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Abstract

We investigated the correlations between the net baryon number and electric charge up to the sixth order related to the
interactions of nuclear matter at low temperature and explored their relationship with the nuclear liquid—gas phase transition
(LGPT) within the framework of the nonlinear Walecka model. The calculations showed that strong correlations between
the baryon number and electric charge existed near the LGPT, and higher-order correlations were more sensitive than the
lower-order correlations near the phase transition. However, in the high-temperature region away from the LGPT, the rescaled
lower-order correlations were relatively larger than most of the higher-order correlations. In addition, some of the fifth- and
sixth-order correlations possibly changed sign from negative to positive along the chemical freeze-out line with decreasing
temperature. In combination with future experimental projects at lower collision energies, the derived results can be used to
study the phase structure of strongly interacting matter and analyze the related experimental signals.
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1 Introduction

Mapping the phase diagram of quantum chromodynamics
(QCD) is a primary objective in nuclear physics, which
involves chiral and deconfinement phase transitions related
to the transformation of quark-gluon plasma to hadronic
matter [1]. The calculations from lattice QCD and hadron
resonance gas (HRG) model indicate that a smooth crosso-
ver transformation occurs at high temperatures and small
chemical potentials [2-8]. Furthermore, studies on effec-
tive quark models [9-23], the Dyson—Schwinger equation
approach [24-29], the functional renormalization group
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theory [30-32], and machine learning [33] suggest that a
first-order chiral phase transition occurs at large chemical
potentials.

The fluctuations and correlations of conserved charges
(baryon number B, electric charge Q, and strangeness S)
are sensitive observables for studying the phase transi-
tions of strongly interacting matter [34, 35]. The net pro-
ton (proxy for net baryon) cumulants measured in the beam
energy scan (BES) program at the relativistic heavy-ion
collider (RHIC) [36-42] has inspired extensive studies on
QCD phase transition, particularly the QCD critical end-
point (CEP). More impressively, the distributions of the net
proton number at the center-of-mass energy 4/syy = 3 GeV
and 2.4 GeV are different from those at 7.7 GeV and above
because the fluctuation distributions of the net proton
number are primarily dominated by the interaction among
hadrons [40].

The experimental results at 3 GeV and below necessitate
studies on the effect of hadronic interactions on the fluctua-
tions of conserved charges at lower energies [43—46]. The
nuclear liquid—gas phase transition (LGPT) may be involved
at lower collision energies [47—63].

A van der Waals model was used to study the high-
order distributions of the net baryon number in both pure
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and mixed phases of the LGPT [64-66]. The second-order
susceptibility of the net baryon number for positive- and
negative-parity nucleons was examined near the chiral
and nuclear liquid—gas phase transitions using a double-
parity model, in which both the chiral phase transition
and nuclear LGPT are effectively included [45]. The net
baryon kurtosis and skewness were considered in the non-
linear Walecka model to analyze the experimental signals
at lower collision energies [55, 56]. The hyperskewness
and hyperkurtosis of the net baryon number were recently
calculated to explore the relationship between nuclear
LGPT and experimental observables [67].

Because the interactions among hadrons dominate
the density fluctuations in lower-energy regimes (below
3 GeV), the BES program at collision energies lower
than 7.7 GeV is expected to provide detailed information
on the phase structure of strongly interacting matter.
Additionally, relevant experiments have been planned
at the high intensity heavy-ion accelerator facility
(HIAF). Meanwhile, the HADES collaboration at the GSI
Helmholtzzentrum fiir Schwerionenforschung planned
to measure the higher-order net proton and net charge
fluctuations in the central Au + Au reactions at collision
energies ranging from 0.2 A to 1.0 A GeV to probe the
LGPT region [68]. These experiments are significant
for investigating nuclear liquid—gas and chiral phase
transitions through density fluctuations.

In addition to the fluctuations in conserved charges, the
correlations between different conserved charges provide
important information for exploring phase transitions.
The correlations of conserved charges or off-diagonal
susceptibilities have been calculated to study the chiral and
deconfinement phase transitions at high temperatures in
lattice QCD and some effective quark models (e.g., [69-75]).
However, correlations between the net baryon number and
electric charge in nuclear matter and their relationship with
nuclear LGPT, which are useful for diagnosing the phase
diagram of strongly interacting matter at low temperatures,
have not yet been explored. In this study, we explored the
correlations between the net baryon number and electric
charge up to the sixth order in nuclear matter using the
nonlinear Walecka model. The characteristic behaviors of
correlations evoked by the nucleon—nucleon interaction, both
near and far away from the nuclear LGPT, were obtained.
These results are expected to aid future analyses of chiral
phase transitions, nuclear LGPT, and related experimental
signals.

The remainder of this paper is organized as follows. In
Sect. 2, we introduce formulas to describe the correlations
between conserved charges and the nonlinear Walecka
model. In Sect. 3, we illustrate the numerical results for
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the correlation between the net baryon number and electric
charge. Finally, a summary is presented in Sect. 4.

2 Theoretical descriptions

The fluctuations and correlations of conserved charges are
related to the equation of state of a thermodynamic system. In
the grand canonical ensemble of strongly interacting matter,
the pressure is the logarithm of the partition function [76]:

T
P = S InZ(V.T. py. g ). M

where pg, pg, g are the chemical potentials of the conserved
charges, that is, the baryon number, electric charge, and
strangeness in a strong interaction, respectively. The
generalized susceptibilities are derived by taking the partial
derivatives of the pressure with respect to the corresponding
chemical potentials [39]

P O/ T
T O(ug /T 0(pq/ TV (s /TH

(@)

The cumulants of the multiplicity distributions of the
conserved charges are usually measured experimentally.
These are related to the generalized susceptibilities by

BQS _ aHﬁ—k ln[Z(V, T’ HB’ HQ? MS)] _ 3IBQS (3)
W O/ T/ TV /T

To eliminate the volume dependence in heavy-ion collision
experiments, observables are usually constructed using the
ratios of cumulants and then compared with the theoretical
calculations of the generalized susceptibilities with

BQS BQS
Cijk _ ijk 4
CBQS ~ BQS" )
Imn Imn

In this study, the nonlinear Walecka model was used to
calculate the correlations between the net baryon number
and electric charge in nuclear matter at low temperatures.
This model describes the properties of finite nuclei and
the equation of state of nuclear matter. The approximate
equivalence of this model with the HRG model at low
temperatures and densities is also indicated in Ref. [77].
This model was recently used to explore fluctuations in
the net baryon number in nuclear matter, for example,
kurtosis and skewness [55, 56] and hyperskewness and
hyperkurtosis [67].

The Lagrangian density for the nucleon-meson system in
the nonlinear Walecka model [54, 78] is
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are the nucleon mass in vacuum. The interactions between
nucleons are mediated by o, @, p mesons.

The thermodynamic potential can be derived in the mean-
field approximation as

Q=" Z /(2 )3[1n(1+e—ﬂ(52<k>—%)>

+1n<l+e_ﬁ(Elt'(k)+"ft')> +;m c +1me(gg )3 (6)

where f = 1/T, Ef, = \/k* + m?%, and p; denote the third

component of the p meson field. The effective nucleon mass
my, = my — g,0 and effective chemical potential uy are
defined as p; = piy — 8,@ — T3n8,P3 (T3 = 1/2 for proton,
—1/2 for neutron).

Minimizing the thermodynamical potential
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the meson field equations can be derived as:
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In Eqgs.(8)—(10), the nucleon number density
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and scalar density

s d3k m;k % * iy % *
p=2 B (Ef — ) +F(EF + 1)), (12)

where f(E — u?) and f(El* + u}) are the fermion and
antifermion distribution functions, respectively, with

. 1
fE! — i) = )

t+exp {[E; - w]/T) (4
and
FE +u) = : (14)

1+exp{|E +u]/T}

The meson field equations can be solved for a given
temperature and chemical potential (or baryon number
density). The model parameters, g, g, 8 » b and c, are listed
in Table 1. They were fitted with the compression modulus
K = 240 MeV, symmetric energy da,,, = 31.3 MeV, effective
nucleon mass my = my — g,06 = 0.75 my, and binding
energy B/A = —16.0 MeV at nuclear saturation density with
po = 0.16fm™>

3 Results and discussion

In this section, we present the numerical results for the cor-
relation between the net baryon number and electric charge
in the nonlinear Walecka model. To simulate the physical
conditions in the BES program at RHIC STAR, the isospin
asymmetric nuclear matter was considered in the calcula-
tion with the constraint p,/pg = 0.4. In the present Wal-
ecka model, strange baryons were not included; thus, the
strangeness condition pg = 0 was automatically satisfied.
po/pg = 0.4 might deviate slightly owing to isospin dynam-
ics. The influence of different isospin asymmetries on the
fluctuations and correlations of conserved charges will be
explored in detail in a separate study.

The correlations between the baryon number and elec-
tric charge are related to the baryon (uy) and isospin
Hq (Hg = My, — Hy) chemical potentials. In Fig. 1, we dem-
onstrate the value of yq as a function of the temperature
and baryon chemical potential by first plotting the contour
map of yq in the T’ — up plane derived under the constraint
of po/pg = 0.4. Additionally, the corresponding liquid—gas
phase transition line with a CEP located at 7 = 13 MeV and

Table 1 Parameters in the nonlinear Walecka model

(ga,/m,,)2 (gw/mw)z(fmz) (Js’,,/mp)2 b ¢
(fm?) (fm?)
10.329 5.423 0.95 0.00692 —0.0048
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g = 919 MeV is plotted in this figure. To compare with the
chiral crossover phase transition of quarks, the dashed “Line
A” in Fig. 1 was derived under the condition that the value
of do /0y was maximum for each given temperature. To a
certain degree, this line is analogous to a chiral crossover
transformation, although it is not a true phase transition in
nuclear matter. It indicates the location at which the dynamic
nucleon mass changes most rapidly with an increase in the
chemical potential. The reason for plotting “Line A” is to
emphasize that both the o field in nuclear matter and the
quark condensate in quark matter are associated with the
dynamic mass of fermions, and therefore, the rapid change
of mass might have a universal effect on the fluctuation dis-
tributions of conserved charges. As indicated in our previous
studies [54, 55, 67], the location of line A helps us under-
stand the behavior of the interaction measurement (trace
anomaly) and the fluctuations of conserved charges near the
phase transition [55, 67].

Additionally, “Line A” can be defined by the maximum
point of dw/duy or ong /dug, because the density can be
considered as the order parameter for liquid—gas phase
transition. Under this definition, the results obtained using
the quark model do not correspond to a chiral crossover
phase transition. However, this was not the purpose of the
present study. Our aim was to identify common properties
related to the dynamical fermion mass near the critical region
of a first-order phase transition. However, the calculation
indicates that the curves (“Line A”) under the two definitions
coincide near the critical region and gradually deviate at
higher temperatures away from the critical region.

-160
0 250 500 750 1000 1250 1500
Hg (MeV)

Fig.1 (Color online) Contour of uq in the T — py plane derived in
the nonlinear Walecka model with the constraint of pg/pp = 0.4.
The solid line is the liquid—gas transition line with a CEP located
at 7 =13 MeV and pz =919 MeV. The blue line is the chemical
freeze-out line fitted in Ref. [79]. The dash-dotted line corresponds
to the temperature and chemical potential for pg = 0.1p,. “Line A”
is derived using the maximum value of do /dug for each given tem-
perature
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For convenience, in the subsequent discussion of the
experimental observables, we include a plot of the chemical
freeze-out line fitted to the experimental data at high
energies in Fig. 1 [79], which can be described by

T(yB) =a—b,u]23 —cyg, (15)

where a = 0.166 GeV, b = 0.139GeV~' and ¢ = 0.053 GeV~.

It should be noted that the trajectories of the present
relativistic heavy-ion collisions do not pass through 7. of
nuclear LGPT. It is still not known how far the realistic
chemical freeze-out line is from the critical region at the
present time. However, similar to the chiral phase transition
of quarks, the existence of nuclear LGPT affects the
fluctuation and correlation of the net baryon and electric
charge numbers in the region not adjacent to the critical
endpoint in intermediate-energy heavy-ion collision
experiments. The numerical results for the parameterized
chemical freeze-out line in this study can be used as a
reference. The realistic chemical freeze-out conditions
at intermediate and low energies will be extracted in
future heavy-ion collision experiments. The contribution
from LGPT needs to be considered when analyzing the
experimental data.

Figure 1 shows that the value of | yQ‘ is less than 40 MeV

in the red area. In this region, the baryon number density is
very small, which is approximately indicated by the
temperature and chemical potential curves for
pp = 0.1p, (dash-dotted line). The value of |;4Q‘ increases

with the baryon density (corresponding to a larger chemical
potential). This trend in | yQ‘ is illustrated in Fig. 1. Along

the chemical freeze-out line (solid blue line), changes in Hq
during freeze-out with decreasing temperature or collision
energy are observed.

Figure 2 shows the second-order correlation between the
baryon number and electric charge, )(F IQ/ ;(ZQ, as a function
of the baryon chemical potential for T = 75, 50, 25 MeV. To
derive a physical quantity comparable with future experi-
mental data, the correlated susceptibility was divided by )(ZQ
to eliminates volume dependence. For each temperature, the
rescaled second-order correlation ;(;3 IQ / ;(ZQ shown in Fig. 2
displays nonmonotonic behavior with a peak at a certain
chemical potential. The values of these peaks increase
with decreasing temperature, which indicates that the cor-
relation between the baryon number and electric charge is
enhanced near the phase transition region. The solid dots in
Fig. 2 show the values for the chemical freeze-out described
by Eq. (15), which illustrates that the value of )(ﬁQ / ;(S
increases along the freeze-out line when moving from the
high-temperature region to the critical region.

Figure 3 shows the third-order correlations ;(EQ / ;(S and

;(le / ;(S as functions of the chemical potential at several
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Fig.2 (Color online) Second-order correlation between the baryon
number and electric charge as a function of the chemical potential
for different temperatures. The solid dots indicate the values on the
chemical freeze-out line given in Fig. 1

temperatures. Compared with )(12 /;(2 , )(21Q/;(2 exhib-
its relatively larger fluctuations at the same temperature.
The solid dots on the chemical freeze-out line show the
same trend. This means that the measurement of )leQ / ;(2

is more sensitive than y, Q/;(2 in heavy-ion collision
experiments. Figure 3 also indicates that the correlations
between the baryon number and electric charge intensify
with decreasing temperatures Evident oscillations of
;(]B 2Q / )(2 and )(2]Q / )(2 appear for T = 25 MeV, accompanied
by alternating positives and negatives. As the temperature
decreases, divergent behavior occurs at the CEP of LGPT.
These features can be used to determine the signal for the
phase transition in the experiments.
In Fig. 4, we plot the fourth-order correlations
between the baryon number and electric charge: )(1% / )(2 ,
22Q/;(2 , and ;(3Q/;(2 Compared to the second- and
third-order correlations, Figs. 2, 3, and 4 show that the
fourth-order correlations rescaled by )(2Q are weaker at
higher temperatures such as T =75 MeV. However, the
correlations are much stronger at 7 = 25 MeV, near the
critical region of LGPT. Correspondingly, with an increase
in the chemical potential at lower temperatures, a bimodal
structure evidently exists for all three correlations. In
addition, the maximum values of )(13 / )(2 BQ i ;(S, nd
;(31 /;(2 increase sequentially. Furthermore the solid
dots demonstrate that the value of each correlation during
freeze-out increases with the decreasing temperatures.
I < o/t < o3/ x% during
chemical freeze-out at each temperature, Wthh implies
that y; Q/)(2 is the most sensitive among the three fourth-
order correlations.

Moreover,

1 .5 T T T
@
—T=25MeV
1.0+ - - -T=50MeV i
--—-T=75MeV
R 05} 1
u
= L.
0.0 = -
05} .
400 600 800 1000 1200
Hp(MeV)
3.0 T T T
— T=25MeV ®)
2 0 [ - - -T=50MeV i
' -.—-T=75MeV
3 1.0F .
o
M
= e
N -
1.0} .
400 600 800 1000 1200

ug(MeV)

Fig.3 (Color online) Third-order correlations between the baryon
number and electric charge as functions of the chemical potential
at different temperatures. The solid dots indicate the values on the
chemical freeze-out line plotted in Fig. 1

Figure 5 presents the fifth-order correlations between
the baryon number and electric charge, ;(l 4 / ;{2 , ;Q / ;(S,
od/ 22, and 233/ x) for T=175,50,25 MeV. At
T =75 MeV, the values of the four rescaled correlations
are small; however, they become significant at 7 = 25 MeV.
Combined with the phase diagrams shown in Fig. 1, it is
seen that the high-order correlated fluctuations strengthen
as they approach the liquid—gas transition. Similar to the
fourth-order correlations, the rescaled fifth correlations
fulfill the relationships
'xl Q/)(QI < IJ(ZQ/)(QI < 'ng/)(QI < ’)(4(2/)( l at
chemical freeze-out. Moreover, all the four fifth-order
correlation fluctuations are negative at chemical freeze-out
for T =75 and 50 MeV; however, they are positive at
T =25 MeV, near the liquid—gas transition. This is a
prominent feature for exploring the interactions and phase
transitions of nuclear matter.
Figure 6 shows the sixth-order correlations of the
baryon number and electric charge, that is, y, Q/){2 ,
24Q/;(2 , 33Q/)(2 , )(42 /;(2 , and )(SIQ/;(Q Each sixth-
order correlation exhibits a double peak and double valley
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Fig.4 (Color online) Fourth-order correlations between the baryon
number and electric charge as functions of the chemical potential
for different temperatures. The solid dots indicate the values on the
chemical freeze-out line given in Fig. 1

structure, although one of the two peaks is not prominent.
The oscillating behavior intensifies when moving toward
the phase transition region from high to low temperatures.
Similarly, the intensity of the oscillations increases from
I a5 o s al ) a5t bl x

For a given order of correlations, the numerical results
shown in Figs. 2, 3, 4, 5, and 6 indicate that the signals
become stronger when taking the higher-order partial
derivatives of the baryon chemical potential. Additionally,
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we examined the pure baryon number fluctuation and
found that its highest sensitivity was of the same order as
the LGPT critical endpoint, possibly because the baryon
number fluctuation includes both proton and neutron
contributions. However, the electric charge fluctuation
involves the isospin density py — pp. The baryon number
density is always larger than the isospin density, which is
associated with stronger fluctuations when there are more
derivatives with respect to the baryon chemical potential
than that with to electric chemical potential for a given
order of correlations.

In addition, a comparison of the results shown in Fig. 2,
3, 4,5, and 6 shows that the rescaled higher-order cor-
relations fluctuate more strongly near the phase transition
region, whereas the lower-order correlations at high tem-
peratures are larger than most of the higher-order correla-
tions away from the phase transition region. A similar phe-
nomenon occurs in the correlations of conserved charges
in quark matter [74]. According to the fluctuations of net
baryon number [55, 67] and the correlations between net
baryon number and electric charge in this study, the fluc-
tuations and correlations of conserved charges have simi-
lar organizational structures for nuclear and quark matter.
This is primarily attributed to the fact that the two phase
transitions belong to the same universal class, and both
describe the interaction of matter with temperature- and
chemical potential-dependent fermion masses.

Because the QCD phase transition and nuclear LGPT
possibly occur sequentially from high to low temperatures
(even if LGPT is not triggered), the energy-dependent
behaviors of the fluctuations and correlations can be
referenced to determine the phase transition signals
of the strongly interacting matter. Although the latest
reported BES II high-precision data at 7.7 — 39 GeV do
not display a drastic change in the net baryon number
kurtosis, stronger fluctuation signals may appear in heavy-
ion experiments with collision energies lower than 7.7
GeV. Furthermore, in the hadronic interaction dominant
evolution with collision energies lower than the threshold
of the generation of QGP, the nuclear interaction and
phase structure of LGPT will dominate over the behavior
of fluctuations and correlations of conserved charges. The
nature of the changes in fluctuations and correlations with
decreasing collision energy during experiments requires
investigation.

4 Summary

Fluctuations and correlations between conserved charges
are sensitive probes for investigating the phase structure
of strongly interacting matter. In this study, we used the
nonlinear Walecka model to calculate the correlations



Correlations of the net baryon number and electric charge in nuclear matter Page70f11 138
0-2 T T T 0.4 T T T
——T=25MeV ——T=25MeV
0.1L ---T=50MeV N a 02} ---T=50MeV N .
-—T=75MeV ~ ,, !\ ——-T=75MeV |\
——_ - LT~y —— ,/ Tr~.2
e L e e I (e
S
O\Q}' 0.1 "\./ 11 : R 0.2 \‘\./. I'l :
Qg V-1 1 ! T O\m - [ ! b
2 ! (884,1.3) \ ,' g 2 (884,2.8) l. ,'
02} ° | 1 04} ° | .
410 i -20 |
0.3 1,0 N R 0.6, ' 1
04 850 900 950 1 0.8 850 900 950 1
400 600 800 1000 1200 400 600 800 1000 1200
ug(MeV) pug(MeV)
1 -0 T T T T T T
—T=25MeV 10k —T=25MeV |
05l ---T=50MeV ) | - - -T=50MeV l’
: —.—.T=75MeV " -=-T=75MeV ,~ 1\
- ! - I —hs
0.0 e ‘y’_:\\‘ ) 3 /‘; e
Q=== < S ] v ! !
= e = AN
g2 S 85 -1.0 F100 V! .
= 0.5 (gaas3) - 1 = (884,104) "
0 ' 0 Yy
" i
1.0 [0 " J -2.0 100 l,' 1
80 ]
15 850 900 950 1 30 2855 900 950
400 600 800 1000 1200 ) 400 600 800 1000 1200
HB(MGV) HB(MGV)

Fig.5 (Color online) Fifth-order correlations between the baryon number and electric charge as functions of the chemical potential for different
temperatures. The solid dots indicate the values on the chemical freeze-out line given in Fig. 1

between the net baryon number and electric charge up to
the sixth order, which originated from hadronic interactions
in nuclear matter and explored their relationship with the
nuclear liquid—gas phase transition.

The calculation indicated that the correlations between
the net baryon number and electric charge gradually became
stronger from the high-temperature region to the critical
region of the nuclear LGPT. In particular, the correlations
were significant at the location where the o field or nucleon
mass changed rapidly near the critical region. Similar
behavior was observed for the chiral crossover phase
transition of quark matter, primarily because of the similar
dynamic mass evolution and same universal class of the
chiral phase transition of quark matter and the liquid—gas
phase transition of nuclear matter.

Compared to the lower-order correlations, the
higher-order correlations fluctuated more strongly
near the phase transition region, whereas the rescaled
lower-order correlations were relatively stronger

than most of the higher-order correlations away from
the phase transition region at high temperatures. At
the chemical freeze-out for each temperature the
calculation indicated that ){FS / )(2 < X» BQ / ;(2 <1 lQ / )(2
for the fourth-order correlation,
L a2l < 12/ adl < L /s < L) 25
for the fifth-order correlations,
s 5 < L 1265 < G 0 < 1y 125 < s )| for
the sixth-order correlations. In particular, the values of the
fifth- and sixth-order correlations changed from negative to
positive when approaching the critical region of LGPT from
the high-temperature side along the extrapolated chemical
freeze-out line. With the availability of more precise data
from experiments below 7.7 GeV in the future, realistic
chemical freeze-out conditions can be fitted, and the results
obtained in this study can be used to analyze the signals

and
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Fig.6 (Color online) Sixth-order correlations between the baryon number and electric charge as functions of the chemical potential for different
temperatures. The solid dots demonstrate the values on the chemical freeze-out line given in Fig. 1

of QCD phase transitions and the influence of the nuclear

liquid—gas phase transition.
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