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Abstract
The tensor force changes the nuclear shell structure and thus may result in underlying influence of the collectivity and decay 
properties of the nucleus. We carefully examined the impact of the monopole and multipole effects originating from the 
tensor force on both the collectivity and the matrix element for the neutrinoless double-� (0��� ) decay, using the generator-
coordinate method with an effective interaction. To analyze the effect of the tensor force, we employed an effective Hamil-
tonian associated with the monopole-based universal interaction that explicitly consists of the central, tensor, and spin–orbit 
coupling terms. The interferences among the shell structure, quadrupole collectivity, nucleon occupancy, and 0 ��� matrix 
elements were analyzed in detail. A better understanding of the tensor force would be of great importance in reducing the 
theoretical uncertainty in 0��� nuclear matrix element calculations.
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1  Introduction

The prospect of observing neutrinoless double-� ( 0��� ) 
decay is of great interest, as it would be the most feasible way 
to verify the Majorana nature of neutrinos, and thus demon-
strate lepton-number violation [1–5]. In addition, the meas-
urement of its half-life can provide access to the scale for the 

absolute neutrino mass and mass hierarchy, but it requires 
a reliable description of the underlying nuclear matrix ele-
ments (NMEs) governing the 0��� decay [6, 7]. More prac-
tically, accurate values of NME are crucial for concluding 
a definitive choice and the amount of material required in 
complicated and expensive ��-decay experiments. Because 
0��� decay involves unknown neutrino properties, such 
as the neutrino mass scale, the matrix element cannot be 
measured. On the other hand, it strongly depends on the 
underlying nuclear structures of the parent and daughter 
nuclei; hence, it must be calculated using nuclear structure 
methods. At present, NMEs obtained by various theoretical 
approaches differ by a factor of up to three [7, 8]. Therefore, 
reducing the uncertainty in matrix elements is a crucial goal 
for the nuclear structure community.

An important factor in diminishing the uncertainty is 
a better description of the ground-state (g.s.) wave func-
tions for both parent and daughter nuclei. To achieve this 
goal, there are two main issues that need to be addressed: 
understanding the many-body correlations and the 
nucleon–nucleon interactions that are strongly relevant to 
the 0��� decay NMEs. For the former issue, it was found 
that some collective correlations significantly influence the 
calculations of 0��� decay matrix elements. In particular, 
matrix elements were suppressed when the ground states 
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of the parent and daughter nuclei exhibited different intrin-
sic deformations. This suppression was originally investi-
gated using axial quadrupole collectivity [9–12], and later 
extended to non-axial quadrupole [13] and octupole correla-
tions [14]. It has also been noticed that the transition opera-
tors of �� decay are sensitive to pairing correlations [11, 
12, 15, 16]. The 0��� decay would be favored if one con-
siders like-particle pairing fluctuations [17], but is remark-
ably hindered by taking into account of proton–neutron (pn) 
pairing [18–21]. Thus, fully capturing the interplay among 
collective degrees of freedom is of particular importance for 
improving the accuracy of the 0��� decay NMEs.

To unveil the interplay between collectivity and 0��� 
NMEs, we need a nuclear structure method that can be 
applied to the investigation of 0��� decay and is capable of 
dealing with multiple collective correlations in an explicit 
way. The nuclear structure methods that are most commonly 
used in the 0��� decay matrix-element calculations are the 
interacting shell model (ISM) [22–30], interacting boson 
model (IBM) [31–33], quasiparticle random phase approxi-
mation (QRPA) [18, 19, 34–43], and generator-coordinate 
method (GCM) [10–14, 17, 20, 44, 45]. Among them, the 
so-called quantum number-projected GCM (PGCM) [13, 44, 
45] is appealing because it can treat fluctuations in multi-
ple collective correlations explicitly on the same footing, 
providing a feasible way to evaluate the interference among 
different correlations. It has been shown that the inclusion 
of quadrupole and pn-pairing correlations in GCM calcula-
tions [13, 21, 44] significantly diminishes the large devia-
tion in the 0��� decay NMEs between the previous GCM 
and SM predictions. This indicates that the GCM approach 
captures most of the correlations around the Fermi surface, 
which are important for 0��� decay.

The other key point is to improve the nucleon–nucleon 
interaction. To evaluate whether an effective interaction is 
reasonable for 0��� NME calculations, it would be of par-
ticular interest to study the influence of a specific term on 
the interaction. It has been shown that the tensor force has 
a unique and robust effect on the single-particle energies 
of nuclei throughout the nuclear chart, and hence, changes 
the occupation of nucleons associated with the shell struc-
ture [46, 47]. Consequently, the tensor force interferes with 
the collective motion of the nucleons. For example, occu-
pying specific orbits would provide a larger deformation-
driving effect, inducing enhanced quadrupole collectivity. 
Changing the level density of single-particle orbits around 
the Fermi surface strongly affects the pairing correlations. 
Recently, the tensor force has been found to contribute sig-
nificantly to the low-lying Gamow–Teller distribution and 
hence makes a dramatic improvement in predicting single-� 
decay half-lives [48]. Therefore, it is very intriguing to eval-
uate the impact of the tensor force on collective correlations 
and the resulting effect on 0��� decay.

To demonstrate the influence of tensor force, the tensor 
term should be incorporated into the effective interaction in 
an explicit and separable form. We propose an analysis of the 
influence of the tensor force on both the collectivity and the 
0 ��� decay NME for candidate nuclei 124Sn/Te,130Te/Xe, and 
136Xe/Ba [5, 49, 50], by applying a PGCM calculation in con-
junction with the effective Hamiltonian arising from the mon-
opole-based universal interaction VMU [47] plus a spin–orbit 
force taken from the M3Y interaction [51]. The VMU inter-
action consists of the central part given by a Gaussian func-
tion in addition to the � - and �-meson exchange tensor force, 
which has been very successful in studying tensor monopole 
effects in previous works [47]. To quantify the impact of the 
monopole effect associated with the tensor force, we can either 
include or exclude the tensor-force term in the effective Ham-
iltonian. This is similar to a previous study that evaluated the 
impact of the tensor force on single-� decay [48] by including 
the tensor force in Skyrme density functionals and the residual 
interaction in the RPA. Here, we consider only the standard 
light left-handed Majorana neutrino exchange mass mecha-
nism, as it is the simplest and most studied mechanism of the 
0��� decay process.

2 � The model

Owing to the shell closure approximation, the 0��� decay 
NME can be computed in terms of the matrix element of a 
two-body transition operator between the g.s. wave functions 
of the parent and daughter nuclei. Our wave functions were 
modified at short distances using a Jastrow-type short-range 
correlation (SRC) function in the parameterization of CD-
Bonn [38]. A more detailed expression of the matrix element 
can be found in Ref. [18]. These many-body wave functions, 
which play a crucial role in the NME calculation, are provided 
by the GCM. We employed a shell-model effective Hamilto-
nian (Heff) in a valence space whose size is free to choose. In 
an isospin scheme, Heff can be written as the sum of one- and 
two-body operators:

where �a stands for single-particle energies, VJT (ab;cd) 
stands for two-body matrix elements (TBMEs), n̂a is the 
number operator for the spherical orbit a with quantum num-
bers (na, la, ja) and

is the scalar two-body density operator for nucleon pairs in 
orbits a, b and c, d coupled to quantum numbers J, M, T,  
and Tz.

(1)Heff =
∑

a

𝜖an̂a +
∑

a⩽b,c⩽d

∑

JT

VJT (ab;cd)T̂JT (ab;cd),

(2)T̂JT (ab;cd) =
∑

MTz

A
†

JMTTz
(ab)AJMTTz

(cd)
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With the effective Hamiltonian, the first step is to gen-
erate a set of reference states �Φ(q)⟩ that are quasiparticle 
vacua constrained to specified expectation values qi = ⟨Oi⟩ 
for different collective operators Oi . Large-amplitude 
fluctuations in multiple collective correlations should be 
treated by further admixing these reference states. Here 
we take the operators Oi which encompass the collective 
coordinates most important for low-lying spectra, and the 
0 ��� NMEs [21]:

where the operator P†

0
 ( S†

0
 ) creates a correlated isoscalar 

(isovector) proton–neutron pair in a single-particle orbit. A 
detailed definition of collective operators can be found in 
Ref. [13]. We do not incorporate the fluctuations in like-
particle pairing which, according to the EDF-based work of 
Ref. [17], slightly increases the NMEs. We can treat these 
fluctuations on an equal footing as those in deformation and 
pn pairing, but at the cost of a tremendous increase in com-
puting time.

We further solved the constrained Hartree–Fock–Bogo-
liubov (HFB) equations for the Hamiltonian with linear 
constraints:

where the NZ and NN are the proton and neutron number 
operators, respectively, �Z and �N are the corresponding 
Lagrange multipliers. The sum over i includes the quadru-
pole operators Q20 and Q22 , with the addition of the isosca-
lar or isovector proton–neutron pairing operator in Eq. (3). 
The �i represents the Lagrange multipliers that constrain the 
expected values of these operators to the specified quantities 
of qi . We solved these equations many times, constraining 
each time to a different point on a mesh in the space of qi.

Once we obtain a set of HFB vacua constrained to 
various collective correlations, the GCM state can be 
composed of a linear superposition of the projected HFB 
vacua, given by

where �JMK;NZ;q⟩ ≡ P̂J
MK

P̂NP̂Z�Φ(q)⟩ . Here, P̂′ s project 
HFB states onto a well-defined angular momentum J and 
its z-component M, neutron number N, and proton number 
Z [52]. The weight function f JK

q�
 , where � is simply an enu-

meration index, can be obtained by solving the Hill–Wheeler 
equations [52]:

(3)
O1 = Q20, O2 = Q22,

O3 =
1

2
(P0 + P

†

0
), O4 =

1

2
(S0 + S

†

0
),

(4)
⟨H�⟩ = ⟨Heff⟩ − �Z(⟨NZ⟩ − Z) − �N(⟨NN⟩ − N)

−
�

i

�i(⟨Oi⟩ − qi),

(5)�ΨJ
NZ�

⟩ =
�

K,q

f JK
q�

�JMK;NZ;q⟩,

where the Hamiltonian kernel HJ
KK� (q;q

�) and the norm ker-
nel NJ

KK� (q;q
�) are given by:

To solve Eq.(6), we diagonalize the norm kernel N  and use 
the nonzero eigenvalues and the corresponding eigenvec-
tors to construct a set of “natural states”. The Hamiltonian 
is then diagonalized in the space of these natural states to 
obtain the GCM states �ΨJ

NZ�
⟩ (see details in Refs. [53, 54]). 

With the lowest J = 0 GCM states as the ground states of 
the initial and final nuclei, we can calculate the 0��� decay 
matrix element M0�.

3 � Effective hamiltonian

The nuclear interaction V can be divided into the central part 
( VC ), spin–orbit part ( VLS ), and tensor part ( VT ), as follows :

The so-called jj55-shell configuration space that comprises 
the proton and neutron 0g7∕2 , 1d5∕2 , 1d3∕2 , 2s1∕2 , and 0h11∕2 
orbitals is used for the calculations of 124Sn−Te, 130Te−Xe, 
and 136Xe−Ba.

The monopole-based universal interaction, VMU [47], and 
the M3Y type spin–orbit interaction [51] (VMU+LS) are used 
to construct the effective Hamiltonian in the present work. 
VMU contains a central force in the Gaussian form ( VC ) and 
a bare � + � meson exchange tensor force ( VT ). ISM investi-
gations, with VMU+LS mainly as the cross–shell interaction, 
have been performed in various regions and generally agreed 
with experimental data [55], such as in psd [56], sdpf [57], 
pfsdg regions [58], 132Sn [59], and 208Pb [60–62] regions. 
Recently, VMU+LS was used, as a unified interaction, to study 
the excitation energies of medium-heavy nuclei around 132 Sn 
and 208Pb [63, 64]. Compared to VMU proposed in Ref. [47], the 
proton–proton (neutron–neutron) central forces in the present 
work were enhanced by 15% (5% ), following the suggestions 
in Refs. [63, 64] to further improve the calculation accuracy 
of the low-lying excitation energies of medium-heavy nuclei. 
The constructed Hamiltonian is examined in Sect. 4 along with 
the discussion of the corresponding results.

(6)
∑

K�,q�

{
H

J
KK� (q;q

�) − EJ
�
N

J
KK� (q;q

�)
}
f JK

�

q��
= 0,

(7)
H

J
KK� (q;q

�) = ⟨Φ(q)�HeffP̂
J
KK� P̂

NP̂Z�Φ(q�)⟩,
N

J
KK� (q;q

�) = ⟨Φ(q)�P̂J
KK� P̂

NP̂Z�Φ(q�)⟩.

(8)V = VC + VLS + VT.
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4 � Results and discussion

An important probe for deformation and associated col-
lectivity is the �-ray spectroscopy of the nucleus. Figure 1 
shows the low-lying level spectra of 124Sn, 124Te, 130Te, 130
Xe, 136Xe, and 136 Ba obtained with or without the tensor term 
compared to the experimental data [55]. Although our calcu-
lated 6 + states are overestimated, most of the low-lying states 
obtained by our calculations, which include the tensor term, 
are in reasonable agreement with the experimental spectra. 
The overestimation of higher spin states could be due to the 
fact that the GCM calculations exclude vibrational motion 
and broken-pair excitation, while these two excitation modes 
may significantly lower the excited states, especially in the 
nearly spherical and weakly deformed nuclei. In general, 
the inclusion of the tensor term significantly improved the 
calculated spectra. The 2+

1
 and 4+

1
 states are lowered if the 

tensor term is included, implying an increase in the quad-
rupole collectivity owing to the impact off the tensor force.

The reduced E2 transition probability, B(E2 ∶ 0+
1
→ 2+

1
) , 

provides another direct probe for quadrupole collectivity. It 
should be noted that there was an inconsistency in the cal-
culations for B(E2 ∶ 0+

1
→ 2+

1
) in this region. Using the same 

SVD interaction, an effective charge set of eeff
n

= 0.88e and 
eeff
p

= 1.88e was suggested for 124Sn/Te in Refs. [28], but a 
set of eeff

n
= 0.5e and eeff

p
= 1.5e was used for 130Te/Xe and 

136Xe/Ba [27]. This inconsistency was resolved using our 
effective interaction. In the current work, we used the canon-
ical effective charges eeff

n
= 0.5e and eeff

p
= 1.5e for all the 

investigated nuclei. The results are compared in Fig. 2 with 
the experimentally adopted values [65]. A strong agreement 
is obtained between the calculated and adopted values of 
B(E2 ∶ 0+

1
→ 2+

1
) with the universal effective charges, indi-

cating an improved description of the quadrupole collectiv-
ity in these candidate nuclei. This improvement is crucial for 
reducing uncertainty in the calculation of the 0��� decay 
matrix.

Similar to low-lying �-ray spectroscopy, incorporating the 
tensor force results in the enhancement of the quadrupole 

Fig. 1   Calculated low-lying energy levels for 124Sn, 124Te, 130Te, 130Xe, 136Xe, and 136 Ba by using the PGCM employed the jj55 Hamiltonian 
excluding or including the tensor term, compared to the experimental data [55]

Fig. 2   (Color online) Calculated B(E2 ∶ 0
+
1
→ 2

+
1
) (in e2b2) obtained 

by using the PGCM with the jj55 Hamiltonian excluding or including 
the tensor term, compared to the adopted values [65]
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collective correlation and hence provides a better agreement 
with the experimentally adopted values of B(E2). It should 
be noted that the increase in quadrupole collectivity is more 
significant in daughter nuclei, that is, 124Te, 130Xe, and 136
Ba. This leads to a larger deviation in the intrinsic deforma-
tion between the parent and daughter nuclei. The underlying 
physics will be discussed in more detail later in this paper.

We then computed the values of 0��� decay matrix ele-
ments of 124Sn, 130Te, and 136Xe. In closure approximation, 
the 0��� matrix element of a two-body transition opera-
tor is computed between the initial and final ground states. 
Assuming an exchange of a light Majorana neutrino with 
the usual left-handed currents, the matrix element is  [18]

where GT, F, and T refer to the Gamow–Teller, Fermi, and 
tensor parts of the matrix elements, respectively. A detailed 
presentation of the forms of Gamow–Teller, Fermi, and ten-
sor transition operators can be found in Refs. [13, 18]. Note 
that the tensor transition operator is unrelated to the ten-
sor term of the effective Hamiltonian. The vector and axial 
coupling constants are taken to be gV = 1 and gA = 1.254 , 
respectively. Wave functions were modified at short dis-
tances using a Jastrow short-range correlation (SRC) func-
tion with CD-Bonn parametrization [18, 38].

The results are listed in Table 1, where the Gamow–Teller, 
Fermi, and tensor contributions are shown. While the Fermi 
parts remain almost unchanged, the Gamow–Teller parts are 
drastically suppressed when the tensor force is considered. 
The total matrix elements given by the calculation, including 

(9)M
0� = M

0�

GT
−

g
2

V

g
2

A

M
0�

F
+M

0�

T
,

the tensor force, are approximately 26 to 40% smaller than 
those of the calculation excluding the tensor force.

The tensor part of the NME, although suppressed if 
the tensor force is included, is negligibly small. This is in 
accordance with other studies that used different nuclear 
structural methods [23, 33, 42]. Therefore, tensor contribu-
tions were neglected [17, 19, 37]. The small tensor contribu-
tions in the NME are mainly attributed to the fact that the 
tensor part is induced by high-order currents. Thus, the two-
body matrix elements of the tensor 0��� decay operator are 
much smaller than those of Gamow–Teller and Fermi matri-
ces. Because the value is small and subtle, it is difficult to 
trace the origin of these numerical changes in tensor NME. 
The interference between the collective correlations and ten-
sor contributions in the NME remains unclear. Further study 
of the tensor part of the NME is required in the future, but 
its negligible contribution may not affect the conclusions we 
present in this work.

Fig. 3   (Color online) Square of the collective wave functions in 124Te, 130Te, 130Xe, and 136 Ba calculated with the jj55 Hamiltonian excluding 
(upper panel) or including (lower panel) the tensor term

Table 1   The nuclear matrix elements obtained for 124Sn, 130Te, and 136
Xe, employing the jj55 Hamiltonian excluding or including the tensor 
term

CD-Bonn SRC parametrization was used

M
0�

GT
M

0�

F
M

0�

T
M

0�

124Sn w/o tensor 3.56 −0.64 −0.061 3.91
w/ tensor 2.65 −0.64 −0.020 3.04

130Te w/o tensor 4.29 −0.75 −0.064 4.70
w/ tensor 3.33 −0.65 −0.015 3.73

136Xe w/o tensor 3.26 −0.44 −0.046 3.49
w/ tensor 2.17 −0.50 −0.009 2.48



	 C.-F. Jiao, C.-X. Yuan 202  Page 6 of 10

The influence of collective correlations on 0��� nuclear 
matrix elements can be evaluated by the collective wave 
functions of the parent and daughter nuclei. The so-called 
collective wave functions are defined to account for the 
probability density of finding the state with a given expec-
tation values of collective operators in Eq. (3). The detailed 
expression for the collective wave functions is given in the 
Eq. (18–19) of Ref. [53]. Note that the sum of collective 
wave functions is normalized to 1. When the probability 
density of finding the state with the specific deformation 
and isoscalar pairing amplitude increases, probability den-
sity of finding the state elsewhere would be suppressed con-
sequently. Figure 3 shows the square of the collective wave 
functions against quadrupole deformation �2 and isoscalar 
pn pairing amplitude. Since the cases 124 Sn and 136 Xe lack 
valence protons and valence neutron holes, respectively, and 
hence cannot change pn pairing, the squares of the collective 
wave functions of these two nuclei are not displayed. It can 
be seen that the largest peaks of collective wave functions 
in these nuclei are pushed, to some different extent, to the 
region with larger quadrupole deformations and isoscalar 
pairing amplitude if the tensor force is incorporated. The 
most apparent case is 136Ba, where a subpeak appears at the 
sphericity in the calculation excluding the tensor force, but 
vanishes when we take the tensor force into consideration. 
Another interesting case occurs in 124Te. When the tensor 
force is included, the increase of the collective wave func-
tions with large quadrupole deformation and larger isoscalar 
pairing forms a dip in the region with near spherical defor-
mation and intermediate isoscalar pairing. Since 124 Sn and 
136 Xe keep their characteristics of sphericity owing to the 
Z = 50 and N = 82 shell closure, respectively, the difference 
of deformations between all the parent and their daughter 
nuclei are enlarged. In addition, the collective wave func-
tions obtained with inclusion of the tensor force spread more 
widely along with the isoscalar pairing, indicating stronger 
isoscalar pairing fluctuations. The effects of both quadrupole 
deformation and isoscalar pairing therefore strongly hinder 
the 0��� matrix elements.

To unveil the underlying connection among tensor force, 
collectivity, and nuclear matrix elements for 0��� decay, the 
HFB effective single-particle energies (ESPEs) for valence 
neutron and proton orbits in 130 Te and 130 Xe are exhibited 
in Fig. 4. In this work, the HFB single-particle energies are 
obtained by diagonalizing the HF Hamiltonian h in the HFB 
equation, which is constructed with the density matrix of 
the HFB solution. For simplicity, only the ESPEs at spheri-
cal shapes and with isoscalar pairing amplitude � = 0 are 
shown. Note that the ESPEs are plotted relative to the 2s1∕2 
orbits. The ESPE is changed by the tensor force itself, as 
well as by re-adjusting the one-body part of the effective 
interaction due to the exclusion of tensor force. By look-
ing at relative ESPEs, one can partly remove the common 

change from re-adjusting the one-body part of the effec-
tive interaction and thus can check the tensor effect more 
directly.

Figure 4 shows that owing to the inclusion of the tensor 
force, all neutron (proton) valence orbits are lowered with 
respect to the neutron (proton) 2s1∕2 orbit. Among them, 
the neutron and proton 0h11∕2 orbits were shifted more sig-
nificantly. Of particular interest, the neutron and proton 
0h11∕2 orbits were suppressed more drastically in 130 Xe 
than in 130Te. It is a complex many-body effect resulting 
from monopole interactions produced by the tensor force 
among all valence nucleon orbits. According to the rules 
discussed in Refs. [46, 66], the monopole interaction pro-
duced by the tensor force between proton 0g7∕2 and neu-
tron 0h11∕2 orbit is attractive. As two more protons in 130 Xe 
mainly occupy the proton 0g7∕2 orbit, the neutron 0h11∕2 orbit 
decreases more remarkably than that in 130Te. Meanwhile, 
the monopole interactions between the proton 0h11∕2 and 
neutron 0h11∕2 , and between the proton 0h11∕2 and neutron 
1d5∕2 orbits are both repulsive. Because the two neutrons 
are mainly removed from the neutron 0h11∕2 and 1d5∕2 orbits 
in 130 Xe when compared to 130Te, the repulsive effects are 
weakened, and thus, the proton 0h11∕2 orbit is pulled down 
more substantially. Similar results were observed for the 124
Sn/Te and 136Xe/Ba.

For all investigated nuclei, the suppression of the pro-
ton 0h11∕2 orbit lifts the proton Fermi surface, whereas the 

Fig. 4   (Color online) Neutron and proton effective single-particle 
energies in 130 Te and 130 Xe at spherical shape relative to 2s

1∕2 orbit, 
with exclusion and inclusion of tensor force
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lowering of the neutron 0h11∕2 orbit pulls the neutron Fermi 
surface down. The Fermi surfaces of both protons and neu-
trons lie closer to the 0h11∕2 midshell if the tensor force is 
included. It should be noted that high-j orbits are expected to 
exhibit a large deformation-driving effect [67, 68]. Because 
the lowering of 0h11∕2 orbit is more significant in the daugh-
ter nuclei of 0��� decays, the deformation-driving effect is 
larger, resulting in a more remarkable enhancement of the 
quadrupole correlations in these nuclei.

In addition, the shift of the valence nucleon orbits induced 
by the tensor force would adequately affect the nucleon occu-
pancies. The change in the ground-state nucleon occupancies 
in the 0��� decays provides an unquestionably important 
constraint on the calculation of the 0��� matrix element, as 
it directly determines which neutrons decay, which protons 
are created in the decay, and how their configurations are 
re-arranged [69].

Recently, the proton occupancies and neutron vacancies 
of 130 Te and 130 Xe have been probed in single-nucleon trans-
fer reactions to a level of precision corresponding to a few 
tenths of that of a nucleon [70, 71]. The total neutron vacan-
cies measured are 4.16 for 130 Te and 6.26 for 130Xe [70]; the 
total proton occupancies are 1.89 for 130 Te and 3.95 for 130
Xe [71], which gives the total change in proton occupan-
cies and neutron vacancies of 2.06 and 2.10, respectively. 
Note that, in a realistic nucleus, nucleons may occupy orbits 
above the valence space or unoccupied orbits frozen in the 
core. Therefore, the measured total proton occupancy and 
neutron vacancy slightly deviate from the expected values 
with respect to the valence space. Figure 5 shows our cal-
culations describing the change in proton occupancies and 
neutron vacancies in the 0��� decay of 130Te→130 Xe system, 
compared to experimental data [70, 71] and two shell-model 
calculations using the GCN5082 interaction [23] and the 
SVD interaction [27]. Notwithstanding the notable discrep-
ancies from the experimental values, our calculation quali-
tatively reproduces the two most important contributions of 
the valence orbits for the nucleons that switch from neutrons 
to protons. The largest change in proton occupancies occurs 
in the 0g7∕2 orbit, and the second largest change occurs in the 
1d orbit. Meanwhile, the largest change in neutron vacancies 
appears in the 1d orbit, and the second largest change is in 
the 0h11∕2 orbit. Note that the inclusion of the tensor force 
improves the description of the change in occupation of 
nucleons. As shown in Fig. 5, our calculation that excludes 
the tensor force overestimates the change in the neutron 
vacancy of the 0h11∕2 orbit. Taking into account the tensor 
force, the neutron 0h11∕2 orbit is pulled down substantially 
and merges into the 1d5∕2 subshell. It reduces the change of 
neutron vacancies in the 0h11∕2 orbit but enhances the change 
in the 1d5∕2 orbit, which is in accord with the measurement.

In Table 2, the calculated NMEs for the 0��� decay 
of 124Sn →

124 Te ,  130Te →130 Xe ,  and 136Xe →136 Ba 

are compared with those given by ISM  [23, 27, 28], 
QRPA  [19, 40, 42], IBM2  [33], GCM in conjunction 
with the non-relativistic energy density functional (NR-
EDF)  [17], and relativistic energy density functional 
(R-EDF) [10]. In general, our M0� ’s are comparable with 
those obtained with the ISM, the QRPA from the Tübingen 
and Jyväskylä groups, and the IBM2, while the NR-EDF 
and R-EDF provide much larger values. The significantly 
large NMEs can be attributed to the lack of pn pairing 
correlation in the density energy functionals, either non-
relativistic Gongny D1S [17] or relativistic PC-PK1 [10]. 
As previously mentioned, the pn pairing fluctuation would 
remarkably suppress the NMEs of 0��� decays. The QRPA 
from the Chapel Hill group exhibited a noticeably small 
NME of 130Te →130 Xe decay. This is because their QRPA 
calculation was based on a single HFB minimum, which 
was spherical for 130 Te and prolate for 130Xe. The sharp 
deformation difference between the parent and daughter 
nuclei suppressed the suppression of 0��� NME. Our 
PGCM calculations adequately addressed the fluctuations 
in shape and pn pairing on the same footing. This would 
fix the above issues and provide a reasonable description 
of the 0��� NMEs.

Fig. 5   (Color online) Change in proton occupancies and neutron 
vacancies between the ground states for the 0��� decay of 130Te→130

Xe. The experimental data  [70, 71] are denoted “Expt.”, compared 
to four different calculations: current works including and exclud-
ing the tensor force (denoted “w/ tensor” and “w/o tensor” respec-
tively), shell-model calculations using GCN5082 interaction (denoted 
“SM1”) [23] and SVD interaction (denoted “SM2”) [27]
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Finally, it should be mentioned that we only discuss the 
NME of 0 ��� decay from the ground state of the parent 
nucleus to that of the daughter nucleus in this work. Actu-
ally, the decay to the low-lying excited states of the daugh-
ter nucleus should also be considered if it is allowed ener-
getically. The NME of this process is strongly quenched 
by the phase-space factor in the standard light left-handed 
Majorana neutrino exchange mechanism [72, 73]. How-
ever, a considerable contribution to the NME from this 
process in the non-standard mechanism cannot be ruled 
out. Further study of 0 ��� decay of NME to the lowest 
2+
1
 state of the daughter nucleus within the framework of 

PGCM would be a desirable next step in the future.

5 � Summary

An analysis of the influence of the monopole effect origi-
nating from the tensor force on both the collectivity and the 
nuclear matrix element of the 0 ��� decay is presented for 
candidate isotopes 124Sn/Te,130Te/Xe, and 136Xe/Ba, using 
the generator-coordinate method with a shell-model effec-
tive interaction. We employ an effective Hamiltonian writ-
ten in terms of the monopole-based universal interaction 
V MU plus a spin–orbit force taken from the M3Y interac-
tion. The so-called monopole-based universal interaction 
consists of central and tensor forces explicitly, and hence, 
could clarify the effect of the tensor force by including or 
excluding the tensor-force term. The monopole effect arising 
from the tensor force is shown to have a significant influence 
on the quadrupole collectivity, nucleon occupancy, and 0 ��� 
matrix element, which could be interpreted by the change 
in the shell structure owing to the novel feature of the ten-
sor force. A better understanding and possible refinement 
of the tensor force would thus be of particular importance 
in reducing the theoretical uncertainty in the calculation of 
0��� nuclear matrix elements.
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