIRFL, are employed to enhance the separation and 
detection of SHEs [122–127]. The detailed design of gas-
filled recoil separators is described in Ref. [77]. These 
separators enable effective separation and high-sensitiv-
ity detection, which are critical for advancing the SHE 
research.

In recent years, the next generation of separators 
has been gradually put into operation. The GARIS-III 
at RIKEN was completed as part of an upgrade project 
in 2020. With enhanced resolution and advanced detec-
tor arrays, the aim was to investigate reactions with ER 
cross sections as low as 10 fb [102, 128]. In 2022, the 
CAFE2 Program at IMP initiated the development of a 
new gas-filled recoil separator, SHANS2, as illustrated 
in Fig. 5. Through a series of performance tests involving 
the reactions 40 Ar + 175Lu, 40 Ar + 169Tm, 40 Ca + 169Tm, 
and 55 Mn + 159Tb, SHANS2 demonstrated its effective-
ness and reliability, highlighting SHANS2 as a critical 
tool for advancing research in the field of SHE synthesis 
[129, 130].

4 � Theoretical models

Currently, experiments aimed at investigating superheavy 
regions encounter several challenges. The target materials 
available are rare, expensive, and prone to contamination 
during experiments. Additionally, the limited beam inten-
sity of accelerators requires long irradiation times, and the 
expected ER cross sections have already reached the detec-
tion limits. As a result, it is necessary to develop theoreti-
cal models that can provide precise predictions for optimal 
projectile-target combinations, incident energies, expected 
yields, and assess the feasibility of experimental plans.

Based on extensive experimental data, two main types 
of theoretical approaches have been developed to describe 
fusion-evaporation reactions. One type is the microscopic 
models, such as the quantum molecular dynamics (QMD) 
model [131–133] and time-dependent Hartree-Fock (TDHF) 
theory [134–138]. The other type is the macroscopic phe-
nomenological models, including the fusion-by-diffusion 
(FBD) model [134, 139, 140], dynamical cluster-decay 
model (DCM) [141, 142], two-step model [143–146], statis-
tical model [147], multidimensional Langevin-type dynami-
cal equations [148–151], and dinuclear system (DNS) model 
[9, 152–161].

4.1 � Microscopic models

Microscopic models start with basic nucleon-nucleon 
interactions, often described by effective potentials such 
as Skyrme potentials. These models require self-consistent 
field calculations, in which each nucleon moves within the 
mean field generated by all other nucleons. Microscopic 
models offer a deep understanding of nucleon behavior and 
can explain and predict a wide range of nuclear phenom-
ena. However, they often require significant computational 

Fig. 5   (Color online) Schematic view (left) and photo (right) of SHANS2. Reproduced from Ref. [130]
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resources and are limited by the accuracy of the interaction 
models.

TDHF theory can be derived from the time-dependent 
variational principle [162]. In the TDHF, the many-body 
wave function is approximated as a Slater determinant, auto-
matically ensuring the Pauli exclusion principle. The TDHF 
method is a fully microscopic, parameter-free theory that 
unifies the nuclear structure and reactions within a single 
framework. Dynamic and quantum effects are automatically 
incorporated into this approach [163].

By constraining the density distribution obtained from 
the dynamical evolution in the TDHF method, the density-
constrained time-dependent Hartree-Fock (DC-TDHF) 
model can be derived, allowing for the extraction of nucleus-
nucleus potentials in heavy ion reactions. Using this method, 
Ref. [164] investigated the feasibility of forming a com-
pound nucleus with Z = 119 via the 50Ti+249 Bk reaction.

The TDHF model can also be combined with phenom-
enological models to obtain more accurate predictions. In 
Ref. [165], the isotopic dependence of quasi-fission and 
fusion-fission in the production of flerovium isotopes was 
investigated. The TDHF method was applied for fusion 
and quasi-fission dynamics, while the statistical evapora-
tion model HIVAP was used for fusion-fission dynamics. 
Reference [134] examined the orientation effects of the 48
Ca+238 U reaction with the reaction dynamics described by 

TDHF theory, as illustrated in Fig. 6. This study combines 
the TDHF model with coupled-channel and FBD models, 
and predicts that the tip orientation is more favorable for 
both the capture process and formation of the compound 
nucleus in this reaction. Additionally, Ref. [137] combined 
the TDHF method with the Langevin equation, suggesting 
that differences in the probabilities of evaporation residue 
formation among reaction systems primarily originate from 
the evaporation process, which is sensitive to the fission bar-
rier height and excitation energy of the compound nucleus.

The QMD model is a microscopic model derived from the 
classical molecular dynamics (CMD) model and the many-
body Schrödinger equation [166]. In the QMD model, each 
nucleon is represented by a Gaussian wave packet, incorpo-
rating both mean-field effects and two-body collisions [167]. 
Advanced variations of the QMD model, such as the isospin-
dependent quantum molecular dynamics (IQMD) model 
and the improved quantum molecular dynamics (ImQMD) 
model, are particularly effective in describing the processes 
of low-energy heavy ion collisions.

Within the QMD model framework, the fusion process 
is considered to occur when two independent nuclei suc-
cessfully overcome the Coulomb barrier and maintain a 
stable monomer density during rotation or oscillation of 
the compound nucleus. By simulating a large number of 
events, the fusion cross section at a specific incident energy 
can be statistically determined. In Ref. [131], the excita-
tion functions predicted by the ImQMD model for the reac-
tion 48Ca+208 Pu were compared with the results obtained 
from the DNS model and experimental data, as depicted in 
Fig. 7. This work confirmed the reliability of the ImQMD 
model and predicted the optimal projectile-target combina-
tions for synthesizing 243−248 No isotopes. Additionally, Ref. 
[133] applied the IQMD model to investigate the enhanced 
fusion probabilities in reactions with 44 Ca beams, attribut-
ing the enhancement to the rapid development of the neck 
region and the higher neutron-to-proton ratio. The study also 
predicted the optimal projectile-target combinations for pro-
ducing new 245−250 Lr isotopes, along with the corresponding 
incident energies.

4.2 � Phenomenological models

In phenomenological models, dynamical evolution equations 
are established by incorporating certain collective degrees 
of freedom to describe the dynamics of nuclear reactions. 
These approaches simplify the computational process by 
neglecting the intricate interactions among the nucleons. 
With the de-excitation process treated using statistical mod-
els, the HIVAP code, the KEWPIE code or the GEMINI++ 
model [143, 168–171], phenomenological models can be 
effectively applied to heavy ion collision reactions near the 
Coulomb barrier.

Fig. 6   (Color online) Time evolution of the density density of fusion 
reaction 48 Ca + 238 U with 238 U being tip orientation within the frame-
work of TDHF model. Reproduced from Ref. [134]
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One approach for describing the fusion process consid-
ers the dynamic evolution of the formed mononucleus, 
proposing that once the projectile and target nuclei come 
into contact, they rapidly lose their individuality and 
form a highly deformed nucleus. Fusion is considered to 
occur when the deformed nucleus gradually evolves into 
a spherical compound nucleus; otherwise, quasi-fission 
occurs. The macroscopic dynamical model was the first 
to describe the fusion mechanism based on this concept 
[172–175]. In this model, the nucleus is treated as a vis-
cous liquid drop, and the fusion process is regarded as a 
purely dynamic phenomenon that can be described using 

classical equations of motion. However, this model faced 
challenges in reproducing the ER cross sections for fusion 
reactions, as it did not account for the competition between 
fusion and quasi-fission, nor did it incorporate the shell 
effect [176]. To address these limitations, the two-step 
model [143–145, 177] and fusion-by-diffusion model 
[139, 140] introduced shell effects in the calculation of the 
potential energy surface, along with statistical fluctuations 
in the interaction of colliding nuclei [178]. These enhance-
ments have allowed for more accurate reproduction and 
prediction of ER cross sections in fusion reactions.

Fig. 7   (Color online) The 
experimental and calculated 
capture and ER cross sections 
of the 48 Ca + 208 Pb reaction. 
Reproduced from Ref. [131]

Fig. 8   (Color online) Schematic illustration of heavy ion collisions within the DNS model framework. Reproduced from Ref. [179]
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Another description of the fusion process focuses on the 
degree of freedom of the mass asymmetry. In these models, 
the two nuclei retain their individuality and nucleon transfer 
occurs within the formed dinuclear system, as depicted in 
Fig. 8. Fusion is considered to occur when all the nucleons 
from the projectile are successfully transferred to the target 
nucleus. Conversely, quasi-fission process takes place when 
nucleons are transferred from the target nucleus to the pro-
jectile [179].

Based on this assumption, the DNS model was devel-
oped. The nucleon transfer process within the DNS model 
is treated by solving a set of master equations, which are 
governed by the potential energy surface considering nuclear 
structure effects [154]. The calculated results for cold and 
hot fusion reactions using the dinuclear system model match 
well with available experimental data [157, 180]. However, 
this approach initially did not consider the dynamic factors 
influencing the fusion stage. To address this, Ref. [153] cou-
pled the dynamic deformation of the nucleus with nucleon 
transfer within the DNS model, and predicted the ER cross 
sections for the synthesis of a new SHE. In recent years, 
neural networks and machine learning methods have been 
introduced to optimize nuclear data and refine the param-
eters of the theoretical model [181–184].

The nucleon collectivization model offers an intermediate 
approach for describing the fusion process compared with 
the previously mentioned methods [185]. In this model, 
within the formed dinuclear system, a portion of nucleons 
is considered to become “common" nucleon, shared by 
both nuclei. Fusion is thought to occur when all nucleons 
are transformed into common nucleons; otherwise, quasi-
fission occurs. Although this model successfully describes 
the excitation function of hot fusion reactions, the physical 
concept of the introduced common nucleons remains highly 
controversial.

Given the significant difference in the descriptions of 
the fusion process across various models, some research-
ers have attempted to combine fusion mechanisms from dif-
ferent theoretical models and experimental observations to 
develop relatively simple empirical formulas for calculating 
fusion probability [186–191]. These formulas, informed by 

experimental phenomena and theoretical approaches, iden-
tify several influential factors in the fusion process, includ-
ing the excitation energy, quasi-fission barrier, compound 
nucleus mass or charge number, and mass asymmetry [186, 
188, 189]. These empirical formulas effectively reproduce 
the experimental results of the known fusion reactions. 
Recently, a model-independent method, based on the Cou-
lomb barrier height of side-side collisions and Q value, 
was established to predict the optimal incident energies 
for unknown reaction systems [192]. This approach allows 
the estimation of optimal incident energies with minimal 
uncertainty.

5 � Efforts in the Synthesis of New 
Superheavy Elements with Z = 119, 120

Since the synthesis of Oganesson through the reaction 48
Ca+249Cf→ 294Og+3n, the seventh period of the periodic 
table was completed. However, for the synthesis of SHE 
with atomic numbers Z > 118, the 48Ca-induced fusion reac-
tions are restricted by the limited availability of Einsteinium 
and Fermium targets. Consequently, heavier beams, such as 
50Ti, 51 V, and 54Cr, must be applied.

The experimental attempts to synthesize a new SHE are 
summarized in Table 2. Initially, GSI attempted to synthe-
size the SHE with Z = 120 using the reaction 64Ni+238 U in 
2008 [193], and JINR attempted the reaction 58 Fe + 244 Pu 
in 2009 [194]. However, no corresponding � decay chains 
were observed in these experiments. In 2016, GSI attempted 
to synthesize element with Z = 120 via the reaction 54 Cr 
+ 248 Cm [195, 196], observing three � decay chains attrib-
uted to 299120 . Unfortunately, these were later identified as 
random events [197]. Additionally, in 2020, GSI conducted 
experiments to search for the new elements with Z = 119 
and Z = 120 using the reactions 50 Ti + 249 Bk and 50 Ti + 249
Cf, respectively, but no evidence of a new SHE was found 
[198]. In 2022, RIKEN investigated the quasielastic bar-
rier distribution for the reaction 51V+248 Cm and deduced 
the optimal reaction energy for synthesizing element with 
Z = 119 through this reaction [199].

Table 2   The experimental progress of the synthesis of SHEs with Z > 118

Element    Year     Laboratory Reaction Results Detection 
limit

   Ref.

Z = 120    2008 GSI 64Ni+238U No observed � decay chain 0.09 pb    [193]
Z = 120    2009 JINR 58Fe+244Pu No observed � decay chain 0.4 pb    [194]
Z = 120    2016 GSI 54Cr+248Cm Three observed random � decay chains 0.58 pb    [195]
Z = 119    2020 GSI 50Ti+249Bk No observed � decay chain 0.065 pb    [198]
Z = 120    2020 GSI 50Ti+249Cf No observed � decay chain 0.2 pb    [198]
Z = 119    2022 RIKEN 51V+248Cm Optimal reaction energy estimated    [199]
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In 2024, the reaction 50Ti+244 Pu was investigated at the 
LBNL 88-Inch Cyclotron Facility, producing an isotope 
290 Lv with an ER cross section of 0.44 pb [200]. Although 
the ER cross section is lower than that of the 48Ca-induced 
reactions, this experiment proves the feasibility of using a 
50 Ti beam for the production of a new SHE [201]. Recently, 
the upgraded experimental facility HIFRL-CAFE2 was 
tested using the reaction 48 Ca + 243Am. The synthesis of 
the element with Z = 119 via the reaction 54 Cr + 243 Am is 
currently underway. JINR has also planned to explore the 
reactions 50 Ti + 249 Bk and 54 Cr + 243 Am for synthesizing 
the 119th element, as well as the reactions 50 Ti + 249 Cf and 
54 Cr + 248 Cm for the 120th element [202]. The nuclei to be 
searched are summarized in Fig. 9.

Various theoretical models have predicted the optimal 
projectile-target combinations and corresponding incident 
energies for new elements beyond Oganesson via fusion 
reactions [140, 142, 143, 153, 157, 188, 189, 203–210]. 
Figure 10 shows the optimal reaction energies predicted in 
Ref. [157] and estimated by RIKEN for the reaction 51 V 
+ 248Cm, with a strong agreement between the predicted 
and estimated energies. As summarized in Ref. [157] and 
Ref. [200], most models identify the reactions 50 Ti + 249 Bk 
and 50 Ti + 249 Cf as advantageous for producing SHE with 
Z = 119 and Z = 120 . The predicted maximal ER cross sec-
tions from different models generally fall within the feto-
barn range, although the optimal incident energies can differ 
by several MeV for certain reactions. Additionally, based 
on measurements of the mass and angular distributions of 
fission fragments, Ref. [211] also predicted that the reac-
tion 50 Ti + 249 Cf shows promise for synthesizing SHE with 
Z = 120 . For the synthesis of SHE with Z = 121 , Ref. [156] 
suggested that the reactions 46 Ti + 252 Es and 46 Ti + 254 Es 
could be feasible in future experiments, with maximal ER 
cross sections expected to reach several fetobarns.

Recently, researchers proposed high-energy alpha par-
ticle emission as a novel mechanism for synthesizing new 
elements [212]. In the experiments conducted at JINR, the 
energy spectra of � particles emitted from the reactions 40 Ar 
+ 232 Th and 48 Ca + 238 U at near-barrier energies were meas-
ured. The results indicated that at the kinematic limit, the 
observed cross sections were in the picobarn range. These 
experiments revealed that two-body reactions facilitate the 
production of heavy residue nuclei with minimal excita-
tion energy, thereby enhancing their survival probability. 
Consequently, this reaction mechanism can potentially pro-
duce SHN with ER cross sections that are several orders of 
magnitude greater than those achieved through traditional 
fusion-evaporation reactions.

Fig. 9   (Color online) SHN region with Z ≥ 114. Green, purple and 
yellow colors represent the synthesized SHNs, SHNs planned to be 
searched and SHNs with a clear path to discovery. The theoretically 

predicted most feasible reactions for synthesizing elements with 
Z = 119 and 120 are marked with red boxes. Reproduced from Ref. 
[202]

Fig. 10   (Color online) Comparison of the optimal reaction energy 
predicted by DNS model and estimated by RIKEN [199] for the reac-
tion 51 V + 248Cm. Reproduced from Ref. [157]
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6 � Current Challenges and Future Directions

The synthesis of new SHNs faces several challenges, includ-
ing short half-lives and high instability of both the target 
materials and the produced nuclei [213, 214]. The maximal 
ER cross sections in the hot fusion reactions also approached 
the detection limit. Moreover, the limited availability of acti-
nide targets requires the use of heavier projectiles in future 
experiments [200], which is expected to further suppress 
ER cross sections compared to those induced by 48Ca. To 
address these challenges, nuclear physics laboratories world-
wide are upgrading their equipment, as discussed in Sect. 3, 
to achieve higher beam intensities and enhanced detection 
precision.

In various theoretical models, many assumptions and 
approximations have been adopted, such as employing the 
double-folding potential with a sudden approximation to cal-
culate the nuclear potential, assuming quadrupole or hexa-
decapole deformations of the nucleus, and using empirical 
surface diffusion coefficients. The fission barrier in the de-
excitation process is typically described in one-dimensional 
parameterized form. Precise nuclear masses of superheavy 
nuclei are also crucial [215–217]. As demonstrated in Refs. 
[218, 219], even predictions made using the same model 
can vary significantly when based on different mass tables.

Although these assumptions and approximations are nec-
essary because of the current limitations in computational 
resources and theoretical development, the uncertainties 
introduced by empirical parameters and approximations 
constrain the extrapolative capability of the models and can-
not be ignored. Some studies have attempted to estimate the 
uncertainties originating from these empirical parameters 
or to constrain them using microscopic approaches [146, 
157, 158, 220]. However, a comprehensive evaluation of 
the uncertainties introduced by these empirical methods is 
required.

Calculations in the SHN region using microscopic models 
involve handling the interactions among a large number of 
nucleons, often resulting in computation times ranging from 
several months to years. This limitation significantly restricts 
the application of microscopic models in SHE research. 
While advancements in computational power, as predicted 
by Moore’s law, may alleviate this issue, the introduction 
of new parallel computing methods presents a more imme-
diate solution. Researchers are exploring ways to identify 
the key physical degrees of freedom in nuclear reactions 
to develop new phenomenological models. Additionally, 
the limited amount of experimental data from 48Ca-induced 
reactions hinders the verification of theoretical models, rais-
ing concerns regarding their reliability when extrapolating to 
reactions involving heavier projectiles. More experimental 

data from a variety of projectile-target combinations are also 
needed to develop more robust theoretical models.

Currently, � decay tagging is the primary technique for 
identifying reaction products, but it is limited by the require-
ment that synthesized nuclei have suitable half-lives and 
unambiguous decay chains. As a result, many SHNs in the 
neutron-rich region cannot be identified using this method. 
Therefore, new identification techniques, such as high-pre-
cision mass measurements, laser resonance ionization, and a 
combination of mass separation with decay tagging, should 
be considered [221–223].

The relatively low neutron-to-proton ratio in both the pro-
jectile and target nuclei during the fusion reactions leads to 
the formation of a compound nucleus with a reduced neutron 
number. Additionally, the compound nucleus must undergo 
neutron evaporation to reach its ground state, resulting in 
the production of nuclei that are typically neutron-deficient. 
Such conditions present a significant challenge for the pro-
duction of neutron-rich superheavy nuclei, as the heaviest 
available targets are currently 249 Cf and 249Bk.

The actinide target nuclei used in fusion reactions are 
produced through the intense neutron irradiation of targets 
composed of mixed Pu, Am, and Cm in high-flux reactors, as 
illustrated in Fig. 11. Currently, reactors capable of provid-
ing these actinide materials include the High Flux Isotope 
Reactor (HFIR) at the Oak Ridge National Laboratory [224], 
the Advanced Test Reactor (ATR) at Idaho National Labora-
tory [225], and the SM-3 Reactor at the Research Institute 
of Advanced Reactors (RIAR) in Dimitrovgrad [226]. Addi-
tionally, the Jules Horowitz Reactor (JHR) [227] and the 
Tsinghua High Flux Reactor (THFR) [228], which are cur-
rently under construction, will also provide heavy actinide 
targets. In future experiments, new actinide target materi-
als, particularly neutron-rich targets, such as 251 Cf and 254
Es, could be produced and applied in fusion reactions [202].

Theoretical studies suggest an “island of stability” where 
enhanced shell effects lead to long-lived nuclei. However, 
the precise location of this area remains uncertain because of 
the varying predictions from different nuclear models. Mac-
roscopic-microscopic models employing different poten-
tials, such as Nilsson, Woods-Saxon, and folded Yukawa, 
typically locate the center at Z = 114, Z = 184 [11, 12, 229, 
230]. Depending on the selected parameters, self-consistent 
models using Skyrme-Hartree-Fock or relativistic mean field 
interactions predict various combinations of Z = 114, 120, 
124, or 126, and Z = 172 or 184 [14, 15, 15–20]. In recent 
years, researchers have been investigating novel reaction 
mechanisms to explore the neutron-rich superheavy region 
and reach the center of the “island of stability”. Radioactive 
beam-induced fusion reactions have been proposed as meth-
ods for synthesizing neutron-rich SHN [159, 190, 222, 231, 
232]. Additionally, multi-nucleon transfer (MNT) reactions 
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have been suggested as promising approaches for producing 
neutron-rich isotopes [1–3, 222, 232–238].

6.1 � Radioactive beams

Compared to stable beams, neutron-rich radioactive projec-
tiles have higher neutron-to-proton ratios, enabling explora-
tion of the neutron-rich SHN region. Figure 12 summarizes 

the possible radioactive beams that can be generated at the 
Argonne Tandem Linac Accelerator System (ATLAS). How-
ever, a significant challenge for radioactive beam-induced 
fusion reactions is low beam intensity. Although stable beam 
intensities can reach the order of 1012 p/s, the intensities of 
radioactive beams are currently much weaker. To address 
this limitation, modern radioactive beam accelerator facili-
ties, such as the Radioactive Isotope Beam Factory (RIBF) 
and the Second-generation System On-Line Production of 
Radioactive Ions (SPIRAL2) [239, 240], are working on 
upgrading their capabilities to achieve high-intensity exotic 
ion beams [222, 241].

Many theoretical studies have investigated the mecha-
nisms of radioactive beam-induced fusion reactions. Ref-
erence [242] predicted that the reaction induced by the 
neutron-rich radioactive beam 46 Ar could produce new 
neutron-rich nuclei 290−292Fl, provided that the beam inten-
sity was sufficient. Reference [159] explored the production 
of neutron-rich SHN with Z = 105–118 through radioac-
tive beam-induced fusion reactions. Additionally, Ref. [243] 
examined the possibility of reaching the “island of stability" 
via radioactive beams and 244Pu, 248Cm, 249 Cf targets.

6.2 � Multi‑nucleon transfer reactions

Several MNT reaction experiments have been conducted in 
recent years. In 2018, significant � particle emission was 
observed in the reaction 238U+232 Th [244]. A comparison 

Fig. 11   (Color online) Reactor production of transcurium actinides 
from multiple neutron captures and beta decays. The light-colored 
squares represent the target isotopes irradiated under ORNL’s Pluto-

nium-238 Supply Program and Californium-252 Program. The dark-
colored squares represent the heavy actinide target isotopes that can 
be produced. Reproduced from Ref. [202]

Fig. 12   (Color online) a The log10 value of the half-lives (s) and b 
of the beam intensities (p/s) for the nuclei with 10 ≤ Z ≤ 25 . Repro-
duced from Ref. [159]
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between the experimental results and theoretical calcu-
lations suggested the possible formation of unknown 
neutron-rich nuclei with atomic numbers of up to 116, as 
depicted in Fig. 13. However, owing to limitations in the 
detection methods, the cross section information for these 
formed nuclei was not measured. Significant advancement 
in the production of new nuclei via MNT reactions was 
achieved in 2015 at the UNILAC accelerator at GSI, where 
the reaction 48Ca+248 Cm was studied. This experiment 
resulted in the identification of five new neutron-deficient 
isotopes: 216 U, 219Np, 223Am, 229 Am and 233 Bk [245]. These 
findings demonstrate that the MNT reactions can be effec-
tively utilized to synthesize neutron-deficient transuranium 
nuclei. In 2023, RIKEN discovered a new neutron-rich 
nucleus, 241 U, through the MNT reaction 238U+198Pt, dem-
onstrating the feasibility of MNT reactions for producing 
neutron-rich nuclei near the N = 152 subshell [246].

Several theoretical models, such as the DNS model 
[6, 247–251], GRAZING model [252–254], QMD model 
[252, 255, 256], Langevin equations [257, 258], time-
dependent covariant density functional theory [259], and 
TDHF model [256, 260–264] have also been applied to 
investigate MNT reactions. In Ref. [265], the reliability 
of DNS model in MNT reactions was validated, predict-
ing the production cross sections of four new Rf isotopes 
through the 238U+252 Cf reaction. Reference [266] com-
bined the GRAZING model framework with the DNS 
model, significantly enhancing the theoretical descrip-
tions of experimental results for MNT reactions. Reference 
[267] introduced the deformation degree of freedom and 
Monte Carlo de-excitation methods, leading to the devel-
opment of an improved DNS-sysu model, and explored 
the feasibility of reaching the “island of stability” through 

radioactive beam-induced fusion reactions and MNT reac-
tions, as shown in Fig. 14.

Based on the ImQMD model, Ref. [268] studied the 
production cross sections of superheavy isotopes formed in 
the 238U +238 U reaction, finding that the isospin depend-
ence of the fission barrier results in production cross sec-
tions for neutron-rich isotopes 254−256Cf being nearly three 
orders of magnitude lower than those of 249Cf . Reference 
[252] presents a comparison of the mass distributions of 
primary binary fragments predicted by the ImQMD, DNS, 
and GRAZING models with experimental data, as shown 

Fig. 13   (Color online) The measured � particle energy and half-life 
in the 238 U + 232 Th experiment (diamonds). Previous experimental 
results are indicated by the circles and triangles, the theoretical pre-
dictions are denoted by the squares. Reproduced from Ref. [244]

Fig. 14   (Color online) Comparison of the production cross sections 
and cross-section × beam intensity factors for producing the predicted 
double magic nucleus 298 Fl via the radioactive beam-induced and 
MNT reactions. Reproduced from Ref. [267]

Fig. 15   (Color online) Mass distributions of primary binary frag-
ments calculated with the ImQMD (thick solid line), DNS (thin solid 
line), and GRAZING (dash-dot line) model. The experimental data 
taken from Ref. [254] is represented by the open circles. Reproduced 
from Ref. [252]
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in Fig. 15. The study reveals that the DNS and GRAZ-
ING models are primarily suitable for describing transfer 
processes involving only a few nucleons between the pro-
jectile and target. In contrast, the ImQMD model shows a 
high level of agreement with experimental results across 
most mass regions.

For the TDHF model, Ref. [262] observed that in the 
238U +124 Sn reaction, owing to the inverse quasi-fission 
process, 124Sn can transfer a large number of nucleons to 
238U , leading to the formation of new isotopes. By employ-
ing a multidimensional dynamical model based on Langevin 
equations, Ref. [269] explored the production of heavy 
transuranium nuclei during collisions with actinide nuclei. 
The results suggest the feasibility of synthesizing several 
neutron-rich heavy actinide isotopes, with production cross 
sections surpassing 1 μ b. Additionally, new methods based 
on the master and Langevin equations have been applied to 
MNT reactions [270, 271]. The feasibility of MNT reactions 
with radioactive beams has been investigated in several stud-
ies [272–275].

7 � Summary

The search for new superheavy nuclei achieved significant 
success, particularly with the completion of the seventh 
period of the periodic table. Despite these accomplishments, 
the synthesis of elements beyond Z = 118 remains a substan-
tial challenge, largely because of the limited availability of 
actinide targets and rapidly decreasing ER cross sections. 
Employing heavier projectiles is a promising approach for 
the synthesis of new superheavy elements. The feasibility 
of the 50 Ti projectile is experimentally validated. The inves-
tigation of new reaction mechanisms, including radioactive 
beam-induced fusion reactions and multi-nucleon transfer 
reactions, presents promising pathways for producing neu-
tron-rich superheavy nuclei and for approaching the next 
shell closure. Recent developments in theoretical models 
have provided valuable predictions for optimizing experi-
mental conditions. However, the reliability of these models 
requires further validation. Continued upgrades to accelera-
tor beam intensities and detector efficiencies, coupled with 
the development of more precise theoretical models, will be 
crucial for overcoming the challenges associated with the 
synthesis of new superheavy elements.
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