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Abstract

Benchmark experiments are indispensable for the development of neutron nuclear data evaluation libraries. Given the lack
of domestic benchmarking of nuclear data in the fission energy region, this study developed a neutron leakage spectrum
measurement system using a spherical sample based on the 232Cf spontaneous fission source. The EJ309 detector (for high-
energy measurements) and CLYC detector (for low-energy measurements) were combined to measure the time-of-flight
spectrum using the y tagging method. To assess the performance of the system, the time-of-flight spectrum without a sample
was measured first. The experimental spectra were consistent with those simulated using the Monte Carlo method and the
standard 2>2Cf spectrum from 1SO:8529-1. This demonstrates that the system can effectively measure the neutron events
in the 0.15—8.0 MeV range. Then, a spherical polyethylene sample was used as the standard to verify the accuracy of the
system for the benchmark experiment. The simulation results were obtained using the Monte Carlo method with evaluated
data from the ENDF/B-VIII.0, CENDL—3.2, JEFF—3.3, and JENDL-5 libraries. The measured neutron leakage spectra were
compared with the corresponding simulated results for the neutron spectrum shape and calculated C/E values. The results
showed that the simulated spectra with different data libraries reproduced the experimental results well in the 0.15—8.0 MeV
range. This study confirms that the leakage neutron spectrum measurement system based on the 22Cf source can perform
benchmarking and provides a foundation for evaluating neutron nuclear data through benchmark experiments.

Keywords >32Cf - Neutron leakage spectrum - Benchmark experiment - Time-of-flight technique - Evaluated nuclear data -
Spherical samples

1 Introduction forefront of power generation. Although current nuclear

power plants perform well even beyond their expected life-

The dwindling reserves of fossil fuels and the desire to
become less dependent on energy have recently propelled
the need for safe and clean nuclear power to reach the
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time, there is a desire for newer, safer, and more efficient
designs [1, 2]. These factors have driven the development of
novel nuclear power generation systems to meet the grow-
ing energy demand and protect the environment. However,
accurate modeling simulations are required to analyze new
core designs for reactors because of the significant capital
costs associated with the construction of experimental reac-
tors [3, 4]. One of the limiting factors of these simulations
is the accuracy of the nuclear data inputs [5]. An important
part of assessing data credibility is the benchmark experi-
ment [5, 6].

Benchmark experiments provide a means of validating
and improving nuclear data by comparing experimental
results with theoretical predictions. Given their importance,
China has been conducting neutron integral experiments
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since 1960s [7]. Because of the half-life and production costs
of the isotope neutron source, the D-T neutron generator has
been primarily used for benchmark experiments, for exam-
ples those conducted by the China Academy of Engineering
Physics (CAEP) [8—11] and the China Institute of Atomic
Energy (CIAE) [12, 13]. In particular, the CIAE has devel-
oped an integral experimental platform to evaluate nuclear
data in the fusion energy range [12—18]. However, fission
reactors have been the primary source of nuclear energy for a
long time. The accuracy of the neutron-evaluated data in the
fission energy region is of great significance and application
value for developing new reactors and designing miniatur-
ized modular systems. Hence, it is essential to verify nuclear
data within the fission energy range. It is well known that
the 2%U0, spectrum is a typical fission neutron spectrum.
However, 2>°UQ, requires neutron bombardment to initiate
a fission reaction, which makes it unsuitable for this experi-
ment. 232Cf is a spontaneous fission source and its neutron
energy spectrum is similar to that of 2>>UQ,, as illustrated in
Fig. 1 [19]. Therefore, the 23>Cf source is generally used as
a substitute for 2°UO, in experiments that simulate the neu-
tron spectrum generated by a fission reactor [19, 20]. Cur-
rently, experiments for measuring the leakage neutron spec-
trum based on a >>2Cf source primarily use the recoil proton
method, which has a low resolution [21-24]. Additionally,
there is a lack of benchmark results for the latest databases,
such as the CENDL—3.2 library, because the experiment was
conducted relatively early. Consequently, it is essential to
conduct benchmark experiments using a 232Cf source.

This study constructed the first leakage neutron spectrum
measurement system for benchmark experiments based on
the 232Cf source using the time-of-flight (TOF) method in
China. The proposed system utilizes y tagging for coin-
cidence detection. A spherical sample was used for the
experiments, with the source positioned at the center of the
sphere. The EJ309 liquid organic scintillator and Cs,LiYClg
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Fig. 1 Fission neutron spectra of 252Cf and 233U [20]
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:Ce (CLYC) detectors were used in conjunction to meas-
ure the neutron TOF spectrum, especially in the low-energy
region. To assess the measurement capability of the system,
the measured TOF spectrum without a sample was com-
pared with the spectrum simulated using the Monte Carlo
method and the 2°2Cf standard spectrum in 1S0:8529-1 [25].
Subsequently, experiments were conducted using a stand-
ard sample (a polyethylene sphere) to verify the reliability
of the experimental system. The measured leakage neutron
spectra were compared with the results simulated with the
ENDF/B-VIII.0O, CENDL-3.2, JEFF—3.3, and JENDL-5
libraries in terms of the spectrum shape and ratios of cal-
culation to experiment (C/E) for the neutron flux [26-29].
This study provides a new domestic platform for benchmark
experiments and is of great significance for checking and
supplementing nuclear databases.

2 Experiment method
2.1 Experiment setup

The neutron emission rate of the 2>Cf source was greater
than 103 n/s in the entire experiment period. The Silicon
Carbide (SiC) detector for measuring fission fragments to
obtain source neutron information and the take-off signal
detector were positioned close to the source. The layout
of the experimental platform is illustrated in Fig. 2. The
experiments were performed using a spherical sample with
the source located at the center of the sphere. This place-
ment method is closer to practical application conditions,
and it ensures that the nuclear reaction is carried out evenly
in all directions and reduces the influence of the boundary
effect. Thus, relevant information regarding the interaction
between the neutrons emitted by the source at an angle of
4z and the sample can be effectively obtained. The EJ309
detector with a diameter and thickness of 2 in was purchased
from SCIONIX Holland BV, and the energy resolution at
E, = 662keV was <7% FWHM. The CLYC detector (°Li
to > 95%) with a diameter and thickness of 2 in was manu-
factured by Radiation Monitoring Devices, Inc. (RMD). It is
characterized by a high density and good energy resolution
(<5% at E, = 662keV) [30]. This detector is suitable for
thermal neutron and low-energy neutron detection via the
®Li(n, t)a reaction [31]. The EJ309 detector was positioned
200 cm away from the center of the 2>2Cf fission source,
and the CLYC detector was located 100 cm away. Both the
232Cf source and the detector were placed 130 cm above the
ground to reduce the impact of neutron scattering from the
surrounding walls and ground.

All wave signals were acquired using a CAEN DT5730SB
digitizer (14-bit, S00MS/s, 5.12MS/ch) because of its faster
signal processing capability and the provided digital pulse
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Fig.2 (Color online) Experi-
mental arrangement for measur-
ing the neutron leakage time-of-
flight (TOF) spectrum
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processing-pulse shape discrimination (DPP-PSD) software
for online pulse shape discrimination (PSD) analysis. When
the online analysis is insufficient, the digitized signals can be
stored for offline processing [32].

2.2 Take-off signal tagging

The measurement principle of the TOF method is expressed
in Eq. (1).

. T2306L
VE (1)

where ¢ is the time-of-flight (ns), E is the neutron energy
(MeV), and L is the flight-path distance (m). In the case of
a fixed distance between the fission source and detector, the
only variable is the time from the fission event to the neutron
recorded by the neutron detector. Hence, determining the
take-off signal is crucial. For this measurement, the accom-
panying y-rays emitted by fission were used to determine
the timing of the fission events. Because the take-off signal
detector was close to the neutron source in the experiment,
the flight time of the y-ray to this detector was practically
negligible compared to that of the neutron to the second
detector. The feasibility of this approach was demonstrated
by Blain et al. who reproduced the prompt fission neutron
spectrum (PFNS) using the y tagging method [33]. Owing
to the advantages of a fast response time, high detection effi-
ciency for y-rays, and low detection sensitivity for neutrons,
the BaF, detector with a diameter and thickness of 1 in was
used to identify the take-off time in this measurement.

2.3 Coincidence model

The coincidence mode allows for the setting of a variable
length time window. When a pulse is detected in one chan-
nel, the window is initiated; if a pulse is detected in the other
channel during this period, a coincidence event is logged.
The possible types of coincidences that may have occurred
during the experimental process are listed in Table 1. Detec-
tor 1 was used to measure the take-off signal, whereas detec-
tor 2 measured the flight termination signal.

In addition to the y-n events, the y-y coincidence and acci-
dental coincident events still existed in this measurement.
Because y-rays travel at the speed of light, the flight time dif-
ference between two coincident y-rays can reach 6 ns. Regard-
less of the detector at which they arrive, y-rays arrive first, fol-
lowing the corresponding fission event. As shown in Fig. 3, all
y—y coincidence events still fall within the gamma peak region.
This initial peak in the TOF spectrum represents double y-ray
events: either a single photon scattered between the detectors
or two correlated prompt photons. Therefore, the neutron peak
is not affected by the y—y coincidence events. Accidentally

Table 1 Coincident detection mechanisms in the two detectors found
in this measurement

Particle in Particle in Correlation mechanism
detector 1 detector 2
Correlated y from the same fission event
Single y scattered between detectors
Prompt gamma detected in detector 1,
prompt neutron detected in detector 2
y n Prompt gamma detected in detector 1,
scatter neutron detected in detector 2
other other Accidentally coincident events
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Fig.3 The TOF spectrum was measured from a >>2Cf fission source
using EJ309. The Gamma peak seen on the left contains coincident
gamma detections. Events involving neutrons form a “hump” pro-
duced by the range of arrival times for neutrons of different energies.
The initial flight time needs to be redetermined based on y peak infor-
mation

coincident events can be corrected by taking the average count
of the bins that represent the arriving coincidences.

2.4 Neutron detection Efficiency determination

The neutron detector efficiency is a vital parameter that
directly affects the accuracy of the simulated TOF spectra.
Therefore, for the EJ309 neutron detector, the neutron detec-
tion efficiency was accurately obtained using the Monte Carlo
code NEFF under different detection thresholds [34]. The reli-
ability of the calculated efficiency curves was experimentally
calibrated. The absolute efficiencies of the EJ309 detector were
determined by the D-D and D-T neutron generators in CIAE
using the TOF method, and the relative detection efficiencies
were measured by the 2>2Cf source. The experimental detec-
tion efficiencies are in good agreement with the calculated
results of the NEFF code in the range of uncertainty, as shown
in Fig. 4.

The detection efficiency curve of the CLYC detector was
simulated using the MCNP-4C code. This method has been
previously confirmed as feasible, for example, in [35]. The rel-
ative detection efficiencies were measured by the 232Cf source
using the TOF method. As shown in Fig. 5, the calculated
results are consistent with the experimental results within the
uncertainty range.

@ Springer
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Fig.4 (Color online) Detection efficiency of EJ309 calculated by the
NEFF code compared with experimental values in different thresh-
olds

3 Data processing

After the neutron TOF spectrum was measured, it was pro-
cessed according to the process flow as shown in Fig. 6
to obtain pure and reliable neutron events. Subsequently,
the experimental uncertainty was determined based on the
measurement process. The pulse shape discrimination and
background correction are described in this section.
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Fig.5 The detection efficiency curve of the CLYC detector simulated
by MCNP-4C compared with experimental values
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Fig.6 Data processing flow of the measured TOF spectra

3.1 Pulse shape discrimination

To distinguish between the neutrons and y-ray pulses, a pulse
shape discrimination (PSD) technique was performed using
the charge integration method [36, 37]. In this experiment,
when the TOF spectrum based on 22Cf was measured, the
PSD information was obtained by analyzing the data through
the waveform acquisition method. The neutron TOF spectra
were derived by selecting neutron events, as shown in Fig. 7.
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Fig.7 (Color online) 2D plots of pulse shape discrimination (PSD)
versus QDC for the (a) EJ309 and (b) CLYC detectors of the neutron

signals from a 2>2Cf source. The graph shows the ability of detectors

3.2 Background correction

Background correction is crucial for processing the data of
the TOF spectrum. This study had three background com-
ponents: time-independent background, time-dependent
neutron background, and time-dependent y background.
The easiest determination was that of the time-independent
background, which arose from random events that did not
correlate with the fission process occurring in the measure-
ment window. This is shown in Fig. 3, where the count rate
flattens at a long TOF spectrum. This background compo-
nent was eliminated by subtracting the count rate from each
channel in the average 210-300 ns region.

The second background component, the time-dependent
y background, originated primarily from the y decay of fis-
sion fragments [38]. This background is not present in the
EJ309 and CLYC detectors because PSD can remove the
background from y-rays.

The third background component is the time-dependent
neutron background. This affected both the EJ309 and CLYC
detectors and primarily originated from prompt fission neu-
trons scattering off the surrounding structures and scatter-
ing back to the neutron detectors. To determine the impact
of neutron scattering, the background TOF spectrum was
experimentally measured using shadow cones, as shown in
Fig. 8. The effect/background ratio measured by the EJ309
detector was greater than 7, and the CLYC detector dem-
onstrated a ratio exceeding 4. Once all these background
components were corrected from the experimental signal, a
pure TOF spectrum was obtained.
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to distinguish these two types of radiation. The areas framed by red
lines are neutron events

@ Springer



201 Page6of11

Y.-T. Wei et al.

7X1 03 C T I T T T l_._ EX'I:)
3 [

gi} 83 b @ —e— Background

4x10° |

3x10° .

2x10°

1x10°
0

Counts

f N N 1 1 l" I~.

0 50 100 150 200 250 300
Time (ns)

5x102 F b' " EXP ]
ax102 [ (P) & —e— Background
3x10% |- FE 1
2x10% | H ‘i ]
1x10% | K . .

0 . ]
-1x10% ) ) ) . b
0 50 100 150 200 250 300

Time (ns)

Counts

Fig.8 Background spectra measured by the (a) EJ309 detector and
(b) CLYC detector

3.3 Uncertainties analysis

The uncertainties of the present experiment mainly come
from the statistical and systematic uncertainty, as presented
in Table 2. Statistical uncertainty includes the uncertain-
ties of neutron counting and 2>2Cf source neutron counting
(used for data normalization). The systematic uncertainty is
caused by angle ambiguity and relative error of the detector
efficiency.

It can be observed that the neutron counting uncertainty
is the most significant contributor to the overall uncertainty.
For more than 80% of the data points, the statistical uncer-
tainties in the neutron counts measured by the EJ309 detec-
tor in the range of 0.8—8.0 MeV were below 3%. Meanwhile,
the uncertainties in neutron counts measured by the CLYC
detector in the range of 0.15—0.8 MeV were approximately
8%. During the experiment, source neutron counts were
obtained by monitoring the information of the fission frag-
ment 252Cf. Therefore, the uncertainty of the 22Cf source
neutron counting arose from fission fragment counting,
which was 1.31% and 1.22%, respectively, in the two experi-
ments. The angular uncertainty induced by deviations in the

positioning of the samples and detectors was relatively small
at approximately 0.1%. The uncertainty in the detection effi-
ciency stemmed from discrepancies between the experimen-
tal and simulated results.

4 Results

4.1 Capability of the neutron spectrum
measurement system

To verify the capability of the constructed TOF spectrum
measurement system, measurements were first performed
without samples.

4.1.1 Time-of-flight spectrum of the EJ309 detector
without sample

After the data were processed as shown in Fig. 6, the final
TOF spectrum was obtained, as shown in Fig. 9. The TOF
spectrum simulated by MCNP-4C was compared with
the experimental spectrum. The TOF spectrum simulated

T T T T T T T
—mB— The time-of-flight spectrum simulated by MCNP |
—o— The time-of-flight spectrum measured by EJ309

T T T T T T
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Fig.9 TOF spectrum measured by the EJ309 detector without sample
compared with the simulated spectrum

Table 2 Uncertainties in TOF

Uncertainty components
spectra measurements

TOF spectra with polyethyl-
ene standard sample

TOF spectra without sample

50-161 ns 80-162 ns 50-161 ns 80-162 ns
(0.8-8 MeV) (0.1-0.8 (0.8-8 MeV) (0.1-0.8
MeV) MeV)
Statistical ~ neutron counting 2.51% 8.16% 2.40% 7.76%
232Cf source neutron counting  1.31% 1.31% 1.22% 1.22%
Systematic  angle ambiguity 0.1% 0.1% 0.1% 0.1%
neutron detector efficiency 2.88% 3.15% 2.88% 3.15%
Total 4.04% 8.85% 3.94% 8.46%

@ Springer
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showed good agreement with the measured spectrum in the
50-162 ns (0.8-8 MeV) range.

To assess the measurement accuracy of the TOF spectrum
platform, the data were converted from the time domain to
the energy domain using Eq. (1) and compared with the
232Cf standard spectrum from 1S0:8529-1. Owing to the
deviation between the Maxwellian standard spectrum at a
nuclear temperature of 1.42 MeV and the >>Cf experimen-
tal spectrum, the standard spectrum was folded using the
detection efficiency curve [39]. Figure 10 shows the effect
of detector efficiency on the 232Cf standard spectrum. Then,
the experimental spectrum was compared with the folded
standard spectrum, as shown in Fig. 11. The experimental
spectra were consistent with the standard spectrum in the
uncertainty range. Although good consistency was observed
across most of the measured data, the high-energy bins of
the spectrum were somewhat higher than expected, and the
peak value moved toward the high-energy region. This con-
clusion is similar to that of Becchetti, Blainand, and Alex-
ander [20, 40, 41]. Two reasons may explain this. First, this
could be a systematic error stemming from the assumption
that prompt neutrons and y-rays are simultaneously produced
at the same moment in the measurement system. Typically,
prompt fission y-rays are emitted within a nanosecond after
the fission event. However, some fission fragments exist in
metastable states that decay over longer periods [42]. For
short flight times, even minor delays in the gamma emission
times would lead to an overestimation of the neutron energy,
resulting in an overpopulation of the high-energy bins [41].
Second, the °°Cf in the Cf source also has a certain prob-
ability of spontaneous fission, as presented in Table 3. When
the 252Cf source was produced, the atomic number ratio of
22Cf to 2°Cf was approximately 5:1, the decay constant
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Fig. 10 Effect of the detector efficiency on the 232Cf standard spec-
trum. Both curves have been normalized to a value of 1 at 2 MeV
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Fig. 11 252Cf experimental energy spectrum measured by the EJ309
detector compared with the standard 2?>Cf energy spectrum from
1S0O:8529-1 folded with detection efficiency

ratio was approximately 5:1, and the spontaneous fission
branching ratio was approximately 40:1. Therefore, at the
initial stage, the contribution of 2°Cf to the neutron emissiv-
ity was approximately 0.1%, which had a small effect on the
energy spectrum of 2>2Cf. However, the contribution to the
neutron emissivity of 2°Cf gradually increased with time.
This also affected the energy spectrum of 23*Cf.

4.1.2 Time-of-flight spectrum of CLYC detector
without sample

After the data were processed as shown in Fig. 6, the final
TOF spectrum was obtained, as shown in Fig. 12. The TOF
spectrum simulated by MCNP-4C showed the same trend
as the measured spectrum in the 80—187 ns (0.15—0.8 MeV)
range.

Similarly, the TOF spectrum was converted from the
time domain to the energy domain to yield the final PFNS.
In Fig. 13, the 232Cf standard spectrum from 1SO:8529-1
is folded with the efficiency curve of the CLYC detector.
The final comparison results showed that the shape of the
experimental spectrum matched the peak of the ISO:8529-1
spectrum in the low-energy regions. However, the TOF spec-
trum in the 1.2-5 MeV range appeared slightly lower than
expected. In contrast, those in the range over 5.0 MeV were
higher than the standard spectrum, with the peak value mov-
ing toward the high-energy region. This is related to the
CLYC detector that detects neutrons using nuclear reactions.
The neutron recorded by the CLYC detector is mainly caused
by the following reactions [37]: (1) SLi(n, )& (Q-value =
4.783 MeV) thermal neutron reaction; (2) °Li(n, t)a fast neu-
tron reaction; (3) **Cl(n, p)*S (Q = 0.615 MeV) fast neutron

@ Springer
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Table 3 Decay data of Cf Isotope Half life (a) Decay constant (s™') Spontaneous fission Average neutron
isotopes in the. Cf source and probability (%) number of each
daughter nuclides fission
22Cf 2.645 8.304 x 10~ 3.092 3.767
»Ict 898 2445 x 107! 0 -
20c 13.08 1.679 x 10~° 0.077 3.52
28Cm 3.48 x 10° 6.311x 10714 8.39 3.16
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Fig. 12 TOF spectrum measured by the CLYC detector without sam-
ple compared with the simulated spectrum
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Fig. 13 252Cf experimental energy spectrum obtained by the CLYC
detector compared with the standard 2?>Cf energy spectrum from
1S0O:8529-1 folded with detection efficiency

reaction and (4) Cl(n, @)*?P (Q = 0.937 MeV )fast neutron
reaction. The reaction cross-sections are shown in Fig. 14.

@ Springer
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Fig. 14 Cross-sections of the different reactions considered. It is to be
noted that the cross section value for this neutron absorption reaction
at E, ~ 0.025eV is approximately 940 b (not shown in the figure)
[43]

It can be seen that the °Li(n, t)a reaction is mainly effective
when measuring neutrons in the 0.1-1 MeV range, whereas
3Cl(n, p)*>S and *>Cl(n, @)**P are significant for neutron
energies higher than 1.2 MeV. Moreover, a quenching factor
exists in the 3Cl fast neutron reactions [37]. For example,
2.5 MeV neutrons are detected by the **Cl(n, p)*S reaction
(2.5 MeV neutrons have a cross section of 0.19 b), as a sin-
gle energy peak at 2.5 MeV and the Q-value of the reaction,
multiplied by a proton quenching factor equal to 0.9, is 2.8
MeV. As a result, the shift in the peak position at energies
greater than 1.4 MeV leads to poor agreement between the
experimental and standard spectra in the high-energy region.
However, this also proves that CLYC (95% °Li) is more suit-
able for measuring TOF spectra in the low-energy region.

4.2 Verification of the benchmark experiment
reliability with the standard sample

The elastic scattering of neutrons and hydrogen (n—p
scattering) was considered as the standard cross-section.
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Fig. 15 Comparison of the measured and simulated neutron leak-
age TOF spectra with a polyethylene standard sample in the 0.8-8.0
MeV range. (a)The neutron leakage spectrum simulated by MCNP-
4C was compared with those measured with EJ309. (b) C/E variation
between the simulated spectra and measured spectrum
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Fig. 16 Comparison of the measured and calculated neutron leak-
age TOF spectra with a polyethylene standard sample in the 0.15-0.8
MeV range. (a) The neutron leakage spectrum simulated by MCNP-
4C was compared with those measured with CLYC. (b) C/E variation
between the simulated spectra and measured spectrum

Therefore, a benchmark experiment using polyethylene
(® = 12cm) was conducted to ensure the reliability of
the system.

The measured spectra were compared with the spectra
simulated using the MCNP-4C code with ENDF/B-VIII.O,

CENDL-3.2, JEFF-3.3, and JENDL-5 libraries, as shown
in Figs. 15 and 16. The ratios of the calculation to experi-
ment (C/E) obtained by integrating the neutron peaks are
listed in Table 4. The measured neutron leakage spectra
were consistent with the simulated results obtained using
MCNP-4C. In the 0.8-8 MeV (¢t = 50-162 ns) range,
the calculated results were underestimated by approxi-
mately 5%, and the uncertainty was less than 3.94%. In
the 0.15-0.8 MeV range (t = 80—187 ns), the calculated
results were underestimated by approximately 13%, and
the uncertainty was less than 8.46%. Therefore, the experi-
mental results agree well with the simulated results in the
range of 0.15-8.0 MeV. This indicates that the experimen-
tal system and data processing method used in this study
are reliable, which ensures the reliability of conducting
other sample data measurements.

5 Summary

In this study, the first neutron leakage spectrum measure-
ment system for benchmark experiments in China based
on the 232Cf source with spherical samples using the TOF
method was constructed. By utilizing the EJ309 and CLYC
detectors, the platform reduced the energy limit of bench-
marking based on 2>2Cf sources. The experimental spectrum
without the sample showed excellent consistency compared
with the TOF spectrum simulated by the Monte Carlo
method and the standard spectrum of ISO:8529-1, proving
that the system was able to measure the neutron spectrum
in the range of 0.15-8.0 MeV. Subsequently, the neutron
leakage TOF spectra of the polyethylene standard sample
were measured and the simulated spectra were obtained by
MCNP-4C using the evaluated nuclear data from the ENDF/
B-VIII.O, CENDL-3.2, JEFF-3.3, and JENDL-5 libraries.
The essential characteristic properties of the neutron leak-
age spectra were well reproduced by these simulations, with
deviations of less than 3.94% in the 0.8—-8 MeV region and
approximately 8.46% in the 0.15-0.8 MeV region. This dem-
onstrates the ability of the leakage neutron spectrum system
based on the 232Cf source using spherical samples to perform
benchmark tests and proves the feasibility of the entire set
of benchmark experimental methods. This study provides a
research foundation for evaluating key nuclear data based on
the fission spectrum.

Table 4 C/E values of the
spectra integrated over two

Neutron energy C/E value

(MeV)

energy regions ENDF/B-VIIIL.O CENDL—-3.2 JEDNL-5.0 JEFF—3.3
0.8-8.0 0.959+0.038 0.956+0.038 0.960+0.038 0.959+0.038
0.15-0.8 0.880+0.074 0.879+0.074 0.878+0.074 0.880+0.074
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