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Abstract

In this paper, we constrain the symmetry energy at high densities in nuclear matter using recent observations of neutron
stars based on the calculations of relativistic mean-field models. Using the observations of the neutron stars, we obtain the
constraint on the symmetry energy at high densities, S(2p,) = 40.54+12.47 MeV, and S(3p,) = 44.12+29.38 MeV.
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1 Introduction

The nuclear equation of state (EoS), particularly the sym-
metry energy, is essential in both nuclear physics and astro-
physics [1-7]. In nuclear physics, the symmetry energy
significantly affects the structure of finite nuclei, including
the neutron skin thickness of heavy nuclei [8]. In astrophys-
ics, it influences the key properties of neutron stars, such as
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their masses and radii [3, 4], as well as their cooling pro-
cesses [9]. Consequently, constraining the symmetry energy
is an important challenge in nuclear physics.

Many experimental attempts have been conducted to
constrain the symmetry energy around the saturation den-
sity p, [10-23]. These include measurements of the dipole
polarizabilities of 2%Pb [14, 15], giant dipole resonance
energies [13], isospin diffusion in heavy-ion collisions [11],
isobaric analog states [19], and neutron skin thickness [12,
24]. Because of the extensive research on determining the
symmetry energy, the constraint on the symmetry energy
at saturation density is relatively precise, with a commonly
accepted value of J = 30+4 MeV [10, 11, 13-22].

In contrast, the symmetry energy at suprasaturation
remains unclear. Many terrestrial experiments have been
performed to extract information on symmetry energy at
suprasaturation. In studies on heavy-ion collisions, the con-
straints on the suprasaturation density dependence of the
symmetry energy have been obtained from analyses of the
7z~ /x* ratio [25-31] and n/p elliptic flows ratio [32, 33].
However, the symmetry energy at suprasaturation densities
exhibit a large model dependence. This is caused by the diffi-
culties in solving the transport models and extrapolating the
finite excited nuclear system to infinite nuclear matter at zero
temperature. Consequently, further progress in understand-
ing and constraining the equations of state for nuclear matter
at high densities is expected from analyses that incorporate
the properties of neutron stars.

The mass measurement of the pulsar PSR
J0740+4+-6620 from the Neutron Star Interior Composition
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Explorer [34, 35] revealed a neutron star with a mass of
2.08*007 M, and GW190814 from the LIGO/Virgo col-
laboration [36] observed a 2.5 — 2.67 M, compact star
because of the neutron stars impose tight constraints on
the EoS [37-40]. For the observations of the mass around
the 1.4 M neutron star, the analysis of the tidal deform-
ability from GW170817 by LIGO/Virgo [41, 42] along
with radius R, , = 13.021“}:(2)2 km and mass-radius posterior
distributions from millisecond pulsar PSR J0030+0451
via the (NICER) mission [43] have significantly enhanced
the ability to constrain the symmetry energy of nuclear
matter [44, 45]. Moreover, constraints on the symmetry
energy have been derived from multiple observations of
neutron stars in combination with nuclear theory [10,
44-47]. Among these studies, Skyme interactions [45,
48, 49], chiral effective field theory [10] and empirical
local density functional metamodels [50] were developed
under the non-relativistic framework. Relativistic mean-
field models have been widely used to describe the prop-
erties of infinite nuclear matter, finite nuclei, and stellar
matter [S1-54]. A systematically analysis of the influence
of all relativistic mean-field (RMF) sets on the properties
of neutron stars. In this paper, we utilize RMF models to
describe the properties of neutron stars with a focus on
exploring the constraints imposed by these models on the
EoS and symmetry energy at both saturation and supra-
saturation densities.

The remainder of this paper is organized as follows. In
Sect. 2, we review the theoretical aspects of RMF mod-
els, the EoS of a neutron star, and the Tolman—Oppenhe-
imer—Volkov (TOV) equation. In Sect. 3, we present the
results of the constraint on the symmetry energy obtained
from the neutron star observations. Finally, the summary
is presented in Sect. 4.

2 Model
2.1 Relativistic mean field

In this paper, we employ the framework of RMF models
to extract information on the symmetry energy in sym-
metric nuclear matter (SNM) systems. RMF models pro-
vide a comprehensive description of both nuclear matter
and finite nuclei and are widely used to study neutron star
properties. To better categorize the parametrizations asso-
ciated with RMF models, Ref. [53] defined three distinct
types: (i) nonlinear, (ii) density-dependent, and (iii) point-
coupling models.

The Lagrangians for the different RMF models are

1. Nonlinear (NL) model
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where w,, and p,, are defined by Jd,®, —d,®, and
. 1 1
d,p, —9,p,, respectively. In Eq.1, U(o) = §g263 + Zg3a4
is the nonlinear potential of the ¢ field.
As an example, we use the nonlinear RMF model to
present the expressions of relevant quantities [51-53]. In

the RMF model, meson fields can be replaced with their
expectation values:
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The equation of motions (EOMs) for nucleons and mesons
were derived from the Lagrangian density:
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Filling up to the Fermi momenta kg; for i = n or p in the
nuclear matter, the neutron (n) and proton (p) scalar and
baryon densities are given by

j m’
Py = C(l)3 / d3k—z
2y Ji<iy /12 + m?
(14)
m’ kg; + EZ.
_ *2 Fi Fi
_2_7[2 lkFlE - m In 7] N
. k)3
pi — C(l) d3k — ( Fl) , (15)
@) Jias, 3a2

where the degeneracy factor C(i=n,p)=2, and
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tons. Here, m:‘ is the Dirac effective mass of nucleons, given
by the relation

is the Fermi energy of neutrons and pro-

M= my - 8,5 + 855y, (16)

m = my — 8,5 — ;63. (17)

The eigenvalues of the neutrons and protons from the Dirac
equation are

e, = gwcbo - gpﬁg + /K2 + mi2, (18)

ey = 8,@ + 8,73 + /K2 + mi2. (19)

The expressions for the energy density and pressure are
obtained from the given Lagrangian using the energy-
momentum tensor relation given by

Z 20, ¢) —8E (20)

where ¢, runs over all the possible fields. The energy density
€ and pressure P can be obtained from the energy-momen-
tum tensor:
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The same calculations for the density dependence and point-
coupling models are given in Refs. [55-59].

The binding energy per particle in asymmetric nuclear mat-
ter can be expressed as follows:
E(p,a) = ; = my = Ey(p) + S(p)a* + O(ac*). 23)
Here, the isoscalar term Ey(p) = E(p, a = 0) is the binding
energy per nucleon in SNM, and the isovector term S(p)
is the symmetry energy. p = p, + p, is the nuclear matter
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density, and a = (p, — p,) /(p, + pp) is the isospin asymme-
try. The nuclear symmetry energy S(p) is defined as

10%E(p, a)

24
2 0a? 24

S(p) = lao
The symmetry energy is expanded in terms of (p — p,)/3p,
as

S(p) = J+—(p Po) + -

(25)

where J = S(p,) is the symmetry energy, and L = 3p0§ = 2
is the slope of the symmetry energy at the saturation
density.

For SNM, m: = ml’; = m; because 65 vanishes. The sym-
metry energies of the RMF models are expressed as

follows:
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The expressions of the slope of symmetry energy (L) of the
various RMF models are

@ Springer

LNL

LDD

2 2
= k_F < 1— ki
3E; 2E?

2 2
=k_F 1— kg -
3E; 2E1’§2

3
_ ka; dml’iI
E1’§27r2 op

2 *2
2m:;2 m:z op

2
&5 %2
—m

1 m; N

- 3P

2
EZ[1 + 22 A(p, mY)]

2k> m2 om*
x{3——*§+6<1— NZ> p*a_N
E} E2 Jmy op

2 *

g om
-3 L [2A<L*—N>

miq 4 Sl \my op

ms

2 *
=Gl
E;§3 my, 0p
3% *
kaN 0mN
E;izitz op

3 p o,
1+62 2
o < + T, dp >

(30)

+p

2 *2 *
6£E - 2k +6<1 _ N >L%

k2 om’
ez (125
E} my, 0p

€29



Constraint on the symmetry energy at high densities from neutron star observations using...

Page50f14 141

2 2 3 % *
Ly = i - kF _ kaN dmN
3E% 2EF?  E?m? Op

3 zaps
+ Zayp + 3mpp + 30307 —
) vP n3PsP nsp op

+ la p m;?
” S E3 *
2B\ E2[1 - aggA(p, m)]

2k2 m? om (32)
x{3-—Lyel1-N )L _X
E*? E? Jmy dp

In this paper, we utilize 180 interaction parameter sets
selected from those used in RMF models [53]. These param-
eter sets satisfy the incompressibility at saturation densities
K, within the range of 200 to 300 A MeV by computing
the distribution of isoscalar monopole strength in 2%Pb
with relativistic models [60]. The interaction parameter
sets are listed below, and detailed information is available
in Ref. [53]:

(1)165 nonlinear RMF models (E [61], ER [61], NL1 [51],
NL3 [62], NL3-II [62], NL3* [63], NL4 [64], NLC [54],
NLBI1 [51], NLB2 [51], NLRA1 [65], NLS [66], P-067 [67],
P-070 [67], P-075 [67], P-080 [67], GL1 [68], GL2 [68],
GL3 [68], GL4 [68], GL5 [68], GL6 [68], GL7 [68],
GL8 [68], GL82 [69], GL9 [68], GM1 [70], GM2 [70],
GM3 [70], GPSa [71], GPSb [71], NLpA [72], NLpB [72],
RMF301 [73], RMF302 [73], RMF303 [73], RMF304 [73],
RMF305 [73], RMF306 [73], RMF307 [73], RMF308 [73],
RMF309 [73], RMF310 [73], RMF311 [73], RMF312 [73],
RMF313 [73], RMF314 [73], RMF315 [73], RMF316 [73],
RMF317 [73], RMF401 [73], RMF402 [73], RMF403 [73],
RMF404 [73], RMF405 [73], RMF406 [73], RMF407 [73],
RMF408 [73], RMF409 [73], RMF410 [73], RMF411 [73],
RMF412 [73], RMF413 [73], RMF414 [73], RMF415 [73],
RMF416 [73], RMF417 [73], RMF418 [73], RMF419 [73],
RMF420 [73], RMF421 [73], RMF422 [73], RMF423 [73],
RMF424 [73], RMF425 [73], RMF426 [73], RMF427 [73],
RMF428 [73], RMF429 [73], RMF430 [73], RMF431 [73],
RMF432 [73], RMF433 [73], RMF434 [73], Q1 [74], G1 [74],
G2 [74], SMFT2 [75], DIM [75], S271 [76], Z271 [76],
SRK3M5 [77], HD [78],HC [78], MS1 [79], MS3 [80],
XS [80], NLSV1 [81], NLSV2 [81], TM1 [82], PK1 [83],
hybrid [84], Z271* [85], G2* [85], BKA20 [86], BKA22 [86],
BKA24 [86], FSUGOLD [9], FSUGOLD4 [87], FSUG-
OLDS5 [87], FSUGZO00 [88], FSUGZ03 [88], FSUGZ06 [88],
IU-FSU [89], NL3V1 [90], NL3V2 [90], NL3V3 [90],
NL3V4 [90], NL3VS5 [90], NL3V6 [90], S271V1 [90],

S271V2 [90], S271V3 [90], S271V4 [90], S271V5 [90],
S271V6 [90], Z271S1 [90], Z271S2 [90], Z271S3 [90],
727184 [90], Z271S5 [90], Z271S6 [90], Z271V1 [90],
Z271V2 [90], Z271V3 [90], Z271V4 [90], Z271V5 [90],
Z271V6[90], TM1*[91], BSR1 [92], BSR2 [92], BSR3 [92],
BSR4 [92], BSR5 [92], BSR6 [92], BSR7 [92], BSRS8 [92],
BSR9 [92], BSR10 [92], BSR11 [92], BSR12 [92],
BSR13 [92], BSR14 [92], BSR15 [92], BSR16 [92],
BSR17 [92], BSR18 [92], BSR19 [92], BSR20 [92],
BSR21 [92], SVI-1 [93], SVI-2 [93], SIG-OM [94], NLpé
A [72], NLpéB [72]);

(i) Nine density-dependent RMF models (TW99 [95],DD-
MEI1 [96],PKDD [83], DD-ME2 [58], DD [97], DD-F [98],
DD2 [99], DDMES [59], DDRHpé [59]);

(ii1)6 point-coupling RMF models (FA3 [57], FA4 [57],
FZ3 [57], VZ3 [57], PC-F1 [55], PC-F3 [55]).

2.2 Equation of state of a neutron star

For different density regions of a neutron star, different forms
of the EoS are employed in this paper as follows.

(1) For the outer crust of a neutron star, the EoS provided
by Baym, Pethick, and Sutherland (BPS) [100] is adopted
for densities in the range p,i, < £ < Pouter- HETEs Prin 1S the
minimum density (p,;,, =4.73 x 1015 fm~3), with the cor-
responding energy density €,,;,=4.38x107'> MeV fm~?
and pressure P, = 63X 1072 MeV fm~>. The outer
crust density is p,=2.57 X 10™* fm=3 with an energy
density €, =0.24MeVfm™Sand pressure P,
=4.86 x 10~*MeV fm™3. In this region, because of the heavy
nuclei, primarily around the iron mass number, a Coulomb lat-
tice coexists in f-equilibrium (i.e., equilibrium with respect to
weak interaction processes) with an electron gas in the neutron
star outer crust [100].

(i1) For the inner crust, p .. < p < pr, the EoS takes the
form P = A + Be*/? from Refs. [101, 102], where two con-
stants A and B are adjusted to match the outer crust EoS to
that of a liquid core at the crust—core transition density pp
(pr = 0.5p, [103]).

(iii) In the liquid core region, also referred to as the
outer core (OC) region, the density range is pr < p < poc
(poc = 3py), where the EOS is obtained using the RMF.
This region requires the system to be in f-equilibrium and
is composed of protons, neutrons, electrons, and muons.
For g equilibrium to be attained in nuclear matter, the fol-
lowing electroweak processes must occur: n — p+e~ + v,
pte =>n+y,e” > u +v. +V,p+u” —>n+vﬂ,and
n — p+ u~ +v,. The -equilibrated matter must satisfy the
following conditions for the chemical potentials:

Hn — ﬂp = Her He = /’l”’ (33)

@ Springer
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where u, = 0,i = e, u. At zero temperature, the neutron and
proton chemical potentials are y, = e, and u, = e, respec-
tively. For relativistic degenerate electrons,

He = \/mg + klzze = \/mézz + (37[2xep)2/3’ G4

YN e M

where m, =0.511 MeV, and m, =0.105 GeV. With the par-
ticle fraction x; = p;/p (i = n,p, e, u), X, =X, +X, satisfies
charge neutrality.

(iv) For the neutron star inner core (IC) region at a high
density (p > poc). studies have incorporated exotic particles
such as hyperons, As, quarks, and dark matter into the core of
massive neutron stars at densities exceeding 3p, [104—115].
However, owing to the significant uncertainties in the interac-
tions between nucleons and exotic particles (e.g., hyperons, As,
and quarks), and the unclear composition of the neutron star
core, a polytropic EoS is employed instead of explicitly mod-
eling all possible exotic particles. In this paper, a piecewise
polytropic EoS of the form P;(p) = k;p"i [116-118] is used
to smoothly extend the EoS to the density region of the IC of
the neutron star (p > pgc). The polytropic EoS is constructed
as follows:

P, =k;p", with k, ® k,_, (36)
In (P,/P,_,) < pi >y"

}/i =, Pi = P[_ - ) 37
In (p;/pi-1) : Pi-1 e7

™
I

P P; M + P; (38)
! -1 vi—1 Py 7’1'_1’

where the set of dividing densities poc = p; < p, < -+, and
Pis1 — Pi = Ap = 0.05p,.
In summary, the EoS of neutron star matter is

PBPS(S) for Pmin <p= Pouter

P(e) = A+Be'>  for Pouter < P = Pr
Pryp(e)  forpy < p < poc
Pic(e) for p > pocs

where P=Py+P.+P,, € =ey+e, +¢€, and the total
pressure and energy density should include the leptons. The
thermodynamically stable EoS must satisfy % > 0. The adi-
abatic speed of sound can be expressed as

2=<E)2=E<1, (39)

§ c de

where € is the energy density of the f-stable nuclear matter.
For the causality condition, i.e., the speed of sound is always
less than that of light v, < c.

@ Springer

2.3 Tolman-Oppenheimer-Volkov equation

The structure of a neutron star is obtained by solving the
TOV equation derived from General Relativity [119-121].
The TOV equations are

dP _ GMe (1+P/e)1+ 4zr3P/M)

r P 1—2GM/r ’ “0)
%’ =dzre, @1

where G=6.707 x 10~ MeV~2is the gravitational constant,
r is the distance from the core of the star, P = P(r) is the
pressure, and M = M(r) is the mass with radius r.

The in-spiral phase of the two merging neutron stars
creates strong tidal gravitational fields, resulting in the
deformation of the multipolar structure of the star. The
deforming effects are quantified through the tidal deform-
ability parameter A, which relates the induced mass quad-
ruple moment Q;; to the time-independent external tidal
field Eij through the relation [122-124]:

2R3

Here, k, is the Love number, which can be obtained from the
solution of the first-order differential equation [124]

2 _ 3(c —
Qz_y__x(r 4zGri(e p))—rQ, 3)

dr r r r—2GM

4rrr[G(5€ +9p+ (e +p)/c?) — gﬂ

Q =
1—2GM/r 44)
2G(M + 4zpr?) :
| rr—-26M) |
by =251 = 29712 = o + 2905 = D)
X {216 — 3yg +36(Syg — 8)]
+ 44313 = 1yg + By — 2) + 2871 + yg)]
+3(1 =2p)*[2 —yg +2f(yg — DI In (1 —2p)} 7",
45)

where y, = y(R), and § = GM /R. Egs. 40, 41, 43 are solved
using the boundary conditions at the center of the star,
M(0) =0, P(0) = P, and y(0) =2, where P, is the central
pressure. Varying P, yields all possible stars for a given EoS.
Thus, P(R) =0 (vacuum pressure being set to zero) defines
the radius of star R and the total gravitational mass of the
star is M(R), which is simply denoted by M in the following.

The dimensionless deformability A is defined as
follows:
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(46)

3 Results and discussions

Generally, most RMF models are adjusted to describe nuclei
and nuclear matter in the density region from near subsatura-
tion density p ~ 2/3p, (average between central and surface
densities [76, 103, 125—-128]) to saturation density. Moreo-
ver, the symmetry energy has large variations at high densi-
ties obtained using different parameters of RMF models.
The symmetry energy as a function of density obtained by
RMF models with 180 parameter sets is shown in Fig. 1.

200

150

100 o«

S(MeV)

50

2.0

2.5

0.5 1.0 1.5

P/Po

3.0

Fig.1 (Color online) Symmetry energy for 180 RMF models as a
function of density p/p,; the green, gray, and orange lines represent
hard, linear, and soft symmetry energies, respectively

We observe that various RMF models predict very different
density behaviors of the symmetry energy, particularly at
suprasaturation densities p > p,. For example, the magnitude
of the symmetry energy varies from 29.5 to 114.8 MeV at
2p, and from about 14.7 to 188.7 MeV at a density of 3p,.
In Fig. 1, the symmetry energy behaviors are classified into
three types: hard, linear, and soft, represented by the green,
gray, and orange lines, respectively. We observe from the
figure that most of the symmetry energy occurs near the
linear types in RMF models.

In this paper, we use the observations of neutron stars
to constrain the nuclear EoS at high densities p > p,
because neutron star properties are strongly correlated
with the nuclear EoS, as mentioned in Ref. [44, 50, 129].
This constraint can be obtained from the measurements of
neutron stars for a mass of M = 1.4 M, such as the tidal
deformability from the analysis of gravitational wave data,
Ay 4~ 190700 from GW170817 [41], and the radius—mass
relation from both GW170817 and PSRJ0030+0451 [41,
43]. For the maximum masses of neutron stars, the maxi-
mum neutron star mass MM > 2 M 18 used from Refs. [35,
42], because a compact star with a mass of 2.59f8:8§ M may
be the lightest black hole [36].

Our results for tidal deformability with the empirical val-
ues from GW 170817 (red point) [41] are plotted in panel (a) of
Fig. 2. The mass—radius relationship of neutron stars is shown
in panel (b) of Fig. 2, where the pink shaded areas represent
the region of the posterior distributions at 90% confidence the
analysis from PSRJ0030+0451 [43], the blue shaded region
is the posterior distribution at 95.4% confidence from PSR
J0740+6620 [39], and the purple and green shaded areas
denote the region of the posterior distributions at 90% confi-
dence for GW170817’s lighter and heavier neutron stars [42],

1000 T r 35 .
m GWI170817 PSR J0030+0451
WO.NS Constraint GW170817 m,
| e VW NS Constraint 30 [ GW170817 m,
PSRJ0740+6620
1ooF "\2'5 -ZMO .-\
Q20F s -~
< s =
= 1.5}
1o 1.0}
0.5F
o . ool® : .
00 05 10 15 20 25 30 10 15 20
M(MO) R(km)

Fig.2 (Color online) a Tidal deformability A as a function of the
neutron star mass M, where the gray and black lines are the results
from the RMF models without and with constraint of the neutron
star, respectively. b Neutron star mass M as a function of neutron star
radius R. The green, purple, and pink shaded regions are the posterior

distributions at 90% confidence for GW170817’s lighter neutron star,
GW170817’s heavier neutron star [42], and JO0304-0451 [43], respec-
tively. The blue shade region represents the posterior distributions at
95.4% confidence from PSR J0740+6620 [39]
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respectively. In Fig. 2, the gray lines represent the results for all
the selected 180 RMF parameter sets, which are models with-
out the constraint of the neutron star. With the constraint from
the observables of neutron stars such as tidal deformability [41]
and mass—radius relation around 1.4 M [42, 43] combined
with the maximum masses of neutron stars above 2M, the
results of restricted RMF models are indicated by black lines
in Fig. 2. Because of the neutron star multi-observables, the
analysis of empirical values excludes most RMF parameter
sets, and only nine sets remain: HC, FSUGZ03, IU-FSU, G2*,
BSR8, BSR9, DD-F, FA3, and FZ3, which can simultaneously
describe both the tidal deformability [41] and the overlap of
the two mass—radius relation regions [42, 43]. The symmetry
energy for RMF models HC, FSUGZ03, IU-FSU, G2*, BSRS,
BSRO is described by Eq. 27, that for DD-F by Eq. 28, and that
for FA3, FZ3 by Eq. 28.

Figure 3 shows a comparison of the pressure—density
relations between the empirical values from measurements
of neutron stars and the RMF model calculations. The green
shaded regions enclose the empirical pressure given by the
“spectral” EoS inferred from the Bayesian analysis of the
GW170817 data at a 90% confidence level, maintaining the
lower limit of the maximum neutron star mass at 2 M. Our
results of the pressure—density relation (black lines) for neu-
tron-rich matter with g stability are mostly under the limit of
the empirical region at the OC (0.5p, < p < 3p,), where the
EoS is described by RMF models. For the IC area, p > 3p,,
the order-by-order polytropes EoS in Eqs. (36, 37, 38) occur
primarily in the region of neutron star measurement (except
the EoS from the HC model).

Figure 4 depicts the constraints on the J — L relation, which
were compiled in [10, 130, 131]. In this paper, the symme-
try energy J — L constraint from the neutron star observa-
bles based on the RMF models is shown as scattering points

10 IGWI170817
1 0_3 WO. NS Constraint
. e \W. NS Constraint
10- o P N PO T M N 2
o 1 2 3 4 5 6 17
P/Py

Fig.3 (Color online) Pressure as a function of density for the neu-
tron-rich matter with g stability. The green shaded area represents
data from GW 170817 [42]

@ Springer
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Fig.4 (Color online) Constraints on the J — L correlation. The cyan
stars are our result with the constraint from the RMF models using
the neutron star observables. The enclosed white area is the overlap
region obtained from heavy-ion collisions (HIC) [11], neutron skin
thicknesses of Sn isotopes [12], giant dipole resonances (GDR) [13],
the dipole polarizability of 2Pb [14, 15], and the energy density
functionals for nuclear masses (masses) [16]. Experimental con-
straints are obtained from the isobaric analog states and isovector
skins (IAS+AR) [19], unitary gas (UG) limit by Tews et al. [22],
and the neutron skin thicknesses of 2°%Pb [24]. The microscopic cal-
culations of neutron matter have shown to be yEFT are from chiral
effective field theory via the Gaussian Process—-BUQEYE collabora-
tion [10], Hebeler et al. (H) [20], and Gandolfi et al. (G) [21]

(cyan stars) with the range of symmetry energy at saturation
J = 30.6610.96 MeV, and slope L = 49.47+20.39 MeV. Fig-
ure 4 includes the J — L constraints obtained in the analysis of
the finite nuclei (neutron skin thicknesses of Sn isotopes and
209pp, isobaric analog states and isovector skins, and the dipole
polarizability of 2°Pb) and nuclear matter (heavy-ion collisions
and chiral effective field theory calculations of nuclear matter).
The enclosed overlap region [131] from constraints obtained
from experimental measurements of the neutron skin thick-
nesses of Sn, dipole polarizabilities, giant dipole resonances,
heavy-ion collisions, and nuclear mass fitting correspond to
J of approximately 29.0-32.7 MeV, and L is approximately
40.5-61.9 MeV [130, 131]. In this paper, the constraints for the
symmetry energy and its slope at saturation, which are obtained
from neutron star observables, are almost in this overlap region,
as shown in Fig. 4. Our results can reproduce the properties of
neutron stars but cannot reproduce the PREX-II neutron skin
using the RMF model. Compared with the research by Chen
et al. [132], where the slope parameter L = 80+25 MeV was
obtained from a study of 23 RMF parameter sets, the result in
this paper, L = 49.47+20.39 MeV, is relatively soft.
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The symmetry energy at p, < p < 3p, constrained using
the neutron star multi-observables is displayed as a cyan
shaded region in Fig. 5. Analysis of doubly magic nuclei and
masses of neutron-rich nuclei [133] (black square), isobaric
analog states (IAS) [134] (red region), and isospin diffu-
sion in heavy-ion collisions [11] (olive region), the electric
dipole polarizability in 2**Pb [135] (red point), the multi-
observables (isospin diffusion, neutron skin and neutron
star) [45] (blue dash line), yEFT (magenta hatched) based
on Gaussian Process—BUQEYE (yEFT-GPB) Collabora-
tion [10, 136, 137], the constraint from neutron star obser-
vations and nuclear matter experiments (gray hatched shaded
area) [47], and neutron skin thicknesses of 2°Pb by PREX-
II [24] (up triangle), are also included for comparison. To
obtain full information on the symmetry energy, we also
present the range of symmetry energies at suprasaturation
S(2py) = 28.07-53.00 MeV, and S(3p,) = 14.74-73.49 MeV
in Fig.5. Our result for the symmetry energy constraint is
similar to that from the yEFT-GPB Collaboration, which is
a microscopic calculation. The symmetry energy at a high
density in this paper is softer than the result from Tsang
et al. [47] (gray hatched area), which used parametric pri-
ors based on an expansion that is widely used in nuclear

120 [ 1as A PREX2 )

100 -:-E- E}g(isodifﬁ ﬁ gﬂg , 1
B Brown
g 80 Ti %E?sn fvork :
0

= 60} —& .
40 S5 1
20F 1

0 N 2

0 1 2 3

p/p,

Fig.5 (Color online) Symmetry energy as a function of density. The
blue shadowed region represents the symmetry energy constraint by
the observables of the neutron star in this paper. The black square
shows the properties of doubly magic nuclei (DMN) and masses
of neutron-rich nuclei [133], the red region represents results of
IAS [134], the olive region is from HIC [11], the red point is from the
electric dipole polarizability (EDP) in 2*?Pb [135], the blue dash line
represents data obtained using multi-observables (isospin diffusion,
neutron skin and neutron star) [45], the magenta (hatched) contours
represent the calculations from yEFT based on the Gaussian process
from the BUQEYE Collaboration [10, 136, 137], the gray (hatched)
shaded area shows the constraint from neutron star observations and
nuclear matter (NSNM) experiments [47], and, for the neutron, the
triangle shows constraints from neutron skin thicknesses of 2°Pb by
PREX-II

physics. This discrepancy suggests that further constraints
on the symmetry energy should be achieved by reducing
the uncertainties in the HIC experiments. Additionally, the
pressure of the SNM is presented in Appendix.A.

4 Summary

We have extracted information on the symmetry energy at
suprasaturation densities from astronomical observations
using relativistic mean-field models. In this paper, we have
employed 180 RMF parameter sets with incompressibility
at the saturation density K, =200— 300 MeV, which are
suitable for describing the isoscalar monopole distribu-
tion strength in 2’Pb. By combining the measurements
of the 1.4 solar-mass neutron stars, such as tidal deform-
ability (A, 4 &~ 190750, the mass—radius relation [41, 43],
and the maximum massive at least 2 M neutron stars, we
derive constraints on the symmetry energy in the density
region p, — 3p,. At the saturation density, the symmetry
energy is J = 30.66+0.96 MeV and the slope is L = 49.47+
20.39 MeV, which are consistent with the overlap region of
J — L constraints from some territory experiments. The sym-
metry energy constraints at 2p, and 3p,, are S(2p,) = 40.54=+
12.47 MeV and S(3p,) = 44.12+29.38 MeV, as shown in
Fig. 5.

In the next step, we will explore the entire parameter
space of relativistic mean-field models using Bayesian
inference with neutron star observational data, which can
refine the parameter constraints and provide quantitative
constraints on the EoS. Furthermore, the combination of
constraints on the EoS from heavy-ion collision analyses
(e.g., K~ /K* data), neutron star cooling properties such as
luminosity data, and measurements of neutron skin thick-
ness in finite nuclei (*’Pb and *3Ca) could also reduce the
uncertainties of the constraints in future research.

Appendix A

Pressure is plotted as a function of density (p/p,) in Fig. 6,
which depicts the serval constraints for the pressure, i.e.,
pressure constraint by the neutron star observables in this
paper (blue shadowed region), the experimental flow (orange
area) [2], the kaon production (dark purple region) [138],
Giant Monopole Resonance (red dashed line) [139], yEFT
(magenta hatches) based on the Gaussian Process—BUQ-
EYE Collaboration [10, 136, 137], and the constraint from
astronomical observations and nuclear experiments (gray
hatched shaded area) [47]. We can observe from Fig .6 that
the pressure is within the regions of the kaon production and
Giant Monopole Resonance at p, < p < 2.2p,,. In addition,
the pressure is almost all in the regions of the experimental
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Fig.6 (Color online) Pressure as a function of density. The light blue
shadowed region indicates the pressure constraint by the neutron star
observables from this paper, the orange regions are the experimental
flow data from Ref. [2], the dark purple region shows data obtained
from available kaon production data, the red dashed line presents
Giant Monopole Resonance data from Ref. [139], the magenta
hatched contours represent the calculations from yEFT based on
Gaussian Process from the BUQEYE Collaboration [10, 136, 137],
and the gray hatched shaded area shows the constraint from neutron
star observations and nuclear matter experiments [47]

flow at a density p > 2.2p,. Compared with the constraint
by the experimental data, we support all regions of the pres-
sure—density region from p, to 3p,, which can complement
the constraint on the EoS.
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