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Abstract
In this paper, we constrain the symmetry energy at high densities in nuclear matter using recent observations of neutron 
stars based on the calculations of relativistic mean-field models. Using the observations of the neutron stars, we obtain the 
constraint on the symmetry energy at high densities, S(2�

0
) = 40.54±12.47 MeV, and S(3�

0
) = 44.12±29.38 MeV.
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1  Introduction

The nuclear equation of state (EoS), particularly the sym-
metry energy, is essential in both nuclear physics and astro-
physics  [1–7]. In nuclear physics, the symmetry energy 
significantly affects the structure of finite nuclei, including 
the neutron skin thickness of heavy nuclei [8]. In astrophys-
ics, it influences the key properties of neutron stars, such as 

their masses and radii [3, 4], as well as their cooling pro-
cesses [9]. Consequently, constraining the symmetry energy 
is an important challenge in nuclear physics.

Many experimental attempts have been conducted to 
constrain the symmetry energy around the saturation den-
sity �0 [10–23]. These include measurements of the dipole 
polarizabilities of 208Pb [14, 15], giant dipole resonance 
energies [13], isospin diffusion in heavy-ion collisions [11], 
isobaric analog states [19], and neutron skin thickness [12, 
24]. Because of the extensive research on determining the 
symmetry energy, the constraint on the symmetry energy 
at saturation density is relatively precise, with a commonly 
accepted value of J = 30±4 MeV [10, 11, 13–22].

In contrast, the symmetry energy at suprasaturation 
remains unclear. Many terrestrial experiments have been 
performed to extract information on symmetry energy at 
suprasaturation. In studies on heavy-ion collisions, the con-
straints on the suprasaturation density dependence of the 
symmetry energy have been obtained from analyses of the 
�
−∕�+ ratio [25–31] and n/p elliptic flows ratio [32, 33]. 

However, the symmetry energy at suprasaturation densities 
exhibit a large model dependence. This is caused by the diffi-
culties in solving the transport models and extrapolating the 
finite excited nuclear system to infinite nuclear matter at zero 
temperature. Consequently, further progress in understand-
ing and constraining the equations of state for nuclear matter 
at high densities is expected from analyses that incorporate 
the properties of neutron stars.

The mass measurement  of  the pulsar  PSR 
J0740+6620 from the Neutron Star Interior Composition 
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Explorer [34, 35] revealed a neutron star with a mass of 
2.08+0.07

−0.07
 M

⊙
 , and GW190814 from the LIGO/Virgo col-

laboration  [36] observed a 2.5 − 2.67 M
⊙

 compact star 
because of the neutron stars impose tight constraints on 
the EoS [37–40]. For the observations of the mass around 
the 1.4 M

⊙
 neutron star, the analysis of the tidal deform-

ability from GW170817 by LIGO/Virgo [41, 42] along 
with radius R1.4 = 13.02+1.24

−1.06
 km and mass–radius posterior 

distributions from millisecond pulsar PSR J0030+0451 
via the (NICER) mission [43] have significantly enhanced 
the ability to constrain the symmetry energy of nuclear 
matter [44, 45]. Moreover, constraints on the symmetry 
energy have been derived from multiple observations of 
neutron stars in combination with nuclear theory  [10, 
44–47]. Among these studies, Skyme interactions [45, 
48, 49], chiral effective field theory [10] and empirical 
local density functional metamodels [50] were developed 
under the non-relativistic framework. Relativistic mean-
field models have been widely used to describe the prop-
erties of infinite nuclear matter, finite nuclei, and stellar 
matter [51–54]. A systematically analysis of the influence 
of all relativistic mean-field (RMF) sets on the properties 
of neutron stars. In this paper, we utilize RMF models to 
describe the properties of neutron stars with a focus on 
exploring the constraints imposed by these models on the 
EoS and symmetry energy at both saturation and supra-
saturation densities.

The remainder of this paper is organized as follows. In 
Sect. 2, we review the theoretical aspects of RMF mod-
els, the EoS of a neutron star, and the Tolman–Oppenhe-
imer–Volkov (TOV) equation. In Sect. 3, we present the 
results of the constraint on the symmetry energy obtained 
from the neutron star observations. Finally, the summary 
is presented in Sect. 4.

2 � Model

2.1 � Relativistic mean field

In this paper, we employ the framework of RMF models 
to extract information on the symmetry energy in sym-
metric nuclear matter (SNM) systems. RMF models pro-
vide a comprehensive description of both nuclear matter 
and finite nuclei and are widely used to study neutron star 
properties. To better categorize the parametrizations asso-
ciated with RMF models, Ref. [53] defined three distinct 
types: (i) nonlinear, (ii) density-dependent, and (iii) point-
coupling models.

The Lagrangians for the different RMF models are
1. Nonlinear (NL) model

2. Density dependence (DD) model

3. Point-coupling (PC) model

where �
��

 and �
��

 are defined by �
�
�
�
− �

�
�
�
 and 

�
�
�
�
− �

�
�
�
 , respectively. In Eq.1, U(�) =

1

3
g2�

3 +
1

4
g3�

4 
is the nonlinear potential of the � field.

As an example, we use the nonlinear RMF model to 
present the expressions of relevant quantities [51–53]. In 
the RMF model, meson fields can be replaced with their 
expectation values:

The equation of motions (EOMs) for nucleons and mesons 
were derived from the Lagrangian density:

(1)

LNL =Ψ̄[i𝛾
𝜇
𝜕
𝜇 − mN]Ψ +

1

2

(
𝜕
𝜇
𝜎𝜕

𝜇
𝜎 − m2

𝜎
𝜎
2
)
− U(𝜎)

−
1

4
𝜔
𝜇𝜈
𝜔
𝜇𝜈 +

1

2
m2

𝜔
𝜔
𝜇
𝜔
𝜇 +

1

4
𝜁
4(𝜔

𝜇
𝜔
𝜇)2

−
1

4
�
𝜇𝜈
�𝜇𝜈 +

1

2
m2

𝜌
�
𝜇
�𝜇 +

1

2

(
𝜕
𝜇
�𝜕𝜇� − m2

𝛿
�2
)

+ g
𝜎NNΨ̄Ψ𝜎 − g

𝜔NNΨ̄𝛾𝜇Ψ𝜔
𝜇

− g
𝜌NNΨ̄𝛾𝜇� ⋅Ψ�𝜇 + g

𝛿NNΨ̄� ⋅Ψ�

+ g
𝜎
g2
𝜔
𝜎𝜔

𝜇
𝜔
𝜇(𝛼1 +

1

2
𝛼
�

1
g
𝜎
)

+ g
𝜎
g2
𝜌
𝜎�

𝜇
�𝜇(𝛼2 +

1

2
𝛼
�

2
g
𝜎
)

+
1

2
𝛼
�

3
g2
𝜔
g2
𝜌
𝜔
𝜇
𝜔
𝜇�

𝜇
�𝜇.

(2)

LDD =Ψ̄[i𝛾
𝜇
𝜕
𝜇 − mN]Ψ +

1

2

(
𝜕
𝜇
𝜎𝜕

𝜇
𝜎 − m2

𝜎
𝜎
2
)

−
1

4
𝜔
𝜇𝜈
𝜔
𝜇𝜈 +

1

2
m2

𝜔
𝜔
𝜇
𝜔
𝜇 −

1

4
�
𝜇𝜈
�𝜇𝜈 +

1

2
m2

𝜌
�
𝜇
�𝜇

+
1

2

(
𝜕
𝜇
�𝜕𝜇� − m2

𝛿
�2
)
+ Γ

𝜎
(𝜌)Ψ̄Ψ𝜎 − Γ

𝜔
(𝜌)Ψ̄𝛾

𝜇
Ψ𝜔𝜇

− Γ
𝜌
(𝜌)Ψ̄𝛾

𝜇
� ⋅Ψ�𝜇 + Γ

𝛿
(𝜌)Ψ̄� ⋅Ψ�.

(3)

LPC =Ψ̄[i𝛾
𝜇
𝜕
𝜇 − mN]Ψ −

𝛼S

2

(
Ψ̄Ψ

)2

−
𝛼V

2

(
Ψ̄𝛾

𝜇
Ψ
)(
Ψ̄𝛾𝜇Ψ

)
−

𝛼TV

2

(
Ψ̄𝛾

𝜇
�Ψ

)
⋅

(
Ψ̄𝛾𝜇�Ψ

)

−
𝛼TS

2

(
Ψ̄�Ψ

)
⋅

(
Ψ̄�Ψ

)

−
𝛽S

3

(
Ψ̄Ψ

)3
−

𝛾S

4

(
Ψ̄Ψ

)4
−

𝛾V

4

(
Ψ̄𝛾

𝜇
ΨΨ̄𝛾𝜇Ψ

)2

−
𝛼TV

4

(
Ψ̄𝛾

𝜇
�Ψ ⋅ Ψ̄𝛾𝜇�Ψ

)2

+ [𝜂1 + 𝜂2

(
Ψ̄Ψ

)
]
(
Ψ̄Ψ

)(
Ψ̄𝛾

𝜇
Ψ
)(
Ψ̄𝛾𝜇Ψ

)

− 𝜂3

(
Ψ̄Ψ

)(
Ψ̄𝛾

𝜇
�Ψ

)
⋅

(
Ψ̄𝛾𝜇�Ψ

)
,

(4)
𝜎 →< 𝜎 >= 𝜎̄, 𝜔𝜇

→< 𝜔
𝜇
>= 𝜔̄

0

�𝜇
→< �𝜇

>= 𝜌̄
0
3
, �𝜇 →< �𝜇 >= 𝛿

0
3



Constraint on the symmetry energy at high densities from neutron star observations using… Page 3 of 14  141

where the different densities are defined as

Filling up to the Fermi momenta kF,i for i = n or p in the 
nuclear matter, the neutron (n) and proton (p) scalar and 
baryon densities are given by

where the degeneracy factor C(i =n,p)=2, and 
E∗
Fi
=

√
k2
Fi
+ m∗2

i
 is the Fermi energy of neutrons and pro-

tons. Here, m∗
i
 is the Dirac effective mass of nucleons, given 

by the relation

The eigenvalues of the neutrons and protons from the Dirac 
equation are
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The expressions for the energy density and pressure are 
obtained from the given Lagrangian using the energy-
momentum tensor relation given by

where �i runs over all the possible fields. The energy density 
� and pressure P can be obtained from the energy-momen-
tum tensor:

and

The same calculations for the density dependence and point-
coupling models are given in Refs. [55–59].

The binding energy per particle in asymmetric nuclear mat-
ter can be expressed as follows:

Here, the isoscalar term E0(�) = E(�, � = 0) is the binding 
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density, and � = (�n − �p)∕(�n + �p) is the isospin asymme-
try. The nuclear symmetry energy S(�) is defined as

The symmetry energy is expanded in terms of (� − �0)∕3�0 
as

where J = S(�0) is the symmetry energy, and L = 3�0
�S

��
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�=�0

 
is the slope of the symmetry energy at the saturation 
density.
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follows:
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The expressions of the slope of symmetry energy (L) of the 
various RMF models are
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In this paper, we utilize 180 interaction parameter sets 
selected from those used in RMF models [53]. These param-
eter sets satisfy the incompressibility at saturation densities 
K0 within the range of 200 to 300 A MeV by computing 
the distribution of isoscalar monopole strength in 208Pb 
with relativistic models  [60]. The interaction parameter 
sets are listed below, and detailed information is available 
in Ref. [53]:

(i)165 nonlinear RMF models (E [61], ER [61], NL1 [51], 
NL3 [62], NL3-II [62], NL3∗  [63], NL4 [64], NLC [54], 
NLB1 [51], NLB2 [51], NLRA1 [65], NLS [66], P-067 [67], 
P-070 [67], P-075 [67], P-080 [67], GL1 [68], GL2 [68], 
GL3  [68], GL4  [68], GL5  [68], GL6  [68], GL7  [68], 
GL8  [68], GL82  [69], GL9  [68], GM1  [70], GM2  [70], 
GM3 [70], GPSa [71], GPSb [71], NL�A [72], NL�B [72], 
RMF301 [73], RMF302 [73], RMF303 [73], RMF304 [73], 
RMF305 [73], RMF306 [73], RMF307 [73], RMF308 [73], 
RMF309 [73], RMF310 [73], RMF311 [73], RMF312 [73], 
RMF313 [73], RMF314 [73], RMF315 [73], RMF316 [73], 
RMF317 [73], RMF401 [73], RMF402 [73], RMF403 [73], 
RMF404 [73], RMF405 [73], RMF406 [73], RMF407 [73], 
RMF408 [73], RMF409 [73], RMF410 [73], RMF411 [73], 
RMF412 [73], RMF413 [73], RMF414 [73], RMF415 [73], 
RMF416 [73], RMF417 [73], RMF418 [73], RMF419 [73], 
RMF420 [73], RMF421 [73], RMF422 [73], RMF423 [73], 
RMF424 [73], RMF425 [73], RMF426 [73], RMF427 [73], 
RMF428 [73], RMF429 [73], RMF430 [73], RMF431 [73], 
RMF432 [73], RMF433 [73], RMF434 [73], Q1 [74], G1 [74], 
G2  [74], SMFT2 [75], DJM [75], S271  [76], Z271  [76], 
SRK3M5  [77], HD  [78],HC  [78], MS1  [79], MS3  [80], 
XS [80], NLSV1 [81], NLSV2 [81], TM1 [82], PK1 [83], 
hybrid [84], Z271∗ [85], G2∗ [85], BKA20 [86], BKA22 [86], 
BKA24  [86], FSUGOLD  [9], FSUGOLD4  [87], FSUG-
OLD5 [87], FSUGZ00 [88], FSUGZ03 [88], FSUGZ06 [88], 
IU-FSU  [89], NL3V1  [90], NL3V2  [90], NL3V3  [90], 
NL3V4  [90], NL3V5  [90], NL3V6  [90], S271V1  [90], 
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.

S271V2 [90], S271V3 [90], S271V4 [90], S271V5 [90], 
S271V6  [90], Z271S1  [90], Z271S2  [90], Z271S3  [90], 
Z271S4  [90], Z271S5  [90], Z271S6  [90], Z271V1  [90], 
Z271V2 [90], Z271V3 [90], Z271V4 [90], Z271V5 [90], 
Z271V6 [90], TM1∗ [91], BSR1 [92], BSR2 [92], BSR3 [92], 
BSR4 [92], BSR5 [92], BSR6 [92], BSR7 [92], BSR8 [92], 
BSR9  [92], BSR10  [92], BSR11  [92], BSR12  [92], 
BSR13  [92], BSR14  [92], BSR15  [92], BSR16  [92], 
BSR17  [92], BSR18  [92], BSR19  [92], BSR20  [92], 
BSR21 [92], SVI-1 [93], SVI-2 [93], SIG-OM [94], NL��
A [72], NL�� B [72]);

(ii) Nine density-dependent RMF models (TW99 [95],DD-
ME1 [96],PKDD [83], DD-ME2 [58], DD [97], DD-F [98], 
DD2 [99], DDME� [59], DDRH�� [59]);

(iii)6 point-coupling RMF models (FA3 [57], FA4 [57], 
FZ3 [57], VZ3 [57], PC-F1 [55], PC-F3 [55]).

2.2 � Equation of state of a neutron star

For different density regions of a neutron star, different forms 
of the EoS are employed in this paper as follows.

(i) For the outer crust of a neutron star, the EoS provided 
by Baym, Pethick, and Sutherland (BPS) [100] is adopted 
for densities in the range �min ≤ � ≤ �outer . Here, �min is the 
minimum density ( �min = 4.73 × 10−15 fm−3 ), with the cor-
responding energy density �min=4.38×10−12  MeV  fm−3 
and pressure Pmin = 6.3 × 10−25  MeV  fm−3 . The outer 
crust density is �outer=2.57 × 10−4  fm−3 with an energy 
dens i ty  �outer = 0.24MeV fm−3and  pressure  Pouter

=4.86 × 10−4 MeV fm−3 . In this region, because of the heavy 
nuclei, primarily around the iron mass number, a Coulomb lat-
tice coexists in �-equilibrium (i.e., equilibrium with respect to 
weak interaction processes) with an electron gas in the neutron 
star outer crust [100].

(ii) For the inner crust, 𝜌outer < 𝜌 ≤ 𝜌T , the EoS takes the 
form P = A + B�4∕3 from Refs. [101, 102], where two con-
stants A and B are adjusted to match the outer crust EoS to 
that of a liquid core at the crust–core transition density �T 
( �T = 0.5�0 [103]).

(iii) In the liquid core region, also referred to as the 
outer core (OC) region, the density range is 𝜌T < 𝜌 ≤ 𝜌OC 
( �OC = 3�0 ), where the EOS is obtained using the RMF. 
This region requires the system to be in �-equilibrium and 
is composed of protons, neutrons, electrons, and muons. 
For � equilibrium to be attained in nuclear matter, the fol-
lowing electroweak processes must occur: n → p + e− + 𝜈̄e , 
p + e− → n + �e , e− → 𝜇

− + 𝜈e + 𝜈̄
𝜇
 , p + �

−
→ n + �

�
 , and 

n → p + �
− + �

�
 . The �-equilibrated matter must satisfy the 

following conditions for the chemical potentials:

(33)�n − �p = �e, �e = �
�
,
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where �
�i
= 0 , i = e,� . At zero temperature, the neutron and 

proton chemical potentials are �n = en and �p = ep , respec-
tively. For relativistic degenerate electrons,

where me =0.511 MeV, and m
�
=0.105 GeV. With the par-

ticle fraction xi = �i∕� ( i = n, p, e,� ), xp = xe + x
�
 satisfies 

charge neutrality.
(iv) For the neutron star inner core (IC) region at a high 

density ( 𝜌 > 𝜌OC ), studies have incorporated exotic particles 
such as hyperons, Δs , quarks, and dark matter into the core of 
massive neutron stars at densities exceeding 3�0 [104–115]. 
However, owing to the significant uncertainties in the interac-
tions between nucleons and exotic particles (e.g., hyperons, Δs , 
and quarks), and the unclear composition of the neutron star 
core, a polytropic EoS is employed instead of explicitly mod-
eling all possible exotic particles. In this paper, a piecewise 
polytropic EoS of the form Pi(�) = �i�

�i [116–118] is used 
to smoothly extend the EoS to the density region of the IC of 
the neutron star ( 𝜌 > 𝜌OC ). The polytropic EoS is constructed 
as follows:

where the set of dividing densities 𝜌OC = 𝜌1 < 𝜌2 < ⋯ , and 
�i+1 − �i = Δ� = 0.05�0.

In summary, the EoS of neutron star matter is

where P = PN + Pe + P
�
 , � = �N + �e + �

�
 , and the total 

pressure and energy density should include the leptons. The 
thermodynamically stable EoS must satisfy �P

��
≥ 0 . The adi-

abatic speed of sound can be expressed as

where � is the energy density of the �-stable nuclear matter. 
For the causality condition, i.e., the speed of sound is always 
less than that of light vs < c.

(34)�e =

√
m2

e
+ k2

Fe
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√
m2

e
+ (3�2xe�)

2∕3,

(35)�
�
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√
m2

�
+ k2

F�
=

√
m2

�
+ (3�2x

�
�)2∕3,

(36)Pi = �i�
�i , with �i ≈ �i−1

(37)�i =
ln (Pi∕Pi−1)

ln (�i∕�i−1)
, Pi = Pi−1

(
�i

�i−1

)�i

,

(38)�i =

(
�i−1 −

Pi−1

�i − 1

)(
Pi

Pi−1

)1∕�i

+
Pi

�i − 1
,

P(𝜖) =

⎧⎪⎨⎪⎩

PBPS(𝜖) for 𝜌min ≤ 𝜌 ≤ 𝜌outer

A + B𝜖
4∕3 for 𝜌outer < 𝜌 ≤ 𝜌T

PRMF(𝜖) for 𝜌T < 𝜌 ≤ 𝜌OC

PIC(𝜖) for 𝜌 > 𝜌OC,

(39)c2
s
=

(vs
c

)2

=
𝜕P

𝜕𝜖
< 1,

2.3 � Tolman–Oppenheimer–Volkov equation

The structure of a neutron star is obtained by solving the 
TOV equation derived from General Relativity [119–121]. 
The TOV equations are

where G=6.707 × 10−45 MeV−2 is the gravitational constant, 
r is the distance from the core of the star, P = P(r) is the 
pressure, and M = M(r) is the mass with radius r.

The in-spiral phase of the two merging neutron stars 
creates strong tidal gravitational fields, resulting in the 
deformation of the multipolar structure of the star. The 
deforming effects are quantified through the tidal deform-
ability parameter Λ , which relates the induced mass quad-
ruple moment Qij to the time-independent external tidal 
field Eij through the relation [122–124]:

Here, k2 is the Love number, which can be obtained from the 
solution of the first-order differential equation [124]

where yR = y(R) , and � = GM∕R . Eqs. 40, 41, 43 are solved 
using the boundary conditions at the center of the star, 
M(0) = 0, P(0) = Pc , and y(0) = 2, where Pc is the central 
pressure. Varying Pc yields all possible stars for a given EoS. 
Thus, P(R) = 0 (vacuum pressure being set to zero) defines 
the radius of star R and the total gravitational mass of the 
star is M(R), which is simply denoted by M in the following.

The dimensionless deformability Λ is defined as 
follows:

(40)dP

dr
= −

GM�

r2

(1 + P∕�)(1 + 4�r3P∕M)

1 − 2GM∕r
,

(41)
dM

dr
= 4�r2�,

(42)Qij = −k2
2R5

3G
Eij.

(43)dy

dr
= −

y2

r
−

y

r

(r − 4�Gr3(� − p))

r − 2GM
− rQ,

(44)
Q =

4�r
[
G
(
5� + 9p + (� + p)∕c2

s

)
−

3

2

1

�r2

]

1 − 2GM∕r

−

[
2G(M + 4�pr3)

r(r − 2GM)

]2
,

(45)

k2 =
8

5
�
5(1 − 2�)2[2 − yR + 2�(yR − 1)]

× {2�[6 − 3yR + 3�(5yR − 8)]

+ 4�3[13 − 11yR + �(3yR − 2) + 2�2(1 + yR)]

+ 3(1 − 2�)2[2 − yR + 2�(yR − 1)] ln (1 − 2�)}−1,
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3 � Results and discussions

Generally, most RMF models are adjusted to describe nuclei 
and nuclear matter in the density region from near subsatura-
tion density � ≈ 2∕3�0 (average between central and surface 
densities [76, 103, 125–128]) to saturation density. Moreo-
ver, the symmetry energy has large variations at high densi-
ties obtained using different parameters of RMF models. 
The symmetry energy as a function of density obtained by 
RMF models with 180 parameter sets is shown in Fig. 1. 

(46)Λ =
2k2

3

(
R

GM

)5

.
We observe that various RMF models predict very different 
density behaviors of the symmetry energy, particularly at 
suprasaturation densities 𝜌 > 𝜌0 . For example, the magnitude 
of the symmetry energy varies from 29.5 to 114.8 MeV at 
2 �0 and from about 14.7 to 188.7 MeV at a density of 3 �0 . 
In Fig. 1, the symmetry energy behaviors are classified into 
three types: hard, linear, and soft, represented by the green, 
gray, and orange lines, respectively. We observe from the 
figure that most of the symmetry energy occurs near the 
linear types in RMF models.

In this paper, we use the observations of neutron stars 
to constrain the nuclear EoS at high densities � ≥ �0 
because neutron star properties are strongly correlated 
with the nuclear EoS, as mentioned in Ref. [44, 50, 129]. 
This constraint can be obtained from the measurements of 
neutron stars for a mass of M = 1.4 M

⊙
 , such as the tidal 

deformability from the analysis of gravitational wave data, 
Λ1.4 ≈ 190+390

−120
 from GW170817 [41], and the radius–mass 

relation from both GW170817 and PSRJ0030+0451 [41, 
43]. For the maximum masses of neutron stars, the maxi-
mum neutron star mass MMax ≥ 2 M

⊙
 is used from Refs. [35, 

42], because a compact star with a mass of 2.59+0.08
−0.09

 M
⊙
 may 

be the lightest black hole [36].
Our results for tidal deformability with the empirical val-

ues from GW170817 (red point) [41] are plotted in panel (a) of 
Fig. 2. The mass–radius relationship of neutron stars is shown 
in panel (b) of Fig. 2, where the pink shaded areas represent 
the region of the posterior distributions at 90% confidence the 
analysis from PSRJ0030+0451 [43], the blue shaded region 
is the posterior distribution at 95.4% confidence from PSR 
J0740+6620  [39], and the purple and green shaded areas 
denote the region of the posterior distributions at 90% confi-
dence for GW170817’s lighter and heavier neutron stars [42], 
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Fig. 1   (Color online) Symmetry energy for 180 RMF models as a 
function of density �∕�0 ; the green, gray, and orange lines represent 
hard, linear, and soft symmetry energies, respectively

Fig. 2   (Color online) a Tidal deformability Λ as a function of the 
neutron star mass M, where the gray and black lines are the results 
from the RMF models without and with constraint of the neutron 
star, respectively. b Neutron star mass M as a function of neutron star 
radius R. The green, purple, and pink shaded regions are the posterior 

distributions at 90% confidence for GW170817’s lighter neutron star, 
GW170817’s heavier neutron star [42], and J0030+0451 [43], respec-
tively. The blue shade region represents the posterior distributions at 
95.4% confidence from PSR J0740+6620 [39]
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respectively. In Fig. 2, the gray lines represent the results for all 
the selected 180 RMF parameter sets, which are models with-
out the constraint of the neutron star. With the constraint from 
the observables of neutron stars such as tidal deformability [41] 
and mass–radius relation around 1.4 M

⊙
 [42, 43] combined 

with the maximum masses of neutron stars above 2 M
⊙
 , the 

results of restricted RMF models are indicated by black lines 
in Fig. 2. Because of the neutron star multi-observables, the 
analysis of empirical values excludes most RMF parameter 
sets, and only nine sets remain: HC, FSUGZ03, IU-FSU, G2∗ , 
BSR8, BSR9, DD-F, FA3, and FZ3, which can simultaneously 
describe both the tidal deformability [41] and the overlap of 
the two mass–radius relation regions [42, 43]. The symmetry 
energy for RMF models HC, FSUGZ03, IU-FSU, G2∗ , BSR8, 
BSR9 is described by Eq. 27, that for DD-F by Eq. 28, and that 
for FA3, FZ3 by Eq. 28.

Figure 3 shows a comparison of the pressure–density 
relations between the empirical values from measurements 
of neutron stars and the RMF model calculations. The green 
shaded regions enclose the empirical pressure given by the 
“spectral" EoS inferred from the Bayesian analysis of the 
GW170817 data at a 90% confidence level, maintaining the 
lower limit of the maximum neutron star mass at 2 M

⊙
 . Our 

results of the pressure–density relation (black lines) for neu-
tron-rich matter with � stability are mostly under the limit of 
the empirical region at the OC ( 0.5𝜌0 < 𝜌 ≤ 3𝜌0 ), where the 
EoS is described by RMF models. For the IC area, 𝜌 > 3𝜌0 , 
the order-by-order polytropes EoS in Eqs. (36, 37, 38) occur 
primarily in the region of neutron star measurement (except 
the EoS from the HC model).

Figure 4 depicts the constraints on the J − L relation, which 
were compiled in [10, 130, 131]. In this paper, the symme-
try energy J − L constraint from the neutron star observa-
bles based on the RMF models is shown as scattering points 

(cyan stars) with the range of symmetry energy at saturation 
J = 30.66±0.96 MeV, and slope L = 49.47±20.39 MeV. Fig-
ure 4 includes the J − L constraints obtained in the analysis of 
the finite nuclei (neutron skin thicknesses of Sn isotopes and 
209Pb , isobaric analog states and isovector skins, and the dipole 
polarizability of 209Pb ) and nuclear matter (heavy-ion collisions 
and chiral effective field theory calculations of nuclear matter). 
The enclosed overlap region [131] from constraints obtained 
from experimental measurements of the neutron skin thick-
nesses of Sn, dipole polarizabilities, giant dipole resonances, 
heavy-ion collisions, and nuclear mass fitting correspond to 
J of approximately 29.0–32.7 MeV, and L is approximately 
40.5– 61.9 MeV [130, 131]. In this paper, the constraints for the 
symmetry energy and its slope at saturation, which are obtained 
from neutron star observables, are almost in this overlap region, 
as shown in Fig. 4. Our results can reproduce the properties of 
neutron stars but cannot reproduce the PREX-II neutron skin 
using the RMF model. Compared with the research by Chen 
et al. [132], where the slope parameter L = 80±25 MeV was 
obtained from a study of 23 RMF parameter sets, the result in 
this paper, L = 49.47±20.39 MeV, is relatively soft.
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Fig. 3   (Color online) Pressure as a function of density for the neu-
tron-rich matter with � stability. The green shaded area represents 
data from GW170817 [42]
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Fig. 4   (Color online) Constraints on the J − L correlation. The cyan 
stars are our result with the constraint from the RMF models using 
the neutron star observables. The enclosed white area is the overlap 
region obtained from heavy-ion collisions (HIC)  [11], neutron skin 
thicknesses of Sn isotopes [12], giant dipole resonances (GDR) [13], 
the dipole polarizability of 208Pb  [14, 15], and the energy density 
functionals for nuclear masses (masses)  [16]. Experimental con-
straints are obtained from the isobaric analog states and isovector 
skins (IAS+ΔR)  [19], unitary gas (UG) limit by Tews et  al.  [22], 
and the neutron skin thicknesses of 208Pb [24]. The microscopic cal-
culations of neutron matter have shown to be �EFT are from chiral 
effective field theory via the Gaussian Process–BUQEYE collabora-
tion [10], Hebeler et al. (H) [20], and Gandolfi et al. (G) [21]
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The symmetry energy at �0 ≤ � ≤ 3�0 constrained using 
the neutron star multi-observables is displayed as a cyan 
shaded region in Fig. 5. Analysis of doubly magic nuclei and 
masses of neutron-rich nuclei [133] (black square), isobaric 
analog states (IAS) [134] (red region), and isospin diffu-
sion in heavy-ion collisions [11] (olive region), the electric 
dipole polarizability in 209Pb [135] (red point), the multi-
observables (isospin diffusion, neutron skin and neutron 
star) [45] (blue dash line), �EFT (magenta hatched) based 
on Gaussian Process–BUQEYE ( �EFT-GPB) Collabora-
tion [10, 136, 137], the constraint from neutron star obser-
vations and nuclear matter experiments (gray hatched shaded 
area) [47], and neutron skin thicknesses of 209Pb by PREX-
II [24] (up triangle), are also included for comparison. To 
obtain full information on the symmetry energy, we also 
present the range of symmetry energies at suprasaturation 
S(2�0) = 28.07 –53.00 MeV, and S(3�0) = 14.74–73.49 MeV 
in Fig.5. Our result for the symmetry energy constraint is 
similar to that from the �EFT-GPB Collaboration, which is 
a microscopic calculation. The symmetry energy at a high 
density in this paper is softer than the result from Tsang 
et al. [47] (gray hatched area), which used parametric pri-
ors based on an expansion that is widely used in nuclear 

physics. This discrepancy suggests that further constraints 
on the symmetry energy should be achieved by reducing 
the uncertainties in the HIC experiments. Additionally, the 
pressure of the SNM is presented in Appendix.A.

4 � Summary

We have extracted information on the symmetry energy at 
suprasaturation densities from astronomical observations 
using relativistic mean-field models. In this paper, we have 
employed 180 RMF parameter sets with incompressibility 
at the saturation density K0 =200– 300 MeV, which are 
suitable for describing the isoscalar monopole distribu-
tion strength in 209Pb . By combining the measurements 
of the 1.4 solar-mass neutron stars, such as tidal deform-
ability ( Λ1.4 ≈ 190+390

−120
 ), the mass–radius relation [41, 43], 

and the maximum massive at least 2 M
⊙

 neutron stars, we 
derive constraints on the symmetry energy in the density 
region �0 − 3�0 . At the saturation density, the symmetry 
energy is J = 30.66±0.96 MeV and the slope is L = 49.47±

20.39 MeV, which are consistent with the overlap region of 
J − L constraints from some territory experiments. The sym-
metry energy constraints at 2�0 and 3�0 are S(2�0) = 40.54±

12.47 MeV and S(3�0) = 44.12±29.38 MeV, as shown in 
Fig. 5.

In the next step, we will explore the entire parameter 
space of relativistic mean-field models using Bayesian 
inference with neutron star observational data, which can 
refine the parameter constraints and provide quantitative 
constraints on the EoS. Furthermore, the combination of 
constraints on the EoS from heavy-ion collision analyses 
(e.g., K−∕K+ data), neutron star cooling properties such as 
luminosity data, and measurements of neutron skin thick-
ness in finite nuclei ( 209Pb and 48Ca ) could also reduce the 
uncertainties of the constraints in future research.

Appendix A

Pressure is plotted as a function of density ( �∕�0 ) in Fig. 6, 
which depicts the serval constraints for the pressure, i.e., 
pressure constraint by the neutron star observables in this 
paper (blue shadowed region), the experimental flow (orange 
area) [2], the kaon production (dark purple region) [138], 
Giant Monopole Resonance (red dashed line) [139], �EFT 
(magenta hatches) based on the Gaussian Process–BUQ-
EYE Collaboration [10, 136, 137], and the constraint from 
astronomical observations and nuclear experiments (gray 
hatched shaded area) [47]. We can observe from Fig .6 that 
the pressure is within the regions of the kaon production and 
Giant Monopole Resonance at �0 ≤ � ≤ 2.2�0 . In addition, 
the pressure is almost all in the regions of the experimental 

Fig. 5   (Color online) Symmetry energy as a function of density. The 
blue shadowed region represents the symmetry energy constraint by 
the observables of the neutron star in this paper. The black square 
shows the properties of doubly magic nuclei (DMN) and masses 
of neutron-rich nuclei  [133], the red region represents results of 
IAS [134], the olive region is from HIC [11], the red point is from the 
electric dipole polarizability (EDP) in 209Pb [135], the blue dash line 
represents data obtained using multi-observables (isospin diffusion, 
neutron skin and neutron star)  [45], the magenta (hatched) contours 
represent the calculations from �EFT based on the Gaussian process 
from the BUQEYE Collaboration [10, 136, 137], the gray (hatched) 
shaded area shows the constraint from neutron star observations and 
nuclear matter (NSNM) experiments  [47], and, for the neutron, the 
triangle shows constraints from neutron skin thicknesses of 209Pb by 
PREX-II
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flow at a density 𝜌 > 2.2𝜌0 . Compared with the constraint 
by the experimental data, we support all regions of the pres-
sure–density region from �0 to 3�0 , which can complement 
the constraint on the EoS.
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