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Abstract
The sign of higher-order multiplicity fluctuations is a very important parameter for exploring QCD phase transitions. The 
kurtosis of the net-baryon is typically negative in simulations of the dynamics of the conserved net-baryon density near the 
QCD critical point. This paper considers the effects of finite size on multiplicity fluctuations with equilibrium critical 
fluctuations. It is found that the multiplicity fluctuations (or the magnitude of the correlation function Dij ) are dramatically 
suppressed with decreasing system size when the size of the system is small compared with the correlation length, which is 
the so-called acceptance dependence. Consequently, the small correlation function of the small system size results in the 
magnitude of the negative contribution (∼ D4

ij
) in the four-point correlation function dominating the positive term (∼ D5

ij
) , 

and this finite-size effect induces a dip structure near the QCD critical point.
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1  Introduction

Exploring the quantum chromodynamic (QCD) phase 
structure is one of the most important topics in high-energy 
nuclear physics. Simulations using lattice QCD revealed 
that the transition from the quark-gluon plasma (QGP) 
phase to the hadron phase is a crossover at the vanishing 
baryon chemical potential ( � ≃ 0) [1–4]. However, effective 
theories based on QCD predict that this is a first-order phase 
transition at a finite chemical potential [5–10]. Therefore, it 
is natural to conjecture the existence of a critical QCD point 
between the crossover and first-order phase transitions  [11, 
12].

The characteristic features of the critical point are long-
range correlation and large fluctuations. After being created 
in relativistic heavy-ion collisions, the QGP fireball scans 
the QCD phase diagram during the evolution process and 
may reach a critical region. Such fluctuating effects may 

affect the final observations of heavy-ion experiments. It was 
conjectured that non-monotonic behavior as a function of the 
collision energy can be regarded as a signature of the critical 
point [13–15]. The first-phase Beam Energy Scan (BES-I) 
program at the RHIC has been performed to scan the QCD 
phase diagram by tuning the collision energy [16]. Prelimi-
nary measurements of the net proton multiplicity fluctua-
tions showed such non-monotonic behavior with an energy 
range of 7.7–200 GeV [17, 18]. However, the statistics of the 
BES-I program are insufficient to conclude the observation 
of non-monotonic behavior, and much higher statistics are 
required in the second phase of BES and FIX target meas-
urements (see, e.g., Refs. [19, 20] for reviews).

Theoretically, the QGP fireball created in relativistic 
heavy-ion collisions is a complex system, and several factors 
may affect the final behavior of net proton multiplicity fluc-
tuations. For instance, owing to the rapidly expanding effect, 
multiplicity fluctuations may deviate from the equilibrium 
fluctuations. By considering the dynamic effects induced by 
an expanding QGP fireball, it was found that the magnitude 
of the fluctuations could be suppressed [21, 22], the sign 
could be reversed [23], and the maximum of the fluctua-
tions could be moved from the critical point [24]. Therefore, 
remarkable progress has been made in the development of 
dynamic models near the QCD critical point. For example, 
the dynamics of conserved variables (charge, net-baryon) 
have been developed   [25–29] and the non-monotonic 
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behavior of the fluctuations with respect to the increasing 
rapidity acceptance window has been observed [25, 28, 29]. 
Please see, e.g., Refs. [30–36] for recent reviews.

In particular, the signs of multiplicity fluctuations are 
important for exploring the phase structure in heavy ion 
experiments. A comparison of the magnitudes of the signs 
can be regarded as a more obvious signature of the phase 
transition [14, 37]. It was predicted the nontrivial behavior 
of the signs of higher-order cumulants or moments of 
conserved quantities near the QCD critical point [14, 37]. 
By developing a dynamic model near the QCD critical 
point, it was found that critical slowing-down effects may 
flip the signs of higher-order cumulants [23]. Remarkably, 
the fourth-order cumulants (or kurtosis) of multiplicity 
fluctuations in these conserved dynamical models are 
typically negative [26–29]. This is difficult to achieve using 
only critical slowing-down effects. This is because the 
corresponding memory effects preserve the sign of static 
kurtosis above the phase transition curve, which is not always 
negative [23]. Thus, the sign of kurtosis is not yet fully 
understood in a comprehensive and complex simulation of 
conserved dynamic models. This work focuses on studying 
the impacts of one of the factors in the conserved dynamic 
simulation, that is, finite size effects, on the sign of kurtosis. 
In a realistic detection experiment with a finite acceptance 
range, only part of the system is collected. This corresponds 
to the finite size of the system, and the kurtosis is obtained 
within a finite volume in dynamical models. To understand 
the typically negative kurtosis near the critical point in 
dynamically conserved models, this work is dedicated to 
pointing out that the finite size of the detected system may 
also modify the sign of the kurtosis by considering the finite 
volume when calculating the multiplicity fluctuations in a 
static system.

2 � Multiplicity fluctuations within finite size 
system

Near the phase transition, the thermal variables (this work 
focuses on the baryon density nB ) strongly fluctuate, and 
the corresponding partition function can be written in the 
Ginzburg–Landau form [26–29]:

where T denotes the temperature. The kinetic term with 
surface tension K is a measure of the interaction range 
as well as the nonlinear interaction terms. m =

√
K∕� is 

inversely proportional to correlation length � . �3 and �4 are 

(1)
Z[�] = ∫ DnB exp

{
−
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T ∫ d3x
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(∇nB)

2

+
�3

3
n3
B
+
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]}
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the coupling constants for three- and four-point correlations, 
respectively. In relativistic heavy-ion experiments, the 
susceptibility of a conserved quantity is regarded as 
sensitive to the QCD phase transition [30, 37–39] because 
it represents the magnitude of the response of the systems 
against external forces and therefore encodes the correlation 
between the particles in the system. In particular, people 
are more interested in the susceptibility of the conserved 
thermal quantities, such as charge or net-baryon, as they can 
be obtained unambiguously from the partition function or 
grand potential by taking the derivatives:

where the pressure has the following form:

where V is system volume.
The second-order baryon number susceptibility was 

proportional to the two-point correlator.

where ⟨⋯⟩ denotes event-by-event averaging. The average 
correlator over the coordinate space is evaluated using a 
finite volume

That is, spatial integration is performed within a finite 
volume V. It is noteworthy that ⟨nB⟩ = 0 can be obtained 
from Eq. (1). The correlation function ⟨nB(x1)nB(x2)⟩ is 
evaluated as follows:

This is the Ornstein–Zernicke form of the correlation 
function. In the dynamics of conserved baryon 
density [26–29], the partition function in Eq. (1) is treated 
as the effective potential in the stochastic diffusion equation. 
In the linear limit, the dynamic correlation function can be 
extended to  [40]

where the factor exp[−Dtp2(Kp2 + m2)] is introduced 
to describe the diffusion of the correlation function as a 
function of time t and D is the diffusion coefficient. This 
factor is introduced to consider the dynamic effects in such 
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a static model, and it does not change the following analysis. 
If the dynamic factor exp[−Dtp2(Kp2 + m2)] is neglected, 
the spatial integration in Eq. (5) is performed in spherical 
coordinates with radii R, and takes the following form:

At the limit of an infinitely large volume R ≫ 𝜉 , the 
second-order baryon number susceptibility approaches the 
correlation length �2 → �2 . This means that the susceptibility 
of the system is determined only by the correlation length 
� , and not by the size of the system R. This agrees with the 
results in Ref.  [13]. It can be understood that the number of 
correlated particles is determined by � . Particles beyond the 
correlation length � are uncorrelated and do not contribute 
to the susceptibility value. However, in the limit of small 
size R ≪ 𝜉 , the second-order baryon number susceptibility 
approaches the system size �2 → R2∕

√
K  . Within this 

limit, the susceptibility of the system is strongly enhanced 
by increasing the system size. This is called acceptance 
dependence, which was proposed  [41, 42] and observed 
experimentally   [43]. This can be regarded as another 
indicator of long-range correlation. When the susceptibility 
obtained within a scale R is smaller than the correlation 
length � , all detected particles are correlated with each 
other. An increasing size R indicates that more particles are 
correlated and contribute to the susceptibility.

Higher-order susceptibilities are important observables 
for searching the QCD critical point because they are more 
sensitive to the correlation length, and their signs are more 
obvious than the magnitudes considering the complex 
system in relativistic heavy-ion collisions [13, 37]. The 
fourth-order susceptibility is given by:

where the four-point correlation function can be calculated 
using Eq. (1):

where the two-point correlator is ⟨nB(xi)nB(xj)⟩ ≡ TDij . As 
this work focuses on the susceptibility, the disconnected dia-
grams T2(D12D34 + D13D24 + D14D23) are canceled because 
of the subtraction term in Eq.  (9). The spatial average of 
the four-point correlation function Eq.  (10) is evaluated 
with a finite volume. Appendix A provides a more detailed 
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description. Integration could not be performed analytically, 
so it is evaluated numerically in this study.

3 � Parameterization and discussion

To evaluate the various orders of cumulants (or suscepti-
bilities) near the QCD critical point, the behavior of the 
correlation length � and coupling constants �3 and �4 is 
required. Lattice QCD suffers from sign problems at large 
chemical potentials  [12] and the results of effective theo-
ries based on QCD depend on the input parameters. How-
ever, a system near the QCD critical point is believed to 
belong to the same universality class as the three-dimen-
sional (3D) Ising model [44–46]. Therefore, the equations 
of state and coupling constants near the QCD critical point 
can be mapped using the 3D Ising model.

Specifically, in the conserved dynamic model [26–29], 
the coupling constants are related to the net-baryon 
susceptibility in the zero-mode limit:

The net-baryon susceptibilities were mapped from the 3D 
Ising model:

where the mapping coefficient is non-universal and T4−n 
is chosen according to the dimensions of the baryon 
susceptibility. In the equation of state for the 3D Ising 
model, the magnetization M of the Ising system is a function 
of the reduced temperature r and external magnetic field h 
and can be parameterized as [22]:

where the various orders of Ising susceptibility can be 
obtained by

where R̃ is the distance to the critical point in the phase 
diagram and � is the corresponding angle with respect to 
the crossover curve. M0 and h0 are normalization constants 
and M0 ≃ 0.605, h0 ≃ 0.394 . In addition, the reduced tem-
perature r and external magnetic field h are related to the 
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temperature T and baryon chemical potential � of the QCD 
system through linear mapping [23, 24, 29]:

where Tc and �c are the critical temperature and the chemi-
cal potential of the QCD critical point, respectively. The 
critical point of the 3D Ising model is located at r = h = 0 . 
The mapping does not constrain the location of the QCD 
critical point (Tc,�c) , which is typically treated as a free 
parameter. The behavior of the critical fluctuations is 
determined by the position relative to the critical point 
in the QCD phase diagram, and not by the absolute val-
ues of T and � . Thus, the location of the QCD criti-
cal point (Tc,�c) does not affect the qualitative behavior 
of ��2 and is set as (Tc,�c) = (0.145GeV, 0.16GeV) in 
this study. ΔT  and Δ� are the corresponding widths of 
the critical region and Δh and Δr are those in the Ising 
model. These are non-universal parameters and are set 
as  ΔT = Tc∕8,Δ� = 0.1GeV,Δr = (5∕3)3∕4,Δh = 1 in 
Ref. [29]. By mapping, Eqs. (14) and (15), the net-baryon 
susceptibilities on the QCD phase diagram ( T ,� ) are con-
structed from those on the (r, h) plane. Therefore, the cou-
pling constants can be obtained using Eq. (11).

This work is dedicated to understanding the sign of 
kurtosis in the dynamics of the conserved net-baryon 
near the QCD critical point. The coupling constants are 
constructed by mapping from the 3D Ising model, as in 
Refs.   [26–29]. Figure  1 shows the coupling constants 
with the temperature T = 0.138GeV , below the phase 
transition curve. The fourth-order net-baryon susceptibility 
constructed using the Ising model has a small negative value 
on the crossover side (small � ) and becomes positive on the 
first-order side (large � ). As expected, the coupling constant √
K∕m ≡ � exhibits a peak close to the critical chemical 

(15)

r

Δr
= −

� − �c

Δ�
,

h

Δh
=

T − Tc

ΔT
,

potential �c = 0.16GeV . Because the constants plotted with 
temperature T < Tc , �3 and �4 have negative and positive 
values, respectively.

The second-order (4) and fourth-order (9) susceptibilities 
within the finite system were evaluated using a Monte Carlo 
integration algorithm. Because the knowledge of the diffu-
sion constant D and surface tension K near the QCD critical 
point is limited, they are set to D = 1 fm−1 and K = 1 fm4 , 
respectively, and the evolution time t is chosen as t = 10 fm . 
These were treated as free parameters. As shown in Eq. (7), 
the dynamical factor exp[−Dtp2

i
(Kp2

i
+ m2)] was introduced 

to mimic the dynamical effects in the linearized limit [40]. 
This is far from the realistic dynamic critical fluctuations, 
which require a full simulation of the dynamic evolution 
equation [26–29]. In this context, the effect of this dynamic 
factor is the suppression of the magnitude of the correlation 
function Dij . As shown below, the sign of ��2 is determined 
by the magnitude of Dij in the model. Different values of D 
and/or t in this model only affect the critical value of the 
system size R to obtain the dip behavior of kurtosis. Figure 2 
shows the second-order susceptibility within a finite sys-
tem as a function of the radius of the system, with different 
correlation lengths � . It can be observed that �2 increases 
monotonically with increasing size R. For a large corre-
lation length � = 5.0 fm , �2 strongly depends on the size, 
particularly R ≪ 𝜉 , indicating the acceptance dependence 
of the critical fluctuations in the experiments. However, if 
the system is significantly larger than the correlation length 
(e.g., � = 2.5 fm ), �2 approaches a constant value when the 
size is sufficiently large.

Figure 3 presents the kurtosis ��2 of the net-baryon 
within a finite system near the QCD critical point1. At 

Fig. 1   (Color online) The cou-
pling constants of the effective 
potential near the critical point, 
mapped from the 3D Ising 
model

1  Note that Fig.  3 only shows the kurtosis with temperature below 
Tc , since the kurtosis above Tc behaves similarly to those below Tc 
because of the symmetry of kurtosis in terms of the phase transition 
curve.
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the limit of a large system (for example, R = 16 fm in 
Fig. 3), ��2 behaves non-monotonically as a function of 
the baryon chemical potential � and presents a negative 
value on the crossover side (small � ) and a positive value 
on the first-order side (large � ). This is consistent with an 
ideal infinitely large system [14], as shown in Eq. (8) that 
the second-order susceptibility approaches the ideal case 
�2 → �2 . However, ��2 within a finite system (for example, 
R = 4 fm in Fig. 3) becomes negative and presents a dip 
behavior near the critical point. As pointed out in Fig. 2, 
the correlation Dij or the susceptibility strongly depends 
on the size of the system and has a small value when the 
system is small. As shown in Eq. (10), the fourth-order 
coupling term with �4 presents a negative contribution 
with four terms of correlators Dij , while the third-order 
coupling term with �3 contributes positively with five cor-
relators Dij s. In the case of a small-magnitude correlator 
Dij , the fourth-order coupling term with �4 dominates and 

the four-point correlation function ⟨n4
B
⟩ can be negative, 

resulting in a negative ��2 near the QCD critical point. 
In addition, Fig. 3 also shows that the system is further 
away from the critical point ( Tc = 0.145 GeV) with a 
temperature T = 0.128GeV . Compared with the case of 
T = 0.138GeV , the critical signal is weaker, and the mag-
nitude of Dij is smaller. The magnitude of ��2 is smaller 
(purple curve), and it is easier to achieve a negative kurto-
sis ( R = 8 fm ). This means that it is still possible to flip the 
sign of kurtosis by tuning the system size R, even with dif-
ferent critical signal strengths. Note that ��2 with R = 4 fm 
in Fig.  3 was multiplied by a factor of 500 for illustrative 
purposes, which is a relatively small value compared to the 
case of R = 16 fm . It is notable that the model employed 
in this work is an ideal system, and the quantitative mag-
nitude of the “dip” in the small system size requires more 
realistic modeling in heavy-ion collisions. The QGP 

Fig. 2   (Color online) Second-
order baryon susceptibility �2 
as a function of the radius of 
the coordinate space R. Differ-
ent colors represent the input 
correlation length � = 2.5 fm 
and 5 fm

Fig. 3   (Color online) Kurtosis of the net-baryon ��2 within finite sys-
tem near the QCD critical point. Different colors correspond to the 
ones with the radius of the coordinate space R=4 fm, 8 fm, 16 fm, 
20 fm, respectively. Solid curves are obtained with a temperature 

( T = 0.138GeV ) closer to critical temperature Tc , and the dashed 
curves are with a temperature ( T = 0.128GeV ) further away from T

c
 . 

The factor after the unit means the kurtosis has been multiplied for 
illustrative purposes (e.g., blue curve corresponds to 500 ��2)
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fireball created in relativistic heavy-ion collisions is a 
fast-expanding finite-size system, and several factors con-
tribute to the final observables of the QCD critical point. 
It is typically believed that the dynamical effects ( ∼ �z , 
where the dynamical critical exponent z ∼ 3 for the QCD 
critical point) induced by the expanding effects dominate 
the finite-size effects (the finite size of the fireball). This 
motivated the study of dynamic modeling near the QCD 
critical point in relativistic heavy-ion collisions [30–35]. 
However, only a part of the system contributes to the final 
observables, considering the finite acceptance window 
of the detector in the experiments. The net-proton mul-
tiplicity fluctuations in Beam Energy Scan phase I have 
already shown acceptance dependence, and the fluctua-
tions with a small acceptance window deviate from those 
with a larger acceptance window [43]. Therefore, com-
prehensive dynamic modeling of the critical fluctuations 
with a realistic detector acceptance window as well as the 
finite size of the QGP fireball is essential for comparison 
with the experimental measurement in the upcoming Beam 
Energy Scan phase II.

4 � Conclusion and outlook

In summary, the signs of higher-order multiplicity 
fluctuations play an important role in exploring QCD phase 
transitions. In a simulation of the dynamics of the conserved 
net-baryon density near the QCD critical point, it was found 
that the kurtosis of the net-baryon is typically 
negative  [26–29]. To understand negative kurtosis in 
conserved dynamical models, this study focuses on the sign 
of the kurtosis obtained within a finite system, which 
corresponds to only part of the system being detected. It was 
found that the multiplicity fluctuations (or magnitude of 
correlation function D_ij) are suppressed with decreasing 
system size when the scale of the system is small comparing 
correlation length. This property, called acceptance 
dependence, results in a negative contribution from the 
fourth-order coupling term �4 (proportional to ∼ D4

ij
 ), which 

dominates the fourth-order susceptibility �4 when the 
detected system size is small. However, another term with 
�3 (proportional to ∼ D5

ij
 ) in �4 makes a positive contribution 

that is much smaller than that with �4 . In the dynamic 
models of the conserved net-baryon, the kurtosis is obtained 
only with part of the system, and this finite number of 
particles is detected; the corresponding kurtosis can behave 
with a dip near the critical point instead of a peak.

This work focuses on the finite-size effects on the sign 
of kurtosis within a static system without considering 
dynamic modeling in a realistic experimental context. 

Based on the dynamical model near the QCD critical point 
(e.g., based on hydrodynamic model [26–29] or transport 
model  [47–52]), the realistic finite size of the QGP fireball, 
as well as the finite detector acceptance window, requires 
proper consideration in future studies of higher-order net-
proton multiplicity fluctuations. In addition, such an analysis 
can be performed using other possible observable critical 
points, such as the light nuclei yield ratio [53–56].

Appendix A: Expression of spatial average 
of four‑point correlation function (10)

This appendix presents the spatial average of the four-point 
correlation function (10).

where the detailed expression for the first term is

and the second term is

The above integrations cannot be performed analytically and 
are evaluated numerically using the Monte Carlo algorithm.
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