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Abstract
Nuclear excitation by electron capture (NEEC) is a fundamental process in nuclear physics. Despite its theoretical framework 
established nearly half a century ago, the experimental confirmation of NEEC remains elusive because of significant technical 
challenges. A notable effort to validate NEEC experimentally involved the enhanced 93m Mo isomer-depletion experiment, 
which was ultimately hindered by substantial noise interference. This mini-review provides a brief historical overview 
of NEEC studies and explores the role of NEEC processes in astrophysical environments and laser-induced plasmas. 
Several platforms have been proposed to facilitate the observation of NEEC, including traditional cooling-storage rings, ion 
accelerators, and electron beam ion traps. These approaches aim to enhance the nuclear excitation rate, thereby improving 
the signal-to-noise ratio. In addition, the employment of exotic vortex beams is discussed as a potential methodological 
approach to address these challenges.

Keywords  NEEC · Isomer · Plasmas · Accelerator

1  Introduction

Nuclear excitation by electron capture (NEEC) involves a 
positively charged ion capturing a free electron, leading to 
the excitation of its nucleus. This intriguing process was first 
reported by Goldanskii and Namiot in 1976, who explored 
its potential for observation in the laser-generated plasma 
of 235 U [1]. Originally referred to as inverse internal elec-
tron conversion, NEEC represents the inverse mechanism of 
internal conversion (IC) [2–4], as shown in Fig. 1.

The NEEC process has a profound significance across 
various fields, including astrophysics and nuclear physics. 
For example, in astrophysical environments, this mechanism 
may influence nucleosynthesis. Elucidating nuclear mecha-
nisms such as NEEC in astrophysical plasmas is essential 
to enhancing our understanding of the formation, evolu-
tion, and interactions of stellar bodies, galaxies, and other 
astronomical entities [5]. Furthermore, NEEC is expected to 
serve as an important method for nuclear isomer production 
with broad applications across various domains, including 
nuclear medical treatment [6, 7], nuclear batteries [8–10], 
nuclear clocks [11, 12], and nuclear lasers [13].

NEEC has been the subject of extensive theoretical analy-
ses and experimental proposals since it was first reported 
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nearly half a century ago, but it is yet to be confirmed experi-
mentally. These efforts encompass a range of methodologies, 
including the use of cooling storage rings [14], ion accelera-
tors [15–19], electron beam ion traps (EBIT) [20], and others 
based on laser-induced plasma [7, 21–23].

The primary challenge in detecting NEEC is the presence 
of substantial background noise. Pálffy et al. noted that by 
employing a Feshbach projection operator formalism to 
derive cross-sections of various processes during electron 
capture [24], including NEEC, dielectronic recombination 
(DR) [25], and radiative recombination (RR) [26], notable 
DR and RR processes generate signals that closely 
mimic those from NEEC, thereby introducing significant 
background noise in experiments [27, 28]. This issue is 
particularly evident in experiments involving the isomer 
93mMo, where a significant discrepancy exists between the 
theoretical predictions and experimental results. Signals 
initially attributed to NEEC were later suspected to have 
originated from other mechanisms [17, 18, 29–32].

In addition to the basic NEEC process, several other 
variants have been extensively explored in the literature. 
These include NEEC with X-rays (NEECX) [33], NEEC 
in excited ions (NEEC-EXI) [34, 35], and NEEC with 
vortex beams [36]. NEECX involves the capture of an 
electron into an excited atomic orbital rather than the 
ground state, followed by the emission of an X-ray photon 
[33]. This process facilitates coincidence measurements 
by simultaneously detecting the x- and �-photons. On the 
other hand, NEEC-EXI is the process in which an electron is 
captured to an inner-shell vacancy in an atom that is already 
in an excited state [34].

NEEC with vortex electron beams introduces additional 
intriguing features into the study of NEEC. Vortex beams, 
distinguished by their helical wavefronts, carry an intrinsic 
orbital angular momentum (OAM) along the propagation 
direction [37–41]. This intrinsic OAM of vortex states 
introduces an additional degree of freedom compared 
with plane-wave states by introducing new selection rules 
for nuclear processes, offering novel opportunities in the 
study of nuclear excitation processes. Since the initial 
proposal concerning optical vortex beams in Ref. [42], 
optical vortices have garnered significant interest, leading 
to a plethora of remarkable achievements and applications. 

Vortex photons have been intensively studied in fields such 
as quantum communications, nonlinear optics, optical 
trapping, microscopy, nanotechnology, astrophysics, and 
manipulations of atomic transitions [37, 38, 43, 44]. In 
the context of NEEC, the use of electron vortex beams is 
expected to enhance the cross-section by up to four orders 
of magnitude [36].

In short, NEEC provides a quantum many-body platform 
that involves the interplay between atomic and nuclear 
systems. However, despite its fundamental nature, the 
process is not yet fully understood. In this mini-review, we 
begin with a historical overview of the theoretical work on 
NEEC, followed by an examination of the role of NEEC in 
astrophysical environments and laser-induced plasmas. In 
addition, the current status of NEEC studies using vortex 
beams and traditional accelerators is discussed. Finally, a 
brief summary of the proposed methods is presented.

2 � Theoretical cross‑section calculation 
of NEEC

In the theoretical treatment of the NEEC process, the capture 
of a free electron into a bound state by a positively charged 
ion is considered, which leads to the excitation of the nucleus. 
Typically, a �-photon is emitted as follows. A Feynman dia-
gram illustrating this process is presented in Fig. 2, involving 
two steps and three states. The initial state is represented by 
�i⟩ = �pms, IiMIi

, nk� = 0⟩ , where p denotes the momentum 

Fig. 1   (Color online) Schematic 
diagrams of the NEEC (left) 
and IC (right) processes, which 
are inverse processes of each 
other

Fig. 2   The Feynman diagrams of the NEEC process. The “ e  ” indi-
cates that the electron is in an atomically bound state, while “e” 
denotes an electron in a continuum state. “N” represents the nucleus 
in its ground state, and “ N∗ ” indicates the nucleus in an excited state
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of the free electron and ms is the spin in the z-direction. The 
nucleus is in its ground state with angular momentum Ii and 
z-component MIi

 . The term nk� = 0 indicates the absence of 
photons. The intermediate state, �d⟩ = �nljd , IdMId

, nk� = 0⟩ , 
features the electron captured into the orbital nljd and the 
nucleus in the excited state �Id,MId

⟩ , with no photons present. 
The final state, �f ⟩ = �nljd , IiMIi

, nk� = 1⟩ , depicts the electron 
remaining in the orbital nljd , the nucleus returned to its ground 
state �Ii,mIi

⟩ , and the emission of photons, where nk� is the 
number of photons with polarization � = ±1 and wave vec-
tor k.

In this treatment, the nuclear excitation results from a 
time-dependent electromagnetic field acting on the nucleus. 
Typically, the influence of this field is minimal and can be 
effectively addressed using first-order quantum-mechanical 
perturbation theory. The excitation probability can be 
expressed in terms of the same nuclear matrix elements that 
govern radiative transitions between nuclear states. Detailed 
illustrations of the main physical features of this process are 
provided in Ref. [24]. In the following discussion, we present 
the mathematical results of the quantum-mechanical theory 
for the NEEC process.

The cross-sections of the NEEC process for a free electron 
with kinetic energy � are expressed as follows: [24]:

where p2c2 = �2 + 2�mec
2 is the free-electron momentum. 

Given that NEEC is a resonant process, a Lorentz profile is 
essential.

The resonance energy �
0
 is determined by �

0
= ΔE − Eb , 

where ΔE is the transition energy of the nucleus and Eb is 
the absolute value of the binding energy of the orbital nljd . 
The width of the excited level Γ is given by

which consists of the electron capture rate Yi→d
n

 and photon 
emission rate Ad→f

r  , representing the reaction rates for the 
excitation and de-excitation steps, respectively.

As previously noted, electromagnetic excitation involves 
the same nuclear matrix elements as the radiative transitions 
of the corresponding multipole order. Thus, for a given 
multipolarity �L with � = E∕M , the photon emission rates Ar 
are determined by the reduced transition matrix elements as 
shown in Ref. [45].
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where B ↓ is the reduced nuclear transition probability for 
the decay. The electric (EL) and magnetic (ML) components 
of the electron capture rates Yn are given by Ref. [46]

where �i is the density of initial electronic states. The 
relation of reduced transition probability between the 
excitation B ↑ and decay B ↓ of the nuclear state is given by 
B ↑ (�L, Ii → Id) =

2Id+1

2Ii+1
B ↓ (�L, Id → Ii) . Other parameters, 

including jd , j, and � , are related to the electron orbital nljd . 
The radial integrals involved in these calculations are given 
by [46],

where f��(r) and g��(r) in the integrals are the components 
of the partial-wave expansion of the continuum electronic 
wavefunction. fnd�d (r) and gnd�d (r) are the functions that 
represent the bound electronic states, and they can be 
computed using atomic codes such as GRASP92 and 
AMBiT.

3 � NEEC in astrophysical environments

The NEEC process can significantly affect astrophysical 
plasmas by altering the proportion of nuclear isomers 
present, similar to the influence of other nuclear reactions 
[47]. Its effects may vary with the plasma temperature, 
which influences the electron energy distribution. Further 
research is required to clarify the role of NEEC in these 
environments and understand its potential impact on the 
behavior and evolution of astrophysical plasmas.
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3.1 � NEEC in astrophysical plasma

The role of NEEC in cosmic nucleosynthesis is poorly 
understood. Astrophysical nucleosynthesis calculations 
are dependent on accurate nuclear reaction rate inputs, and 
NEEC cross-sections could be critical for certain nuclear 
reactions within astrophysical plasmas. Considering that 
nucleosynthesis is a network of reactions, it is crucial to 
recognize that a single reaction rate can profoundly influence 
the astrophysical evolution. NEEC may significantly 
affect the production of isomers, thereby influencing 
nucleosynthesis processes.

A nuclear isomer is an excited state in which the 
structural effects within the nucleus inhibit its decay, 
potentially granting the isomeric state a longer lifetime 
than those of ordinary nuclear states. Known nuclear 
isomers exhibit a remarkable range of lifetimes, from 1015 
years for 180mTa—exceeding the widely accepted age of the 
universe—to as short as approximately 1 ns, as is commonly 
recognized [48, 49]. From the perspective of isomer types, 
while shape isomers, spin traps, and seniority isomers tend 
to be concentrated in narrow mass regions on the nuclear 
chart, K-isomers are more broadly distributed, particularly 
in heavy and well-deformed nuclei [50].

Isomers are noteworthy not only for their unique intrinsic 
properties but also for their potential practical applications. 
The energy density of conventional energy sources relies 
on chemical processes, and is fundamentally determined 
by the energy stored in chemical bonds—the so-called 
chemical limit. To overcome this limitation, it is necessary 
to explore the subatomic realm. Particularly interesting are 
nuclear isomers with half-lives of approximately one year or 
more. When energy is required, the reduction of the isomer 
population can be induced by providing the appropriate 
energy to excite the nucleus from the isomer to a higher 
state (referred to as the triggering level), and then allowing it 
to decay to the ground state via paths that bypass the isomer 
[51–53]. This process results in the release of energy on a 
much smaller time-scale than the natural decay of isomers. 
Among the proposed triggering processes, the triggering of 
long-lived nuclear isomeric states via coupling to the atomic 
shells in the NEEC process has attracted significant interest 
[14].

Low-lying triggering levels are desirable for obtaining 
a high-energy gain [54]. Identifying suitable triggering 
levels above the isomer is crucial to facilitate decay. For 
instance, most isomers, such as the 103.00 keV isomer in 
81Se, predominantly transition to lower energy states, with 
transitions to the ground state occurring 99.949% of the time 
[55]. A sufficient connection to the ground state ensures 
that the destruction of the isomer does not deviate from the 
thermal equilibrium. Historically, the depletion of 178m2 Hf 
by low-energy ( ∼ 10 keV) photons was claimed by Collins 

et al. [56], but was subsequently refuted by more sensitive 
measurements [57, 58]. Thus, while an isomer with a long 
lifetime may prevent thermalization at low temperatures, in 
a hotter environment, thermally driven transitions through 
intermediate states can enable equilibration.

In addition, some isomers isolated from the ground 
state in the astrophysical sites where they are produced 
are not populated during the production of the nucleus. 
Thus, although some isomers play an influential role in 
astrophysical nucleosynthesis, most do not. This distinction 
leads to the definition of “astrophysical isomers” or 
“astromers” as nuclear isomers that have a significant 
inf luence in a specific astrophysical environment. 
Unlike their associated ground states, astromers behave 
differently and should be treated as separate species within 
nucleosynthesis networks. These networks may involve 
transitions that create and destroy these states [59].

In astronomical environments, the dynamics are governed 
by a multitude of microscopic processes, including 
electromagnetic processes such as ionization and RR, as 
well as nuclear reaction processes. The first two are crucial 
for maintaining charge balance and primarily occur between 
electrons and ions. Meanwhile, nuclear reaction processes 
may involve not only nuclei but also atoms, as seen in 
the case of NEEC. Cosmic plasmas are created through 
ionization, which can occur in several ways, including 
collisions of fast particles with atoms, photoionization by 
electromagnetic radiation, or electrical breakdown in strong 
electric fields. The charge state of the plasma is determined 
by the balance between ionization and recombination, with 
RR contributing significantly. Free electrons, abundant in 
astrophysical environments, are fundamental to the NEEC 
process. Thus, NEEC potentially plays a crucial role in 
nuclear excitation through electromagnetic interactions 
between electrons and ions during the recombination 
process.

Numerous nuclear interactions contribute to the 
production of elements during cosmic nucleosynthesis. 
Most of the hydrogen (H) and helium (He), along with a 
small amount of lithium (Li), were formed during the first 3 
min following the Big Bang. This early element formation 
is a key aspect of Big Bang Nucleosynthesis [60–63], where 
the heavier elements required for the formation of complex 
matter, including organic matter and life, are predominantly 
produced through fusion processes. In addition, isotopes of 
elements heavier than iron (Fe) are primarily synthesized 
via neutron-capture processes (n-capture), including slow 
(s) and rapid (r) neutron-capture mechanisms. This is due 
to the strong Coulomb barrier that prevents their formation 
by fusion alone [60, 64–66].

The potential role of NEEC in the depletion or 
accumulation of isomeric states within highly charged ions 
in dense stellar plasmas, particularly in the context of the 
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s-process, has attracted significant attention[47, 67–69]. 
During this process, a seed nucleus undergoes neutron 
capture to form an isotope with a higher atomic mass, 
followed by beta decay if it is unstable. Notably, nuclei along 
the s-process path tend to remain in isomeric states when the 
condition 𝜏𝛽 ≪ 𝜏n is met, where �� is the beta decay lifetime 
and �n is the timescale for capturing an extra neutron. Gan 
et al. have concluded that NEEC should play a significant 
role in depleting the isomeric states of 58mCo, 121mSb, and 
152m Eu by providing an effective isomer-depletion channel 
[69].

Beyond affecting isomeric depletion, any nuclear 
reaction chain involving an intermediate isomeric state can 
be affected by the NEEC process. For example, consider 
the A − i − B reaction sequence, where i represents an 
isomeric state. NEEC adds a new dimension by introducing 
an additional reaction step, A − i − j − B , where i − j 
symbolizes the NEEC-induced excitation of isomeric state 
i before it decays. This can potentially affect reactions such 
as 57Co−58m1Co(−58m2Co)−58 Co [69].

NEEC is especially advantageous in extremely hot 
plasmas, which are better settings where NEEC can 
significantly influence nuclear reactions. This is because the 
reaction rate of NEEC increases as the charge states of ions 
increase [24]. Therefore, when performing astrophysical 
nucleosynthesis calculations, it is essential to incorporate 
NEEC rates ( �

NEEC
 ) for ions with zero, one, or two initially 

bound electrons into the nuclear reaction rate inputs.
To put it succinctly, viewing nucleosynthesis as just a 

series of interconnected reactions may be too simplistic. 
Recognizing that a single reaction rate, including NEEC, 
can have a profound impact on astrophysical evolution is 
vital. NEEC can significantly affect both the accumulation 
and depletion of isomers, thereby playing a pivotal role in 
nucleosynthesis.

3.2 � Nuclear structure models for B(�L)

In the NEEC process, identifying the NEEC rate is 
dependent on understanding the transition probabilities from 
the isomer to the triggering level [24]. These probabilities, 
which are crucial for evaluating the efficiency of triggering, 
is dependent on both the nuclear transition selection 
rules and the structural characteristics of the isomer and 
triggering level. If these transition probabilities have not 
been measured experimentally, they must be estimated using 
reliable nuclear structure model calculations.

For instance, in the case of the 21∕2+ isomer in 93Mo 
(with excitation energy Ex = 2.425 MeV and half-life 
� = 6.85 h), the critical transition for triggering the isomer 
was identified as the E2 transition connecting the 21∕2+ 
isomer to the upper 17∕2+ level. Hasegawa et al. predicted 
that this level, lacking experimental data, would have a 

substantial transition probability of 3.5 W.u. through nuclear 
shell model calculations. Consequently, it was concluded 
that there was a substantial prospect for observing induced 
isomer de-excitation if the 17∕2+ level as the triggering 
level can be properly populated [70]. Indeed, subsequent 
experimental and theoretical discussions [17, 31, 32, 71, 72] 
have relied significantly on this transition probability.

To adequately account for the structure of the isomers and 
triggering levels in discussions, theories aimed at calculating 
the NEEC cross-sections must incorporate dedicated nuclear 
structure models. This critical integration of NEEC theory 
with modern nuclear structure models, which would enable 
a microscopic description of the interaction between the 
nuclear and atomic levels, remains an unfulfilled need. 
Among existing modern structure models, the nuclear shell 
model is the preferred choice [73–75].

The shell model provides a powerful framework for 
detailed nuclear structure studies that are crucial for 
understanding nuclear isomers and their effects under 
various conditions. This is because theoretical states in these 
calculations must be eigenstates of basic quantum numbers, 
such as angular momentum, parity, and isospin, given that 
all nuclear transitions occur between the initial and final 
states with well-defined quantum numbers. Shell model 
calculations typically require significant computational 
resources. Thus, a minimal set of basis states that adequately 
captures the essential physics is sought. For nuclei that are 
neither heavy nor strongly deformed, only a limited number 
of single-particle states are used to define the low-energy 
structure. In such cases, the conventional spherical shell 
model can leverage the reduced basis to compute relevant 
quantities efficiently. Upon completion of these calculations, 
all levels, including isomers and triggering states and the 
transitions among them, are expected to be described 
consistently within the designated model spaces.

Except for nuclei near shell closures, the majority of 
nuclei on the nuclear chart are deformed, posing a significant 
challenge to the conventional spherical shell model 
because of the inevitable issue of dimensional explosion. 
Consequently, the exploration of nuclear structures in 
heavier, deformed nuclei—where most K-isomers are 
found—has predominantly relied on deformed mean-field 
approximations [76]. These models employ the concept 
of spontaneous symmetry breaking, where the angular 
momentum—a crucial quantum number for describing 
nuclear states—is not conserved in the calculations. Over 
the years, considerable efforts have been dedicated toward 
advancing beyond mean-field descriptions to develop shell 
models in which all excited states are exact eigenstates of the 
angular momentum. It has been emphasized that the angular 
momentum projection technique is an essential quantum-
mechanical tool, with the projected shell model (PSM) [77] 
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emerging as a practical model specifically tailored for the 
study of K-isomers.

Thus, for the microscopic study of nuclear isomeric states 
in general, and the NEEC process in particular, two distinct 
types of shell models are applicable, sharing the same 
conceptual framework but differing in their implementation. 
The first is the conventional shell model (CSM) that 
utilizes a spherical basis. The CSM calculation process 
is conceptually straightforward: it involves constructing a 
many-body configuration basis, selecting an appropriate 
Hamiltonian for this basis, and performing numerical 
diagonalization [78, 79]. Ideally, such calculations would 
yield a comprehensive excitation spectrum including 
low-energy collective states, isomers, and normal states. 
However, in practice, employing such a CSM to study 
arbitrarily heavy, deformed nuclei is impractical because 
of the huge dimensionality of the configuration space 
and related computational challenges. Even with current 
computational capabilities, standard CSM calculations are 
only feasible up to the mass-70 region, where the dimensions 
of the configuration space can approach one billion. For 
heavier mass regions, the general application of the CSM is 
untenable, and only a few selective calculations are possible 
for nuclei near closed shells.

In contrast, the PSM presents an unconventional 
approach [77] that significantly diverges from the CSM 
in both its implementation and targeted nuclei. The PSM 
utilizes angular momentum projection, which is an effective 
method for truncating the shell model space that would 
otherwise be unmanageably large [77]. This methodology—
pioneered by Hara and Sun in their early work [80]—has 
undergone significant evolution over the years, and has 
been successfully employed in the nuclear spectroscopy of 
a wide range of isotopes on the nuclear chart [81, 82]. The 
representative calculations range from light [83] to heavy 
nuclei [84], and even extend to the superheavy mass region 
[85–87], thereby providing insights into the anticipated 
superheavy island of stability. Moreover, the PSM has been 
utilized in studies of nuclei exhibiting normal and super 
deformations [86, 87], and in advanced studies on exotic 
nuclear shapes, including the coexistence of reflection 
asymmetric and symmetric shapes, as detailed in Ref. [88].

Recently, the PSM has been noticeably expanded to 
include studies on nuclear-level density [89], marking a 
milestone where shell model calculations have addressed 
nuclear levels on the order of 106 per MeV for the first 
time. Within the PSM framework, it is now feasible to 
simultaneously explore the properties of nuclear isomers 
and their associated triggering levels. This expansion 
may have far-reaching implications for the study of 
isomers in nuclear astrophysics, particularly in scenarios 
encountered in nucleosynthesis simulations involving the 
transmutation of nuclei via nuclear reactions and decays in 

thermally excited environments. In the absence of sufficient 
structural information on excited nuclear states, current 
nucleosynthesis calculations typically adopt one of two 
approaches to approximate nuclear transmutation rates 
[90]. The simpler approach neglects excited states and 
focuses solely on the ground-state properties of nuclei, as 
exemplified by discussions on neutrino luminosity via the 
Urca process [91, 92]. Alternatively, some models assume a 
thermal equilibrium population of excited states, with each 
state contributing to the overall rate of transmutation based 
on its thermal population probability [93]. However, as 
demonstrated by Misch et al. [59], depending on the specific 
astrophysical environment, nuclear isomers may challenge 
the validity of these conventional approaches. Notably, Wang 
et al. provided initial examples [94] demonstrating that the 
manifestation of isomer effects through the NEEC process is 
viable. This suggests the need for further investigation into 
appropriate astrophysical environments.

4 � NEEC in laser‑induced plasmas

The interactions between photons and matter remain 
a cornerstone of modern physics. The development of 
advanced laser technologies, particularly chirped pulse 
amplification (CPA) [95], has facilitated the creation of 
environments characterized by ultra-intense and ultra-short 
electromagnetic fields. When subjected to such fields, target 
atoms undergo ionization, leading to plasma formation. 
These plasmas possess electromagnetic fields significantly 
stronger than those produced by traditional magnetic 
systems. In such environments, the electrons and ions could 
be accelerated followed by a series of atomic and nuclear 
interactions [96–98]. The generated plasmas can achieve 
extremely high temperatures and densities, which can 
trigger a complex sequence of nuclear reactions, including 
the excitation, transformation, and decay of nuclei. Thus, 
intense laser-matter interaction produces plasmas containing 
free electrons and various ionic states [7, 19, 71, 99–103].

4.1 � Laser‑induced plasma

The invention of the laser in 1960 was a groundbreaking 
development, marking the first instance of coherent control 
over light. This milestone led to rapid advancements in 
laser technology, notably in the compression of laser pulse 
durations and the corresponding increase in peak intensities. 
The proposal and realization of CPA technology have 
significantly advanced these developments, bringing laser 
pulse durations into the femtosecond and even attosecond 
regimes, while dramatically enhancing laser intensities [95]. 
By 2023, three scientists received the Nobel Prize for their 
contributions to attosecond-pulse technology [104–106], 
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underscoring the profound impact of this advancement. In 
contemporary settings, femtosecond laser pulses can achieve 
focused intensities as high as 1022 W/cm2 in laboratory 
environments [107–109]. At such high intensities, the 
oscillating electric field of the laser significantly surpasses 
the internal electric field of atoms, quickly ionizing them 
into a plasma state. Consequently, the study of laser-plasma 
interactions has emerged as one of the most dynamic areas 
within the field of plasma physics [110].

The acceleration of electrons and ions driven by laser-
plasma interactions provides an ideal experimental platform 
for investigating photon-nucleus and electron-nucleus 
reactions. These include photon excitation (PE) [111], 
Coulomb excitation (CE) [112–115], nuclear excitation by 
electronic transition (NEET) [116–120], electron bridge 
[12], and photonuclear reaction ( � , n) [7, 121, 122]. While 
both CE and NEET have been experimentally confirmed, 
NEET typically exhibits a much smaller cross-section 
than other processes. The dominant process or processes 
for nuclear excitation depend critically on specific laser 
parameters and plasma conditions [99, 123]. Therefore, 
meticulous calculations, simulations, and experimental 
investigations are necessary to determine whether NEEC or 
other competing nuclear excitation mechanisms predominate 
under particular experimental conditions.

4.2 � Laser‑ablated plasma

Laser ablation on a solid surface is a convenient method for 
plasma generation. The temperature and density of electrons 
within this plasma are highly sensitive to both position and 
time. By combining rough estimates of plasma density and 
temperature with the cross-sections of each relevant nuclear 
and electronic process, it is possible to approximate the rates 
of NEEC, NEET, nuclear excitation by inelastic electron 
scattering (NEIES), DR, and RR [22, 23, 102].

Subsequent studies have refined the determination of 
plasma conditions by simulating plasma dynamics from 
their generation to diffusion. Gunst et al. investigated NEEC 
processes in a cold, dense plasma environment induced 
by X-ray free-electron laser pulses irradiating an 93m Mo 
target [124]. Wu et al. investigated NEEC processes in a 
femtosecond laser-ablated plasma using a comparable target 
[72, 125]. Variations in laser parameters led to plasmas with 
different temperatures and densities, which were leveraged 
in these studies to identify optimal experimental setups 
for observing the NEEC process. In studies conducted by 
these researchers, it was emphasized that to effectively 
induce NEEC events while simultaneously minimizing 
background noise from processes such as RR and PE, the 
plasma temperature and density must be maintained at 
relatively low levels. For instance, laser intensities in the 

order of 1014–1016 W/cm2 with energy ranges between 10 
and 100 mJ are employed to generate plasma, resulting in a 
cold plasma where the thermal photon flux is insufficient to 
induce the PE of the nucleus, suppressing the NEIES process 
[72, 126, 127]. Concurrently, the nuclear energy gap should 
be appropriately low, on the order of several keV, which 
aligns with the region of cold plasma that corresponds to 
the highest density of electron energies. Examples include 
the 1.565 keV transition in 201Hg, 1.642 keV transition in 193
Pt, 2.329 keV transition in 205Pb, and 4.821 keV transition 
in 151Sm, as listed in Ref. [128].

In cases where secondary X-rays are generated via inner-
shell processes, such as those noted in Ref. [72], it must 
be ensured that the plasma density remains sufficiently low 
to maintain the stability of inner-shell vacancies, as higher 
densities would lead to rapid depletion of these vacancies 
due to RR processes.

Borisyuk et al. conducted an experiment focusing on the 
isomeric excitation of 229 Th utilizing a Nd:YAG laser to 
ablate a Th:SiO

2
 target containing 6.8% of 229 Th [19]. They 

measured the energy levels and half-life of the generated 
229 Th isomer. Their theoretical calculations showed that 
nuclear excitation was induced by the NEEC process. 
However, the study did not provide detailed analyses to rule 
out other nuclear excitation mechanisms, leaving it unclear 
whether NEEC was indeed the dominant mechanism in this 
scenario.

4.3 � Laser‑heated cluster

The interaction between intense laser pulses and atom 
clusters offers a unique plasma environment that is well-
suited for verifying NEEC [129]. Qi et  al. proposed a 
method using laser-cluster interactions to excite 229 Th from 
its ground state to its isomeric state [127]. Their calculations 
indicated that isomeric excitation was primarily driven by 
NEEC and NEIES. By adjusting the laser intensity, it was 
possible to continuously tune between NEEC and NEIES, 
providing an approach to confirm the NEEC.

Laser-heated clusters, although nanometer-sized plasmas, 
exhibit characteristics distinct from those of ablation plasma 
plumes. First, cluster nanoplasmas possess simpler plasma 
characteristics and dynamics, allowing more effective 
characterization. Second, they exhibit significantly higher 
electron densities, which highlight the importance of NEEC 
and NEIES over other mechanisms. To further isolate 
the NEEC, specific laser intensities can be employed to 
emphasize the NEEC while minimizing the contribution 
from the NEIES. Recently, Qi et al. demonstrated that the 
interaction between intense laser pulses and 235 U clusters 
provides an ideal system in which the NEEC process 
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accounts for over 99.9% of the nuclear isomeric excitation 
[126].

4.4 � Pros and cons of using laser‑ablated plasma

Here, we outline the advantages and disadvantages of 
verifying NEEC using laser-generated plasmas. The 
advantages include the following:

(i) Laser-generated plasmas provide a relatively well-
controlled experimental environment in which plasma 
parameters, such as temperature, density, and composition, 
can be precisely adjusted and quantitatively measured, 
facilitating systematic investigations of NEEC under 
controlled environmental conditions.

(ii) The ability of laser-generated plasmas to achieve 
certain temperatures and densities increases the likelihood 
of NEEC occurrences, providing a suitable setting for the 
observation and study of this phenomenon.

(iii) Laser-generated plasma experiments enable the 
exploration of a wide energy range relevant to NEEC. 
This capability allows the investigation of various nuclear 
systems and energy regimes (e.g., 8 eV for 229Th, 76 eV for 
235 U, and 4.8 keV for 93Mo) by adjusting laser parameters.

The disadvantages of employing laser-generated plasmas 
for investigating NEEC include the following:

(i) The lifespan of laser-generated plasmas is short 
because of rapid cooling and expansion, and restricts 
the temporal window available for NEEC occurrences, 
potentially limiting the experimental observation and 
analysis of the process.

(ii) Laser-generated plasmas allow multiple nuclear 
excitation mechanisms, such as NEEC, NEIES, NEET, and 
optical excitations. For instance, in cluster nanoplasmas, 
nuclear excitation predominantly arises from NEEC and 
NEIES, while in plasmas generated by more intense lasers, 
NEET may predominate. Therefore, detailed calculations 
are imperative to determine optimal laser parameters to 
emphasize NEEC over competing processes.

(iii) Interactions within a laser-plasma environment 
can introduce additional effects such as electron heating, 
ionization, and charge screening, each of which can influence 
nuclear excitation processes. Accurate simulations and 
accounting for these effects are necessary to approximate 
the actual conditions within the plasma.

5 � NEEC studies with vortex beams

Vortex light beams (Fig. 3), first proposed in the 1990s 
[42], represent a transformative development in photon-
ics. These beams are characterized by photons that carry 
not only intrinsic spin angular momentum but also OAM. 

The inclusion of intrinsic OAM introduces a new degree 
of freedom, distinguishing vortex states from traditional 
plane-wave states and inspiring the extensive exploration 
of novel phenomena in atomic and nuclear physics. For 
instance, theoretical studies on the photodisintegration of 
deuterons using twisted photons were discussed in Ref. 
[130, 131]. These studies examined the dependence of the 
photodisintegration cross-section on the impact parameter 
b, i.e., the distance between the target nucleus and vor-
tex beam axis. These studies also identified the increased 
threshold energy required for the reaction, along with 
interesting features of selection rules for small-impact 
parameters. Similarly, hadron excitation induced by vor-
tex photons was analyzed in Ref. [132]. More recently, 
theoretical studies on giant multipole resonances in nuclei 
induced by vortex �-photons were presented in Ref. [133, 
134]. These investigations highlight the potential for 
manipulating the excitation of giant multipole resonances 
by vortex �-photons, facilitating transitions that are oth-
erwise forbidden or enabling quasi-pure transitions, pro-
vided that the nucleus is precisely aligned with the vortex 
beam axis [133].

Recent advancements in fabricating phase masks with 
nanometer-level precision have enabled unprecedented 
control over the coherent superposition of matter waves, 
facilitating the generation of vortex beams with chiral 
wave-function spatial profiles that carry the OAM 
[135–139]. By imparting chirality to massive particles, 
vortex beams have been proposed as novel tools for 
studying [39–41, 44, 140] and even manipulating [138, 
141–143] the structural properties of neutrons, protons, 
ions, and their associated particle and nuclear processes. 
Electron vortex beams—among the most extensively 
studied massive-particle vortex beams—have been 
experimentally realized using various techniques, such as 
holographic gratings, phase plates, magnetic monopole 

Fig. 3   (Color online) Composition of a vortex beam. A vortex beam 
is formed by the coherent superposition of plane waves arranged in a 
conical configuration. This arrangement gives rise to a helical phase 
structure and imparts orbital angular momentum to the beam. �p is 
the top angle of the cone, while b represents the impact parameter, 
defined as the perpendicular distance from the beam axis to the target
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fields, and chiral plasmonic near fields [39–41, 44, 
135–137]. These beams achieved angular momenta as 
high as 1000ℏ , demonstrating their potential for advanced 
applications.

The potential of vortex electrons to advance nuclear 
physics has been extensively discussed in Refs. [36, 40, 
41, 143]. In particular, the possibility of manipulating 
nuclear excitation via vortex electrons has been studied 
theoretically in the context of NEEC [36].

The NEEC cross-section with a vortex electron beam 
is expressed as [36]

where p is the momentum of the electron, Jz denotes the total 
incident current, and Yn is determined by mapping the vortex 
beam onto the partial-wave expansion of the continuum 
electron wavefunction.

where |�
⟂
| = |�

⟂
| = � , �p , and �k are the polar angles of 

the momentum components spanning the interval [0, 2�) , 
and m denotes the electron OAM. The notation 

0
F
1
 

represents the confluent hypergeometric limit function, and 
u = −b2�2[1 − cos(�k − �p)]∕2 . For a nuclear transition of 
multipolarity �L , we have

where Ji and Jg are the angular momenta of the initial and 
final electron configuration of the ion, respectively. The 
term Ylml

 denotes the spherical harmonics characterized by 
quantum numbers l and ml , with �p(�k) and �p(�k) being the 
polar and azimuthal angles of the electron momentum p(k) 
in the spherical coordinate system of the ion, respectively. 
Details of the integrals Yb can be found in the Supplementary 
Material in Ref. [36].

The recombination orbital of the electron and nuclear 
transition multipolarity determine the selection rules 
governing the angular momentum components of the 
incoming electron participating in the NEEC process. For 
plane-wave electrons, the wavefunction has a fixed partial-
wave expansion across all multipoles. However, vortex 
electrons can be intentionally shaped to enhance the NEEC 
efficiency [36]. By analyzing isomer depletion in 93m Mo 
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and 152mEu, representative of E2 and M1 nuclear transitions, 
respectively, Ref. [36] demonstrates that vortex electrons 
with a suitable opening angle and quantum number for the 
OAM, and precise control of the distance between the ion 
and electron vortex axis, could significantly alter the isomer-
depletion rate. These results highlight new possibilities for 
the dynamical control of isomer depletion and other nuclear 
processes.

It is important to emphasize that the remarkable features 
observed in nuclear processes involving vortex photons 
and electrons rely on the highly precise positioning of the 
nucleus relative to the vortex axis, at a scale comparable to 
the photon wavelength or the inverse transverse momentum 
of the vortex particle. This behavior has also been observed 
in studies of vortex photon interactions with atomic systems 
[43, 44, 144–147]. However, the typical energy scale of 
nuclear processes, which ranges from keV to several MeV, 
makes achieving such precision a significant experimental 
challenge [41]. The use of cold neutron vortex beams 
may reduce these experimental challenges, allowing the 
exploration of the intriguing features of vortex particles in 
nuclear processes [41, 130, 148, 149]. Nonetheless, further 
research is required to develop methods that relax these 
stringent conditions while enabling the observation of these 
features, particularly in the context of the NEEC process. 
Advancements in this area would be crucial for applications 
of vortex particles in the manipulation of nuclear processes 
via the coupling of nuclear and electronic degrees of 
freedom.

Fig. 4   (Color online) The layout of the main cooler storage rings 
(CSRm) at Institute of Modern Physics, Lanzhou, China [153]
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6 � NEEC studies based on accelerators

Another approach for studying NEEC in laboratory settings 
involves the use of accelerators where high-energy beams of 
highly charged ions are generated.

6.1 � By using a storage ring

In a cooling storage ring, as illustrated in Fig. 4, a cooling 
electron beam is employed for ion-beam stability. This 
configuration facilitates electron-ion interaction experi-
ments, which will enable the observation of the NEEC 
process. A heavy-ion storage ring provides an ideal experi-
mental environment, in which relatively long-lived iso-
mers interact with electron beams under controlled condi-
tions, analogous to those in DR experiments [150–152].

Palffy et  al. proposed an experimental method for 
spatially separating photon emissions based on different 
timescales of the RR and NEEC processes, while also 
providing theoretical insights for enhancing the resonance 
strength of NEEC by introducing fast electronic X-ray 
decay [33]. In this approach, the RR process emits a 
photon within 10−15 s, whereas the NEEC process emits 
the photon after the excited nucleus with time-scale of 
ns ∼ μ s. This temporal separation enables relatively pure 
confirmation of NEEC events through the detection of 
delayed photons.

A primary challenge in implementing this method is 
the efficient capture of excited isomers. Constructing 
a detector that encompasses the full circumference to 
capture all the emitted photons would be prohibitively 
expensive. Consequently, it is crucial to develop cost-
effective techniques, such as coincidence detection, to 
enhance the efficiency of capturing these rare events 
[154]. As shown in Fig. 5, Yang et al. described the NEEC 
process that occurs within the interaction zone, where the 
circulating ion beam in the CSR interacts with an electron 
beam originally employed for beam stabilization. A photon 
detector array was positioned around the interaction zone, 

while ions—whose charge states were altered owing to the 
occurrence of NEEC or RR processes—were subsequently 
collected by a particle detector. The NEEC and RR events 
can be distinguished from each other by the emission time.

Adding another electron beam into storage rings, such 
as the High Intensity heavy-ion Accelerator Facility [155], 
holds significant promise for advancing NEEC experimen-
tal studies. This approach enables more precise and effi-
cient detection methodologies, significantly expanding the 
range of isomers available for investigation compared with 
laser-induced plasma systems. The tunable energy of the 
electron beam offers enhanced control over resonance con-
ditions, allowing access to a broader spectrum of nuclear 
energy levels.

6.2 � By using ion beams

When an ion beam is directed toward a solid target, the ions 
traverse the material and undergo continuous changes in 
direction and energy. Simultaneously, their excitation and 
ionization states may vary because of processes such as 
electron capture or loss [156–159]. Typically, as the veloc-
ity of ions decreases, their average charge state also dimin-
ishes. This variation depends significantly on the properties 
of the target material. During the stopping process, NEEC 
channels progressively close, beginning with outer orbitals 
and moving inward, as shown in Fig. 6. For a given orbital, 
the resonance condition on energy is satisfied at a specific 
point during the stopping process. If the orbital is not firmly 

Fig. 5   (Color online) Proposed experimental layout for NEEC detec-
tion employing a storage ring

Fig. 6   (Color online) Schematic diagram of nuclear excitation by 
electron capture in the ion-stopping process. Ek is the kinetic energy 
of a free electron in the centroid reference frame of the ion, while V 
denotes the potential energy of the electron orbitals
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occupied, the corresponding NEEC channel can be activated 
during the stopping process.

The number of active NEEC channels depends on the 
energy gap between the isomeric and triggering states. 
Therefore, the NEEC probability can vary significantly 
among different isomers. Based on theoretical predictions, 
several isomers have been proposed as candidates for experi-
mental measurements. Among these, 93mMo has attracted 
significant attention because of its favorable properties. This 
isomer has an excitation energy of 2425 keV, a half-life of 
6.85 h, and spin and parity of 21∕2+ , as shown in Fig. 7a. 
A triggering state with 17∕2+ lies just 4.8 keV above the 
isomeric state and has a half-life of 3.5 ns.

The first experimental observation of NEEC was reported 
by Chiara et al., with a probability of 0.010(3) for 93mMo 
ions interacting with a carbon foil [17]. The measurements 
were conducted at the ATLAS facility at Argonne National 
Laboratory, utilizing the Gammasphere array to detect �-
rays, as shown in Fig. 7b. In the experiment, 93mMo ions 
were produced at the 7 Li target bombarded by a 90 Zr beam 
with an energy of 840 MeV, implanted in a carbon foil 
located 3 mm away from the primary target, and finally 
stopped in the lead backing. The NEEC process was 
hypothesized to occur within the carbon foil, leading to the 
coincidence detection of �-rays above the isomeric state 
and those below the triggering state. The �-rays from states 
above the isomeric level exhibited Doppler shifts owing to 

the ionic motion, while those below the triggering state did 
not, as the ions stopped in the carbon and lead layers within 
a few picoseconds—a duration much shorter than the half-
life of the triggering state.

From numerous triple- or higher-fold coincidence events, 
the coincidence between the 268 keV transition depopulating 
the triggering state and the transitions above the 21∕2+ 
isomer was determined to be valid. Based on these results, 
a depletion probability of 0.010(3) was deduced. However, 
subsequent theoretical studies were unable to reproduce such 
a large probability; instead, they predicted a much smaller 
value of approximately 10−11 [31].

Later, it was noted that the handling of the background in 
this experiment may have been overly idealized, potentially 
leading to an overestimation of the extracted NEEC 
probability. In a reply, Chiara et al. argued that the random 
coincidence could only contribute approximately 0.0008 
to the reported probability, and the possible contamination 
of the reported spectra could be explained with some 
unpublished information [160].

To address the controversy surrounding the NEEC 
probability, another independent experiment was conducted 
at the Heavy Ion Research Facility in Lanzhou, as shown in 
Fig. 7c [18]. In this experiment, an 86 Kr beam with an energy 
of 559 MeV was directed onto a carbon target positioned 
at T0 of the secondary radioactive ion-beam line (RIBLL) 
in Lanzhou. The resulting 93mMo ions were transported by 

Fig. 7   (Color online) Structure of 93Mo and the settings of two exper-
iments. a Level scheme of 93Mo . b The setting diagram of the experi-
ment carried out at Argonne Laboratory in the United States. c Sche-

matic diagram of the experiment based on the Heavy Ion Research 
Facility in Lanzhou, China
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RIBLL to the detection station located at T2, and stopped in a 
plastic scintillator. The NEEC of 93mMo ions was anticipated 
to occur during their deceleration in a 20 μm-thick carbon 
foil located in front of the plastic scintillator. �-rays emitted 
from the NEEC process and subsequent isomeric transitions 
were detected by five Compton-suppressed high-purity 
germanium detectors surrounding the plastic scintillator, 
while the prompt �-rays from the primary fusion-evaporation 
reactions were emitted at T0 and did not contribute to the 
background of the measurement. The NEEC of 93mMo was 
not observed in this experiment, with an upper limit of the 
NEEC probability of 2 × 10

−5.
However, the recoiling energy in the latter experiment 

was considerably lower, and the stopping materials differed 
between the two experiments. Consequently, the debate 
persists from both experimental and theoretical perspectives. 
Further experiments are required to provide conclusive 
evidence to resolve these discrepancies.

6.3 � By using electron beams

Because NEEC is a resonant process, the selection and 
preparation of appropriate energy levels and ion charge 
states are critical for its successful observation. An EBIT 
offers an alternative environment for these studies by 
providing a tunable electron beam and well-confined, highly 
charged ions.

In an EBIT, ions are confined within a narrow spatial 
region, primarily centered around the electron beam, as 
shown in Fig. 8. The electron-beam density ranged from 
approximately 1010 to 1012 cm−3 . The equilibrium charge 
state of the ions can be controlled by adjusting key param-
eters such as the electron-beam energy, axial magnetic 
field, and the presence of neutral atoms in the trap region, 
as detailed in [161].

In Ref. [35], Ringuette conducted simulations of 
the NEEC process at the TITAN setup to excite 129m Sb 
( T

1∕2
= 17.7 min) to a state 10 keV higher. However, 

careful selection of the ion charge state and atomic orbitals 
is necessary to overcome the challenges arising from 

switching the electron beam from charge-breeding energy to 
NEEC resonance energy. In Ref. [20], Wang et al. proposed 
a modified EBIT configuration that featured two electron 
guns with different energy settings: one is optimized to strip 
atoms to the high-charge states, while the other is tuned to 
meet the NEEC resonance conditions.

In the experimental setups proposed by these researchers, 
NEEC events were confirmed by detecting the photons 
emitted through an observation window around the drift 
tubes. As noted by Wang et al., the differentiation between 
NEEC events and background signals, particularly those 
from the RR process, relies primarily on their distinct 
angular distributions. Developing a more comprehensive 
approach for detection and discrimination, along with 
further optimization of experimental conditions, remains 
an active area of investigation.

The NEEC counting rate is significantly affected by the 
energy distribution of the electron beam in the EBIT [35]. 
In addition, it has been demonstrated that NEEC signals can 
be effectively distinguished from the RR background only 
when the experimental conditions, particularly the electron 
beam, are well-defined [27].

7 � Summary

The NEEC process, along with its inverse process of IC, 
represents a unique interaction that involves both atomic and 
nuclear structures. NEEC and IC are closely related to the 
excitation or de-excitation of nuclear isomeric states, with 
implications for technological applications and fundamental 
physics, including nuclear batteries, nuclear clocks, and 
nucleosynthesis in astrophysical environments.

Since its theoretical proposal in 1976, NEEC has attracted 
considerable attention from the scientific community. 
Several researchers in related fields have suggested that 
NEEC could play a significant role in astrophysical 
environments and plasma physics. In astrophysics, NEEC 
could extend the reaction chains of neutron-capture 
processes, potentially altering the isotopic abundances in 
stellar and cosmic contexts. In plasma environments, NEEC 
could influence the population balance of atomic nuclei and 
their associated isomers.

Nevertheless, despite its theoretical potential, 
experimental verification of NEEC has remained a 
formidable challenge. Key challenges include the high 
background noise inherent in experimental environments, 
whether in laser-induced plasmas or particle accelerators. 
In these settings, the NEEC cross-section is small compared 
to other competing electromagnetic interactions, such as CE 
and RR, complicating the task of isolating NEEC signals 
from substantial noise. Efforts to enhance NEEC rates and Fig. 8   (Color online) Setup structure of EBIT consisting of a cathode, 

permanent magnets, drift tubes, and an electron collector
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mitigate background interference continue to be an active 
research area.

In the selection of experimental setups and the design 
of experimental schemes, researchers such as Gunst, Wu, 
and Qi have explored optimal laser parameters and plasma 
properties to enable NEEC in laser-induced plasmas. 
They suspected that using low-energy-density lasers on 
solid targets to generate cold, low-density plasmas could 
effectively reduce noise and enhance the occurrence and 
detection of NEEC events. In plasma environments, the 
detection scheme for NEEC using X-rays tends to focus 
on nuclei or isomers with low gaps above, typically in 
the eV to keV range. However, researchers such as Pálffy, 
Chiara, Ringuette, and Wang have focused on demonstrating 
that precise energy control via electron or ion beams can 
improve the efficiency of NEEC, thereby reducing the 
influence of noise. They employ techniques such as storage 
rings, ion-beam interactions with solids, and electron-beam 
interactions with plasmas, which significantly expand the 
range of selectable nuclear energy levels. In particular, 
if dual electron beams are used in a storage ring or EBIT 
setup, the efficiency of reactions can be enhanced while 
maintaining the stability of the ion beam in the storage ring 
or plasmas in the EBIT. However, these methodologies 
require further refinement and development in future 
experimental setups.

In addition, it should be noted that owing to the inherent 
properties of nuclear transition selection rules, higher-order 
multipole transitions are typically suppressed, resulting in 
insufficient reaction cross-sections. Wang et al. introduced 
vertex beams into the study of NEEC and developed a 
theoretical framework for their application. Owing to the 
OAM carried by vortex beams, traditional selection rules are 
broken, enabling the occurrence of higher-order multipole 
transitions. Thus, the successful generation of high-intensity 
vortex beams in laboratory environments represents a 
significant breakthrough, potentially advancing the study of 
nuclear excitation processes.

Designing experiments that effectively eliminate 
background noise and enable the discovery of NEEC remain 
an active area of research. Successfully confirming NEEC 
would mark a significant breakthrough in our understanding 
of nuclear processes, paving the way for advancements in 
both fundamental research and practical applications.
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