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Abstract

The sign of higher-order multiplicity fluctuations is a very important parameter for exploring QCD phase transitions. The
kurtosis of the net-baryon is typically negative in simulations of the dynamics of the conserved net-baryon density near the
QCD critical point. This paper considers the effects of finite size on multiplicity fluctuations with equilibrium critical
fluctuations. It is found that the multiplicity fluctuations (or the magnitude of the correlation function D;) are dramatically
suppressed with decreasing system size when the size of the system is small compared with the correlation length, which is
the so-called acceptance dependence. Consequently, the small correlation function of the small system size results in the
magnitude of the negative contribution (~ Dé) in the four-point correlation function dominating the positive term (~ ij),

and this finite-size effect induces a dip structure near the QCD critical point.
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1 Introduction

Exploring the quantum chromodynamic (QCD) phase
structure is one of the most important topics in high-energy
nuclear physics. Simulations using lattice QCD revealed
that the transition from the quark-gluon plasma (QGP)
phase to the hadron phase is a crossover at the vanishing
baryon chemical potential (4 ~ 0) [1-4]. However, effective
theories based on QCD predict that this is a first-order phase
transition at a finite chemical potential [5—10]. Therefore, it
is natural to conjecture the existence of a critical QCD point
between the crossover and first-order phase transitions [11,
12].

The characteristic features of the critical point are long-
range correlation and large fluctuations. After being created
in relativistic heavy-ion collisions, the QGP fireball scans
the QCD phase diagram during the evolution process and
may reach a critical region. Such fluctuating effects may
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affect the final observations of heavy-ion experiments. It was
conjectured that non-monotonic behavior as a function of the
collision energy can be regarded as a signature of the critical
point [13—15]. The first-phase Beam Energy Scan (BES-I)
program at the RHIC has been performed to scan the QCD
phase diagram by tuning the collision energy [16]. Prelimi-
nary measurements of the net proton multiplicity fluctua-
tions showed such non-monotonic behavior with an energy
range of 7.7-200 GeV [17, 18]. However, the statistics of the
BES-I program are insufficient to conclude the observation
of non-monotonic behavior, and much higher statistics are
required in the second phase of BES and FIX target meas-
urements (see, e.g., Refs. [19, 20] for reviews).
Theoretically, the QGP fireball created in relativistic
heavy-ion collisions is a complex system, and several factors
may affect the final behavior of net proton multiplicity fluc-
tuations. For instance, owing to the rapidly expanding effect,
multiplicity fluctuations may deviate from the equilibrium
fluctuations. By considering the dynamic effects induced by
an expanding QGP fireball, it was found that the magnitude
of the fluctuations could be suppressed [21, 22], the sign
could be reversed [23], and the maximum of the fluctua-
tions could be moved from the critical point [24]. Therefore,
remarkable progress has been made in the development of
dynamic models near the QCD critical point. For example,
the dynamics of conserved variables (charge, net-baryon)
have been developed [25-29] and the non-monotonic
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behavior of the fluctuations with respect to the increasing
rapidity acceptance window has been observed [25, 28, 29].
Please see, e.g., Refs. [30-36] for recent reviews.

In particular, the signs of multiplicity fluctuations are
important for exploring the phase structure in heavy ion
experiments. A comparison of the magnitudes of the signs
can be regarded as a more obvious signature of the phase
transition [14, 37]. It was predicted the nontrivial behavior
of the signs of higher-order cumulants or moments of
conserved quantities near the QCD critical point [14, 37].
By developing a dynamic model near the QCD critical
point, it was found that critical slowing-down effects may
flip the signs of higher-order cumulants [23]. Remarkably,
the fourth-order cumulants (or kurtosis) of multiplicity
fluctuations in these conserved dynamical models are
typically negative [26-29]. This is difficult to achieve using
only critical slowing-down effects. This is because the
corresponding memory effects preserve the sign of static
kurtosis above the phase transition curve, which is not always
negative [23]. Thus, the sign of kurtosis is not yet fully
understood in a comprehensive and complex simulation of
conserved dynamic models. This work focuses on studying
the impacts of one of the factors in the conserved dynamic
simulation, that is, finite size effects, on the sign of kurtosis.
In a realistic detection experiment with a finite acceptance
range, only part of the system is collected. This corresponds
to the finite size of the system, and the kurtosis is obtained
within a finite volume in dynamical models. To understand
the typically negative kurtosis near the critical point in
dynamically conserved models, this work is dedicated to
pointing out that the finite size of the detected system may
also modify the sign of the kurtosis by considering the finite
volume when calculating the multiplicity fluctuations in a
static system.

2 Multiplicity fluctuations within finite size
system

Near the phase transition, the thermal variables (this work
focuses on the baryon density ng) strongly fluctuate, and
the corresponding partition function can be written in the
Ginzburg-Landau form [26-29]:

2
Zlul = /DnB exp{ - %/d3x [%né + %(VnB)2

Ay 4 Ay M

+ ?nB + ZnB + ;mB] },
where T denotes the temperature. The kinetic term with
surface tension K is a measure of the interaction range
as well as the nonlinear interaction terms. m = \/E /€ is
inversely proportional to correlation length &. 45 and 4, are
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the coupling constants for three- and four-point correlations,
respectively. In relativistic heavy-ion experiments, the
susceptibility of a conserved quantity is regarded as
sensitive to the QCD phase transition [30, 37-39] because
it represents the magnitude of the response of the systems
against external forces and therefore encodes the correlation
between the particles in the system. In particular, people
are more interested in the susceptibility of the conserved
thermal quantities, such as charge or net-baryon, as they can
be obtained unambiguously from the partition function or
grand potential by taking the derivatives:
J2"P
=g @)

where the pressure has the following form:
T
P==1InZ,
I 3

where V is system volume.
The second-order baryon number susceptibility was
proportional to the two-point correlator.

Vv
22 = = (mg) = (n3)"), )
where (---) denotes event-by-event averaging. The average
correlator over the coordinate space is evaluated using a
finite volume

(né) = V_z/d3x1d3x2(nB(xl)nB(x2)). 3)
v

That is, spatial integration is performed within a finite
volume V. It is noteworthy that (ng) = 0 can be obtained
from Eq. (1). The correlation function (ng(x,)ng(x,)) is
evaluated as follows:

1927 T 5 ePE—)
(nB(xl)nB(x2)> == = (271_)3 /d pr2 +m2' (6)

Zow
This is the Ornstein—Zernicke form of the correlation
function. In the dynamics of conserved baryon
density [26-29], the partition function in Eq. (1) is treated
as the effective potential in the stochastic diffusion equation.
In the linear limit, the dynamic correlation function can be
extended to [40]

(np(x)Ing(x,))
P01 =x2)

T 7
=G / &p K expl-Dip*(Kp? +m)], 7

where the factor exp[—Dip?(Kp*> + m?)] is introduced
to describe the diffusion of the correlation function as a
function of time t and D is the diffusion coefficient. This
factor is introduced to consider the dynamic effects in such
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a static model, and it does not change the following analysis.
If the dynamic factor exp[—Dip?(Kp? + m?)] is neglected,
the spatial integration in Eq. (5) is performed in spherical
coordinates with radii R, and takes the following form:

() = T2 [0 - ) - Reen "] ®)

At the limit of an infinitely large volume R > &, the
second-order baryon number susceptibility approaches the
correlation length y, — &2. This means that the susceptibility
of the system is determined only by the correlation length
£, and not by the size of the system R. This agrees with the
results in Ref. [13]. It can be understood that the number of
correlated particles is determined by £. Particles beyond the
correlation length £ are uncorrelated and do not contribute
to the susceptibility value. However, in the limit of small
size R < &, the second-order baryon number susceptibility
approaches the system size y, — Rz/\/l_(. Within this
limit, the susceptibility of the system is strongly enhanced
by increasing the system size. This is called acceptance
dependence, which was proposed [41, 42] and observed
experimentally [43]. This can be regarded as another
indicator of long-range correlation. When the susceptibility
obtained within a scale R is smaller than the correlation
length £, all detected particles are correlated with each
other. An increasing size R indicates that more particles are
correlated and contribute to the susceptibility.

Higher-order susceptibilities are important observables
for searching the QCD critical point because they are more
sensitive to the correlation length, and their signs are more
obvious than the magnitudes considering the complex
system in relativistic heavy-ion collisions [13, 37]. The
fourth-order susceptibility is given by:

4
Xy = o = <?> [(ng) — 3(ng)71, ©
where the four-point correlation function can be calculated
using Eq. (1):

(ng(xng(x))ng (x3)ng(x,))

4
=—64,T / E [ .+ 12437 / &*ud*vD,,D,, D 3D,,D,,

i=1
+ TX(D1yD3y + D13Dyy + D1yDys),

(10)
where the two-point correlator is (ng(x,)ng(x;)) = TD;;. As
this work focuses on the susceptibility, the disconnected dia-
grams T%(D,,D3, + D3D,, + D ,D,3) are canceled because
of the subtraction term in Eq. (9). The spatial average of
the four-point correlation function Eq. (10) is evaluated
with a finite volume. Appendix A provides a more detailed

description. Integration could not be performed analytically,
so it is evaluated numerically in this study.

3 Parameterization and discussion

To evaluate the various orders of cumulants (or suscepti-
bilities) near the QCD critical point, the behavior of the
correlation length £ and coupling constants 4; and 4, is
required. Lattice QCD suffers from sign problems at large
chemical potentials [12] and the results of effective theo-
ries based on QCD depend on the input parameters. How-
ever, a system near the QCD critical point is believed to
belong to the same universality class as the three-dimen-
sional (3D) Ising model [44—46]. Therefore, the equations
of state and coupling constants near the QCD critical point
can be mapped using the 3D Ising model.

Specifically, in the conserved dynamic model [26-29],
the coupling constants are related to the net-baryon
susceptibility in the zero-mode limit:

2
|4 - Vv -
Ky = T(né) =m72, Ky = <T> (n%) = —2Am,

. (11)
Ky = <?> () = 3(ng)*] = 612043 /m)* = AIm™>.

The net-baryon susceptibilities were mapped from the 3D
Ising model:

K, = T4—nKnIsing , (12)
where the mapping coefficient is non-universal and 74"
is chosen according to the dimensions of the baryon
susceptibility. In the equation of state for the 3D Ising
model, the magnetization M of the Ising system is a function
of the reduced temperature r and external magnetic field A
and can be parameterized as [22]:

M = M,R'30,
r=hyR(1 - 6%),
h=R330 -20%,

13)

where the various orders of Ising susceptibility can be
obtained by

Klsing — "M
n+l oh" r’

n=1,23,- (14)
where R is the distance to the critical point in the phase
diagram and 6 is the corresponding angle with respect to
the crossover curve. M, and h are normalization constants
and M, ~ 0.605, iy ~ 0.394. In addition, the reduced tem-
perature r and external magnetic field 4 are related to the
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Fig. 1 (Color online) The cou-
pling constants of the effective
potential near the critical point,
mapped from the 3D Ising
model

temperature 7 and baryon chemical potential u of the QCD
system through linear mapping [23, 24, 29]:

L
Ar Ap -’
n T-T. (15
Ah AT °

where T, and p_ are the critical temperature and the chemi-
cal potential of the QCD critical point, respectively. The
critical point of the 3D Ising model is located at r = h = 0.
The mapping does not constrain the location of the QCD
critical point (T, u.), which is typically treated as a free
parameter. The behavior of the critical fluctuations is
determined by the position relative to the critical point
in the QCD phase diagram, and not by the absolute val-
ues of T and u. Thus, the location of the QCD criti-
cal point (T, u.) does not affect the qualitative behavior
of ko? and is set as (7., u.) = (0.145GeV,0.16 GeV) in
this study. AT and Ay are the corresponding widths of
the critical region and Ak and Ar are those in the Ising
model. These are non-universal parameters and are set
as AT =T,/8,Au=0.1GeV,Ar=(5/3)**,Ah=1 in
Ref. [29]. By mapping, Egs. (14) and (15), the net-baryon
susceptibilities on the QCD phase diagram (7', u) are con-
structed from those on the (7, #) plane. Therefore, the cou-
pling constants can be obtained using Eq. (11).

This work is dedicated to understanding the sign of
kurtosis in the dynamics of the conserved net-baryon
near the QCD critical point. The coupling constants are
constructed by mapping from the 3D Ising model, as in
Refs. [26-29]. Figure 1 shows the coupling constants
with the temperature T = 0.138 GeV, below the phase
transition curve. The fourth-order net-baryon susceptibility
constructed using the Ising model has a small negative value
on the crossover side (small ) and becomes positive on the
first-order side (large u). As expected, the coupling constant
\/i/m = ¢ exhibits a peak close to the critical chemical
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potential p, = 0.16 GeV. Because the constants plotted with
temperature T < T,, A; and A, have negative and positive
values, respectively.

The second-order (4) and fourth-order (9) susceptibilities
within the finite system were evaluated using a Monte Carlo
integration algorithm. Because the knowledge of the diffu-
sion constant D and surface tension K near the QCD critical
point is limited, they are set to D = 1fm~'and K = 1 fm*,
respectively, and the evolution time 7 is chosen as r = 10 fm.
These were treated as free parameters. As shown in Eq. (7),
the dynamical factor exp[—Dtpl.z(Kp? + m?)] was introduced
to mimic the dynamical effects in the linearized limit [40].
This is far from the realistic dynamic critical fluctuations,
which require a full simulation of the dynamic evolution
equation [26-29]. In this context, the effect of this dynamic
factor is the suppression of the magnitude of the correlation
function Dl-j. As shown below, the sign of ko is determined
by the magnitude of D in the model. Different values of D
and/or ¢ in this model only affect the critical value of the
system size R to obtain the dip behavior of kurtosis. Figure 2
shows the second-order susceptibility within a finite sys-
tem as a function of the radius of the system, with different
correlation lengths &. It can be observed that y, increases
monotonically with increasing size R. For a large corre-
lation length & = 5.0fm, y, strongly depends on the size,
particularly R <« &, indicating the acceptance dependence
of the critical fluctuations in the experiments. However, if
the system is significantly larger than the correlation length
(e.g., & =2.5fm), y, approaches a constant value when the
size is sufficiently large.

Figure 3 presents the kurtosis xc? of the net-baryon
within a finite system near the QCD critical point'. At

! Note that Fig. 3 only shows the kurtosis with temperature below
T,, since the kurtosis above T, behaves similarly to those below T,
because of the symmetry of kurtosis in terms of the phase transition
curve.
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Fig.2 (Color online) Second-
order baryon susceptibility y,
as a function of the radius of
the coordinate space R. Differ-
ent colors represent the input
correlation length &€ = 2.5 fm
and 5 fm

% 10} ]
= [
5} ]
0; ‘ ‘ ]
0 5 10 15

R[fm]

R=16[fm]
R=4{fm]+500
R=8[fm]+300

Solid:T=0.138[GeV]
Dashed:T=0.128[GeV] |

0.12

0.10

Fig.3 (Color online) Kurtosis of the net-baryon x¢? within finite sys-
tem near the QCD critical point. Different colors correspond to the
ones with the radius of the coordinate space R=4 fm, 8 fm, 16 fm,
20 fm, respectively. Solid curves are obtained with a temperature

the limit of a large system (for example, R = 16fm in
Fig. 3), ko2 behaves non-monotonically as a function of
the baryon chemical potential u and presents a negative
value on the crossover side (small u) and a positive value
on the first-order side (large u). This is consistent with an
ideal infinitely large system [14], as shown in Eq. (8) that
the second-order susceptibility approaches the ideal case
1, — &2. However, k¢ within a finite system (for example,
R =41fm in Fig. 3) becomes negative and presents a dip
behavior near the critical point. As pointed out in Fig. 2,
the correlation D;; or the susceptibility strongly depends
on the size of the system and has a small value when the
system is small. As shown in Eq. (10), the fourth-order
coupling term with 4, presents a negative contribution
with four terms of correlators Dij, while the third-order
coupling term with A, contributes positively with five cor-
relators Dys. In the case of a small-magnitude correlator
Dj;, the fourth-order coupling term with 4, dominates and

0414
u[GeV]

016 018 020

(T =0.138GeV) closer to critical temperature 7,, and the dashed
curves are with a temperature (7' = 0.128 GeV) further away from T..
The factor after the unit means the kurtosis has been multiplied for
illustrative purposes (e.g., blue curve corresponds to 500 xc?)

the four-point correlation function (n‘é) can be negative,
resulting in a negative ko near the QCD critical point.
In addition, Fig. 3 also shows that the system is further
away from the critical point (7, = 0.145 GeV) with a
temperature 7 = 0.128 GeV. Compared with the case of
T = 0.138 GeV, the critical signal is weaker, and the mag-
nitude of Dj; is smaller. The magnitude of ko’ is smaller
(purple curve), and it is easier to achieve a negative kurto-
sis (R = 8fm). This means that it is still possible to flip the
sign of kurtosis by tuning the system size R, even with dif-
ferent critical signal strengths. Note that k62 with R = 4 fm
in Fig. 3 was multiplied by a factor of 500 for illustrative
purposes, which is a relatively small value compared to the
case of R = 16 fm. It is notable that the model employed
in this work is an ideal system, and the quantitative mag-
nitude of the “dip” in the small system size requires more
realistic modeling in heavy-ion collisions. The QGP
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fireball created in relativistic heavy-ion collisions is a
fast-expanding finite-size system, and several factors con-
tribute to the final observables of the QCD critical point.
It is typically believed that the dynamical effects (~ &%,
where the dynamical critical exponent z ~ 3 for the QCD
critical point) induced by the expanding effects dominate
the finite-size effects (the finite size of the fireball). This
motivated the study of dynamic modeling near the QCD
critical point in relativistic heavy-ion collisions [30-35].
However, only a part of the system contributes to the final
observables, considering the finite acceptance window
of the detector in the experiments. The net-proton mul-
tiplicity fluctuations in Beam Energy Scan phase I have
already shown acceptance dependence, and the fluctua-
tions with a small acceptance window deviate from those
with a larger acceptance window [43]. Therefore, com-
prehensive dynamic modeling of the critical fluctuations
with a realistic detector acceptance window as well as the
finite size of the QGP fireball is essential for comparison
with the experimental measurement in the upcoming Beam
Energy Scan phase II.

4 Conclusion and outlook

In summary, the signs of higher-order multiplicity
fluctuations play an important role in exploring QCD phase
transitions. In a simulation of the dynamics of the conserved
net-baryon density near the QCD critical point, it was found
that the kurtosis of the net-baryon is typically
negative [26-29]. To understand negative kurtosis in
conserved dynamical models, this study focuses on the sign
of the kurtosis obtained within a finite system, which
corresponds to only part of the system being detected. It was
found that the multiplicity fluctuations (or magnitude of
correlation function D_ij) are suppressed with decreasing
system size when the scale of the system is small comparing
correlation length. This property, called acceptance
dependence, results in a negative contribution from the
fourth-order coupling term 4, (proportional to ~ D;), which
dominates the fourth-order susceptibility y, when the
detected system size is small. However, another term with
A5 (proportional to ~ Dl.sj) in y, makes a positive contribution
that is much smaller than that with 4,. In the dynamic
models of the conserved net-baryon, the kurtosis is obtained
only with part of the system, and this finite number of
particles is detected; the corresponding kurtosis can behave
with a dip near the critical point instead of a peak.

This work focuses on the finite-size effects on the sign
of kurtosis within a static system without considering
dynamic modeling in a realistic experimental context.
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Based on the dynamical model near the QCD critical point
(e.g., based on hydrodynamic model [26—29] or transport
model [47-52]), the realistic finite size of the QGP fireball,
as well as the finite detector acceptance window, requires
proper consideration in future studies of higher-order net-
proton multiplicity fluctuations. In addition, such an analysis
can be performed using other possible observable critical
points, such as the light nuclei yield ratio [53-56].

Appendix A: Expression of spatial average
of four-point correlation function (10)

This appendix presents the spatial average of the four-point
correlation function (10).

4
(”;;) = V_4/Hd3xi<nB(x1)nB(x2)nB(x3)nB(x4)>’ (Al)
V=1

where the detailed expression for the first term is
73 u
3 H 3
— 6/14W d Z/ L d x,-DZl-

3 3 R 4
_ 4\ AT 1 2 .
_—6(;> Vi K ; dzz ,l;[ dp; sin
exp[—Dip}(Kp; + mz)]]
piw;+m/K) |

(P2)(sin(p;R) — p;R cos (p;R))

and the second term is
) 13 303 3
12/13W dud®v [ [x]D, D, Dy3DuD,,

4273 exp[—Dip(Kp? + m?)] 4
4 3 1 p p, ]7[ / .
=6(—-) =—— [ d dp.(sin(p;R
(ﬂ) vi x| s L+ /K ,l—1| Ip;(sin(p;R)

— piRcos(p;R))

expl-Dip?(Kp? + mz)]]
P22 +m?/K)

uy

R
x / dudy i (py ) sin(pyu) sin(pav) sin(psv) sin(psi) sin(psv).
0

The above integrations cannot be performed analytically and
are evaluated numerically using the Monte Carlo algorithm.
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