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Abstract

As an approximate Goldstone boson with zero quantum number and zero standard model charge, the long-lived # meson
exhibits the decay processes that offer a unique opportunity to explore physics beyond the standard model and new sources
of charge parity violation. Further, they facilitate the testing of the low-energy quantum chromodynamics theory and
measurement of the fundamental parameters of light quarks. To pursue these goals, we propose a plan to construct a super #
factory at HIAF high-energy terminal or at CiADS after its energy upgrade. The high-intensity proton beam at HIAF enables
the production of many # samples, exceeding 10'3 events per year during the first stage, utilizing multiple layers of thin targets
composed of light nuclei. This paper presents the physics goals, the first-version conceptual design of the spectrometer, and

preliminary simulation results.

Keywords High-intensity frontier - Eta meson factory - New physics - Symmetry breaking - Strong interaction - Silicon-

pixel detector

1 Introduction

The high-luminosity frontier presents one approach to
new physics [1], as any small deviations from the standard
model (SM) predictions in high-precision measurements
have implications for new physics beyond the SM. In the
next decade, emerging high-intensity proton accelerators
will offer a unique opportunity in the exploration for new
physics at an unprecedented level. Indications of new phys-
ics have been increasingly reported in the literature, for
example, the anomalous muon magnetic moment (g — 2),,
[2-41, X17 boson from the decay of the excited state of ®Be
[5-7], lepton flavor universality violation in bottom quark
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decays [8—12], excesses of cosmic positrons and electrons
[13-16], narrow y ray emissions from the galactic bulge
[17], and unexplored nature of dark matter [18-22] and
dark energy [23-27]. To date, no evidence of new phys-
ics has been observed in the high-energy frontier examined
using the large hadron collider. Therefore, some researchers
have argued that the new physics of the hidden sector is at
low energies [28, 29]. However, the hidden sector is faintly
coupled with the SM, making it elusive. For example, the
production rates of the light portal particles bridging the hid-
den and SM sectors are several orders of magnitudes higher
at low energies [28]. Moreover, in low-energy, fixed-target
experiments, the use of thick targets allows for considerably
higher luminosities.

The n meson is of particular interest because it approxi-
mates a Goldstone boson arising from spontaneous chiral
symmetry breaking and has zero SM charge [30]. Many
strong and electromagnetic decay channels of # are forbidden
at the leading order; this enhances the rare decay channels
of # meson that are sensitive to new physics. Consequently,
the # meson serves as an excellent low-energy laboratory
for exploring new physics beyond the SM by observing the
dark portal particles from # decays [28, 29, 31] or measur-
ing small discrete symmetry breaking such as charge par-
ity (CP) violation and charged lepton flavor violation [32,
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33]. A thorough review on the theoretical developments in
n and #’ decays has recently been reported [32], with regard
to high-precision tests of fundamental physics. The latest
theoretical models predict four types of portals: vector portal
[34-37], scalar portal [38—44], axion-like portal [45-49],
and heavy neutral lepton portal [S0-52]. Portal particles are
particularly significant in theories that seek to bridge the
dark and SM sectors. All these light portal particles can be
examined by observing the rare decays of # mesons [31, 32].
Symmetry and symmetry breaking form the core of modern
physics. Identifying new sources of CP violation is essential
for explaining the baryon—antibaryon asymmetry in the uni-
verse. Any charged lepton flavor violation is a strong indica-
tion of physics beyond the SM model. Several # decay chan-
nels facilitate precise testing of these symmetry breakings.
Precise measurements of # decay channels are critical in the
efforts to elucidate the charge conjugation (C), parity (P),
time reversal (T), CP, and charged lepton flavor violations.

In addition to the exploration for new physics, the high-
precision study of # decay provides a unique method for
testing the quantum chromodynamics (QCD) theory at low
energies [53-58], probing the # structure [59—-65], precisely
measuring the mass difference of light quarks [66-71], and
verifying axial anomalies [72—74]. The electromagnetic
decay channels associated with virtual and real photons
help constrain the # transition form factor with significantly
smaller uncertainties [59-64]; this aids the elucidation
of the muon anomalous magnetic moment [2-4]. Quark
masses are the fundamental parameters of the SM. As
regards experimentally constraining light quark masses, the
measurement of the isospin-breaking 37 decay channels of
n presents a crucial method. High-precision measurements
at a super # factory can reduce the uncertainties of QCD
parameters significantly. Precise measurements of some
rare n decays facilitate the testing of the chiral perturbation
theory at high orders [75], which is a rigorous and effective
theory for strong interactions at low energies.

As n meson decays involve a wide array of physics
phenomena, measurements of # decay have been conducted
at facilities worldwide. First, the hadronic generation of #
from fixed-target experiments, such as the WASA-at-COSY
experiment [76—78] and LHCDb experiment [79, 80], has been
reported. The WASA-at-COSY collaboration entailed the
use of the proton beam at COSY and an internal pellet target,
and the number of # event yields on the order of 108. Second,
the radiative decay of ¢ and J/y at the electron—positron
colliders have produced considerable numbers of # samples,
aided by low-background levels. The number of # events
from ¢ decay by the KLOE collaboration is on the order
of 108 [81-84], while the corresponding number from
J/w decay by the BESIII collaboration is on the order of
107 [85-89]. Third, photoproduction experiments provide
a clean environment for the production of # mesons, for
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example, the A2 experiment at MAMI [59, 90, 91] and the
JLab Eta Factory (JEF) [32, 92], which exploit the Primakoff
effect [93]. JLab has a long history of studying neutral-
meson physics via the Primakoff reaction [94, 95]. In the
JEF experiment, approximately 10° tagged # events will be
collected over the years by using the GlueX spectrometer
[96, 97]. Owing to the high-performance calorimetry and
high-energy incident photons (up to 11 GeV), remarkable
background suppression is achieved for the neutral decay
channels. The JEF experiment facilitates the precise
measurement of the neutral decay channels of # mesons.

To harness the intriguing discovery potential of light dark
portal particles and perform rigorous tests of the SM, it is
imperative to build a super # factory using high-intensity
accelerators to obtain unprecedented # meson samples. To
pursue a vast number of 7 events, the Rare Eta Decays To
Observe Physics beyond the standard model (REDTOP)
experiment [31] was proposed in the 2021 US Community
Study on the Future of Particle Physics using novel detection
techniques. In China, a High-Intensity heavy-ion Accelerator
Facility (HIAF) is under construction in Huizhou city by
Institute of Modern Physics (IMP), Chinese Academy of
Sciences (CAS), which is competitive in the beam intensity.
Using this near-future infrastructure, we propose a super g
factory at the HIAF high-energy terminal. Undoubtedly, the
proposed Huizhou # factory will generate many impactful
results that will remarkably advance accelerator and detector
technologies.

The remainder of this paper is organized as follows.
The proposed Huizhou # factory and its physics goals
are described in Sect. 2. The conceptual design of the
spectrometer is presented in Sect. 3. Some preliminary
simulation results for some golden channels of the
experiment are presented in Sect. 4. In Sect. 5, a concise
summary and future outlooks are provided.

2 Huizhou n factory and its goals

The HIAF is a major national science infrastructure facility
under construction in Huizhou City, Guangdong province,
China. in Southern China [98—100]. The construction of the
HIAF began in December 2018, and it will be ready for
commissioning by the end of 2025. The HIAF is an accel-
erator complex mainly consisting of a superconducting
electron—cyclotron—resonance ion source, continuous-wave
superconducting ion linac, booster synchrotron, high-energy
fragment separator, and high-precision spectrometer ring.
The layout of HIAF is shown in Fig. 1. Many terminals
have been designed alongside the accelerator complex for
experiments and applications. With high-intensity technol-
ogy, HIAF not only provides powerful infrastructure for
frontier studies in nuclear, high energy-density, and atomic
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Fig. 1 (Color online) Layout of the HIAF facility. The number “(7)” indicates where the high-energy multidisciplinary terminal is located

physics but is also an excellent platform for heavy-ion appli-
cations in life, material, and space sciences [100]. HIAF
will potentially deliver unprecedentedly intense ion beams
from hydrogen to uranium with energies up to GeV/u. The
maximum energy of the proton beam is 9.3 GeV [98-100].
Using heavy-ion beams, HIAF provides an extraordinary
platform for studies of hypernuclei and the phase structure
of high-density nuclear matter. Further, given its capability
to generate high-energy proton beams, HIAF provides an
excellent opportunity to study light hadron physics and to
build an 7 factory.

At HIAF, the intensity of the proton beam is higher than
10"3 ppp (particles per pulse), and the kinematic energy
of a proton can reach 9 GeV through the acceleration of
the ion linac and booster ring [98—100]. The pulse rate is
approximately several Hertz. It is suggested that a super #
factory be built at the high-energy multidisciplinary terminal
after the booster ring, the terminal “(7)” shown in Fig. 1. The
target is made of multiple light-nuclei foils (’Li or °Be) with
1 cm gaps, significantly reducing the coincident background
from the same vertex with no simultaneous decrease in the
luminosity. Using a proton beam and light nuclear target, the
n meson is efficiently produced with a controlled background
at HIAF. The beam-energy thresholds are 1.26 GeV and
2.41 GeV for generating 5 and #’, respectively. Proton—proton
scattering at a beam energy of 1.8 GeV results in a large #

meson cross-sections [101-104], as indicated by previously
reported COSY data (approximately 100 pb) [101]. In the
case of the nuclear target, the # meson cross-section is
even higher. The HIAF beam intensity and a 1-cm-thick
lithium target lead to luminosities above 103cm=2s~! for the
Huizhou n factory experiment. Regardless of the detector
and data acquisition system capabilities, the n production
rate can be higher than 10%s~! on a light nuclear target
(> 10" per year).

The China Initiative Accelerator Driven Sub-critical
System (CiADS) is another high-intensity proton accelerator
designed for verifying the principle of nuclear waste
disposal [105-110]. It provides a remarkably powerful
continuous proton beam. The designed full power of the
CiADS accelerator is 2.5 MW, with a beam intensity of
3.15 x 10'®pps. CiADS is also appropriate for building a
super # factory, provided the energy of CiADS is upgraded
to approximately 2 GeV. Because an upgrade to the CiADS
accelerator is anticipated to require several years, the HIAF
high-energy terminal is deemed more appropriate for the
proposed Huizhou # factory.

At the Huizhou 7 factory, the number of # meson
samples is expected to be significant, approximately four
orders of magnitude greater than that of the current
events achieved worldwide. With such an enormous yield
of 7 mesons, the main physical goals of the Huizhou

@ Springer



137 Page4of16

X.Chen etal.

factory would be to discover new physics by searching
for new particles and discrete symmetry breaking and to
study SM with extremely high precision. New particles of
interest emerging from 5 and 5’ decays are the predicted
light portal particles below the GeV level, which faintly
bridges the SM sector with the hidden sector. Examples
include the dark vector particles [34-37], dark scalar
particles [38-44], and axion-like particles [45—49].
The protophobic X17 boson of the fifth force [5-7] can
also be studied via rare 5 decay. The remarkably large
number of # mesons affords a good opportunity to study
new sources of CP violation, which is essential for the
matter—antimatter asymmetry in the universe, and to
search for charged lepton flavor violation, which is a clear
and strong indication of new physics. Finally, precise »
decay measurements are critical for high-precision study
of the SM, such as strictly constraining the light quark
mass difference, precise measurement of meson structure,
and high-precision testing of chiral perturbation theory.
The primary physics interests are listed in Table 1. As
the spectrometer at the Huizhou n factory is particularly
suitable for measuring charged particles, the charged
decay channels must be attributed a high priority for
the proposed experiment, for example, n — 7tz 70,
n—etey,n—o ntrete,andn — ete.

Table 1 List of the main physics goals of Huizhou n factory

Physics goals Decay channel

New physics Dark photon & X17 etey
Dark Higgs ata 0
lete”
Axion-like particle xtnete”
mtrTyy
CP violation atx~
rtr-ete”
Lepton flavor violation yute /cc
ute /c.c
Precision test of the SM  # transition form factor etey
ete ete”
atnTy
Light quark masses atax0
7[07EO7EO
Chiral anomaly vy
atnTy

Beyond SM weak decay ete”
xtxTyy

=Oyy

Test chiral perturbation
theory
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3 A compact and large-acceptance
spectrometer with silicon pixels

With the rapid development of monolithic silicon pixel
technology [111], we developed the concept of a large
acceptance and compact spectrometer with silicon pixels to
detect the final-state particles at a high event rate. The cur-
rent design of the spectrometer comprises four main parts:
tracking system for charged particles made of silicon pixels,
time-of-flight detector for particle identification made of sili-
con low-gain avalanche detector (LGAD), electromagnetic
calorimeter (EM calorimeter) for photon measurement made
of lead glass [112], and superconducting solenoid. The 3D
design of the spectrometer is shown in Fig. 2. Because of
the high granularity and low position resolution of the sili-
con pixel detector, it is a compact spectrometer with a small
volume. Therefore, the EM calorimeter and solenoid are of
small size, which reduces the cost of spectrometer fabrica-
tion. The inner radius of the superconducting solenoid is
approximately 70 cm, and all the main detectors are within
the solenoid.

The multi-layer target is placed inside the spectrometer
close to the entrance such that there is a large acceptance
for fixed-target experiments. Using the current conceptual
design of the spectrometer, all forward particles except
small-angle particles are covered without dead zones.

To achieve a high-rate capacity for the silicon pixel
tracker, the silicon detector group attempted dual

LGAD TOF

\

i)
(o)
Silicon Tracker \6

Fig.2 (Color online) The conceptual design of a compact spec-
trometer for the n factory. The spectrometer mainly relies on silicon
detector technology, with the monolithic silicon pixel tracker and fast
LGAD TOF detector of low material budget. The silicon tracker is
wrapped with a fast lead-glass calorimeter for high-energy photons
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measurements of the energy and arrival time of each pixel
[113—117]. Using different arrival times, hits from different
events can be distinguished. The objectives of future silicon
pixel chips are a resolution of 1-5 ns for arrival time, pixel
size of 40-80 pm, and scan time of 100 ps for approximately
100k pixels. In the future, we will reduce the average dead
time for one pixel after being hit down to 5-10 ps. The
anticipated noise for deposited energy measurement will
be around 100 e~, which is less than 1/5 of the minimum-
ionized-particle energy deposition. Under the particle
multiplicity of the Huizhou n factory and with the pixel
chip more than 5 cm away from the interaction point, the
designed silicon pixel chip can easily record events at a rate
greater than 100 MHz.

In the current conceptual design of the spectrometer,
the calorimeter material is lead glass, which generates
only prompt Cherenkov photons. Therefore, it has good
time resolution around 100 ps for particle detection.
Simultaneously, lead glass is not sensitive to the hadronic
shower initiated by nucleons and pions, which means that
it has low efficiency for the neutron background and offers
additional hadron background suppression capability.
Our Geant4 simulation [118-120] discovered that low-
energy neutrons (E;, < 0.3GeV) generate almost no hits
in the lead glass calorimeter, and a high-energy neutron
(E, > 1GeV) has only approximately 45% probability of
depositing more than 10 MeV energy in the calorimeter.
As most neutrons from pA — X collision are low-energy
neutrons, the neutron background in photon measurements
can be eliminated effectively with the lead glass calorimeter.
For inelastic events generated with the GiBUU package
[121-124], Fig. 3 shows the invariant mass distributions of
two photons, with and without the neutron background. The
background of the z° signal due to neutron contamination
is negligible, especially for the channel p’Li — z* 7~ z°X.
In the simulation, the threshold for a hit in the calorimeter
corresponds to the signal generated by a 50-MeV photon.
Neutrons deposit less energy in the calorimeter than photons,
and with the same amount of energy deposition, the hadronic
shower initiated by the neutron generates fewer Cherenkov
photons. Therefore, the abundant neutron background at low
energy is strongly suppressed in the measurement of photons
and 7°.

Although a lead glass calorimeter is effective at
suppressing hadron backgrounds and is cost-effective,
it has significant drawbacks compared to conventional
crystal calorimeters. First, the low Cherenkov light yield
and severe light attenuation of lead glass result in poor
energy resolution. Lead fluoride crystals, which exhibit less
light attenuation, can be used instead, but they are much
more expensive. Another disadvantage is poor radiation
resistance. Although radiation-resistant lead glass can be
used to improve this, it suffers from worse light attenuation.

x10°
1001~ pLi—yyX
P i
c -
3 50
O L
0 T e A
0 0.1 0.2 0.3 0.4
Mass(yy) [GeV/c?]
1500; plLi->n"nmyyX
o F
S 1000~
o C
© F — With neutron background
5001~ 9
S T W/O neutron background
0 C L I n !
0 0.1 0.2 0.3 0.4

Mass(yy) [GeV/c?]

Fig.3 (Color online) Invariant mass distributions of two ys from the
simulations with and without the neutron contamination. The p-’Li
events are generated with the GiBUU package. The ys are detected
under two different scenarios: (1) we assume that the calorimeter
cannot distinguish the neutron from the photon (with neutron back-
ground) and (2) we assume that the calorimeter can well distinguish
the neutron from the photon (without neutron background)

Additionally, due to the low light yield, the Cherenkov light
being mainly in the UV range, and the detector being in a
magnetic field, large-sized UV-sensitive SiPMs are required.
These drawbacks present challenges for the use of lead glass
in this project.

One option is to use the ADRIANO2 [125] dual-readout
calorimeter currently being developed by the REDTOP
group. This design combines scintillation materials and lead
glass to capture both Cherenkov light and scintillation light
signals. It employs longitudinal layering and a readout to
provide excellent energy resolution and additional capability
for low-energy particle identification. This design addresses
the shortcomings of using lead glass only.

By applying a full-silicon tracker with small pixel size,
the momenta of charged particles are precisely measured
with a high event rate, and the sizes of all detectors scale
down depending on the size of the inner tracker. This is
a compact spectrometer with a large acceptance for fixed-
target experiments and competitive functions. The LGAD
detector for time-of-flight measurement has a low time
resolution and extremely low material budget. The lead glass
calorimeter is effective in reducing the neutron background,
but its energy resolution is poor. We also look for new EM
calorimeter technologies capable of working in a high event-
rate environment. Therefore, using the current spectrometer
design for the Huizhou n factory, we focus more on the
charged decay channels of # mesons. The radiation dose
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for the spectrometer was simulated using both Geant4
[118-120] and FLUKA [126-128]. Under the condition
of a 100-MHz inelastic scattering rate, over a one-month
data acquisition period, the inner-most LGAD is expected
to experience a maximum 1 MeV neutron equivalent fluence
of 3% 10" n,,/cm? and a maximum dose of 200 Gy.
Meanwhile, the lead glass of EM calorimeter is expected to
experience a maximum 1 MeV neutron equivalent fluence of
5x 10" n,, /cm?* and maximum dose of 100 Gy. Thus, these
subsystems can survive for several years before significant
radiation damage occurs.

4 Preliminary results of simulations

To determine the physics impact and feasibility of the
experiment, we performed simulations of some golden
channels for the Huizhou 1 factory project. The simulation
study is the first step for us to acquire the details regarding
the resolutions, efficiency of the signal channel, background
distribution, precision of the planed measurement, and/or
sensitivity to new physics.

For the background events in p—A collisions, we used
the GiBUU event generator [121-124] to perform the
simulation. GiBUU is suitable for proton-induced nuclear
reactions from low to intermediate energies, with final-
state interactions being handled well [121]. The GiBUU
event generator is based on the dynamic evolution of a
colliding nucleus—nucleus system within the relativistic
Boltzmann-Uehling—Uhlenbeck framework, which
considers the hadronic potentials, equation of state of
nuclear matter, and collision terms. In GiBUU, low-energy
collision is dominated by resonance processes, while high-
energy collision is described by a string fragmentation
model implemented in Pythia. For # production, N*(1720)
in the process NN — NR plays a dominant role [129]. Thus,
the GiBUU event generator perfectly covers the kinematical
regions of the HIAF and CiADS accelerator facilities.

In our simulation, the kinematic energy of the proton
beam was 1.8 GeV, which is slightly below the p meson
production threshold to lower the background. Using the
lithium target, we found that the number of neutrons is
approximately 1000 times the number of # mesons, and
the number of 7° mesons is approximately 50 times that
of # mesons. We further coded the decay chains of z° and
n. For signal event generation of dark portal particles, we
constructed a simple event generator for the channels of
interest. We also used another BUU generator [130] and
the Urgmd package [131-133] to estimate the # production
cross-section. The # production probability was 0.76% for
inelastic collisions.

To quantify the detection efficiency and resolutions,
we developed a detector simulation package ChnsRoot,
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which is based on the FairRoot framework [134, 135].
Currently, we have a reliable, fast simulation tool based
on parameterizations validated by Geant4 simulations.
The inner-most and outer-most radii of the silicon pixel
tracker are 7.5 cm and 27.5 cm, respectively. The magnetic
field strength is 0.8 Tesla. The energy resolution of the
calorimeter is 6(E)/E = \/a? + b2 /(E/GeV) for photons,
with a = 0.028 and b = 0.056 estimated using Geant4. The
neutron efficiency of the calorimeter as a function of energy
and scattering angle was also studied in detail with Geant4.
Calorimetric responses to different types of particles were
carefully studied to achieve a realistic fast spectrometer
simulation.

To understand the physics impact of the measurement,
the statistics of the produced # samples was the most
important input for the simulation. To be conservative in our
experimental projections, in this simulation, we considered
a prior experiment with only one month of operation.
Based on the evaluated luminosity and p—A cross section,
the potential production rate of n can exceed 10¥s~!, at an
inelastic event rate of approximately 10'°s~!. A silicon pixel
detector with a high granularity can operate at a high event
rate (> 100 MHz) without a significant pile-up of events.
However, considering the radiation hardness of the detector,
and limits of the current data acquisition (DAQ) system,
we make a notably conservative estimate of the event rate
for the Huizhou 7 factory experiment. The event rate of
inelastic scattering is assumed to be 100 MHz, and the 5
production rate is approximately 760 KHz. We also assumed
a conservative duty factor for the accelerator of which is
30%. Using these settings, the number of # mesons produced
is 5.9 x 10! for the first experiment with only one month
of running time. Thus, in the following simulations, we
assume that only 5.9 x 10'! eta mesons were produced in
the previous experiment.

The statistics of # meson samples can be increased to
magnitudes higher, as the experiment will run for years. The
event rate can also be increased with improvements in the
detector radiation hardness and speed of DAQ system, and
the proton beam can be delivered to the high-energy terminal
with a high duty factor.

4.1 Dark photon search

The decay channel n — e*e”y is particularly interesting
because this channel is relevant to the search for the dark
photon [34-37] and light protophobic X17 boson [5-7],
which decay into an electron—positron pair. Simultane-
ously, from the precise measurement of this channel, we
can precisely extract the transition form factor of #, which
is an important input for the theoretical calculation of muon
anomalous moment (g — 2),,. The dark photon is the most
popular type of dark portal particle, and it feebly connects
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Fig.4 (Color online) Momentum v.s. angle distributions of the final-
state particles of n — e*e”y decay channel. The top pads show the
kinematic distributions of the final states from the event generator,
while the bottom pads show the kinematic distributions of the recon-
structed particles from the fast detector simulation. The designed
spectrometer covers the main and large kinematic region of the final-
state particles

the SM model sector with the possible hidden sector. Here,
we focus on the physics impact on the dark photon from the
simulation data of the Huizhou n factory experiment.

Figure 4 shows the kinematic distributions of the final-
state particles of channel ete”y, from the event generator
and particle reconstruction in the spectrometer simulation.
Evidently, most of the final electrons have a low momentum
(< 0.5 GeV/c) and go to angles from 10° to 100°. The
average energy of the final photon is approximately 0.4 GeV,
and the photons have similar electron-scattering angles.
The designed spectrometer covers most of the electrons and
photons, and the overall efficiency of the channel is estimated
to be 60% using the simulation. Low-energy electrons can
be identified effectively using energy decomposition dE/dx
measured by a silicon pixel tracker. A high-energy electron
can be identified using the calorimeter, as the pion initiates
few Cherenkov photons in the lead glass calorimeter.

The distribution of the reconstructed invariant mass of
ete™y is shown in Fig. 5. Clearly, the peaks of z° and #
have a low background underneath. Owing to suppression
of the bremsstrahlung radiations in the proton-scattering
process, the electron and photon backgrounds are not
significant. n samples with a high purity can be selected
by performing a cut on the invariant mass of ete~y. In this
simulation, the invariant mass must be within the range of
[mn - 30, m, + 30].

To estimate the sensitivity of the proposed experiment
to the dark photon, we carefully studied the background
distribution through the simulation. The background events
are generated using GiBUU with some decay chains added

Counts
=

0 0.5 1
M(e*ey) [GeV/c?]

Fig.5 (Color online) Invariant mass distribution of ete™y from the
simulation data for one-month running of Huizhou # factory experi-
ment

by us. In the simulation data, there is no bump in the invariant
mass distribution of electrons and positions. We assume that
there is no dark photon in the simulation and the invariant
mass distribution of e*e™ is the pure background distribution.
No observation of the dark photon means that the statistical
significance of the dark photon peak is less than 3o.
Consequently, we get a formula for the branching-ratio (BR)
upper limit of the dark photon channel as follows:

3 X 4/Npg X €q

N, X €44

BR" = ; ey

where N, is the number of background events, €, is
efficiency for the background event, N, is the total number
of eta mesons produced in the experiment, and €, is the
efficiency of the dark photon channel. Ny, X €, is actually
the number of background events survived after all event
selections. Based on the simulation of a one-month
experiment of the Huizhou n factory, the BR upper limit
of dark photon in # decay was evaluated and is shown in
Fig. 6. The sensitivity of the kinematic mixing parameter ¢
is closely related to the upper limit of the branching ratio,
which is expressed as

BR"
w2\ 2
2|F<m§)|2<1 - m—) @

n

S(e?) =

where m, and m, are the masses of the dark photon and 7
meson, respectively, and F denotes the transition form factor
of 5. The final € sensitivity of the one-month experiment to
the dark photon is shown in Fig. 7. Our simulation indicates
significant sensitivity to €2 below 1077, which surpasses
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Fig.6 (Color online) Estimated branching-ratio upper limit of dark
photon for one-month running of Huizhou # factory experiment,
under a conservative event rate of 100 MHz of inelastic reactions
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Fig. 7 (Color online) Estimated &2 sensitivity of dark photon for one-
month running of Huizhou # factory experiment, under a conservative
event rate of 100 MHz of inelastic reactions. The shaded exclusion
areas in the figure corresponding to previous experiments (HPS2015,
A1@MAMI, KLOE, NA48/2, NA64, E141, NuCal, and CHARM)
are taken from Refs. [136-144]

the precision of previous experimental measurements
(HPS2015 [136], Al@MAMI [137], KLOE [138], NA48/2
[139], NA64 [140], E141 [141], NuCal [142, 143], and
CHARM [144]). The proposed experiment will be a valuable
complement to other dark photon searches. After years
of running of the experiment, the parameter space below
the # mass will be almost ruled out when the results are
considered in conjunction with the findings of many other
experiments worldwide [136, 137, 142-150].

@ Springer

4.2 Light dark Higgs search

The light dark Higgs [38—44] is another representative dark
portal particle, which couples the hidden scalar field with
the Higgs doublet. Thus, the dark Higgs is weakly connected
to leptons and quarks via the Yukawa coupling. Therefore,
the dark Higgs can be produced in the hadronic process and
can decay into lepton and quark pairs. In a hadrophilic sca-
lar model, the dark Higgs mainly couples to the up quark;
thus, it predominantly decays into pions. At the Huizhou
nfactory, we could search for the dark Higgs in the follow-
ing channels: n — 7% — 7%*e~andn — 2% — 2zt 7.
In these # rare decay channels, a bump in the invariant mass
distribution of e*e™ or zt 7~ is a clear signal of the possible
dark scalar particle.

The distribution of reconstructed invariant mass of
x~x%is shown in Fig. 8. The peak of # meson with a low
background underneath is evident. In the GiBUU simulation,
the background from the direct multi-pion production is low
compared to the n production because the incident energy
of the proton is low (1.8 GeV). 5 samples from z*z~z° can
be selected with a high purity by performing a cut on the
invariant mass of ztz~z" in the range of[mn - 30, m, + 30].
The low background does not hinder our explorations much
for the rare decays of # meson.

From the simulation, the efficiencies of the z%*e¢~ and
#%z*z~ channels are all above 40% with the conceptual
design of the spectrometer. The resolutions for the invariant
masses of ete™ and #*z~ are 2 MeV/c? and 1 MeV/c?,
respectively. In this study, the bin width for the invariant
mass was six times greater than the resolution. The
background distributions without the dark Higgs particle are
simulated using the GiBUU event generator, and the total

xt
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Fig.8 (Color online) Invariant mass distribution of z*z~z° from the
simulation data for one-month running of Huizhou # factory experi-
ment
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number of inelastic scattering events scales up to 5.9 x 10!,
Because there are no dark Higgs observed in our simulation
data, the upper limit of the branching ratio of the dark Higgs
particle is given by the formula in Eq. (1). The BR upper
limits of the light dark Higgs particle in 7%*e~ and z°72* 7~
channels are shown in Figs. 9 and 10, respectively, as a
function of the mass of the dark Higgs.

As evident from Fig. 10, the BR upper limit of dark Higgs
in the # —» 7%+ xz~ channel lies between 10~° and 10~ for
one-month running of the experiment. As shown in Fig. 9,
the upper limit in the 7%* e~ channel is below 1078 in most
ranges of the dark Higgs mass. This is mainly due to the
lower electron background in p — A collisions, compared to
the strong pion background. Moreover, the upper limit in
the et e~ channel decreases quickly, reaching a value below
1078 when the mass exceeds 0.14 GeV. This is because most
of the e*e~ background originates from z° decay. Therefore,
the ete™ channel offers the advantage of searching the dark
Higgs with a higher mass than the pion. With years running
of the Huizhou n factory experiment, we are confident that
the accumulated data will provide strong constraints on the
possible dark Higgs particle.

Under the hadrophilic scalar model [40, 41], the
sensitivity to the parameter g, (coupling of the dark scalar
to the first-generation quark) is computed and shown in
Fig. 11, compared with the constraints provided by previous
experimental data (BESIII [151], KLOE [83], MAMI [152],
CHARM [153, 154], and SN1987A [40]). The g, sensitivity
from one-month running of the proposed Huizhou # factory
will exceed the current experimental limits in the accessed
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Fig.9 (Color online) Estimated branching-ratio upper limit of light
dark Higgs particle from 7z%%*e~ channel for one-month running
of Huizhou # factory experiment, under a conservative event rate
of 100 MHz of inelastic reactions. The invariant mass of z’e*e™ is
required to be in the # mass region

3
o
l
|

Branching Ratio Upperlimit

n = n(yy) h(z'r)

L ‘ L ‘ L
0.3 0.35 0.4
Mass(rn*n) [GeV/c?]

Fig. 10 (Color online) Estimated branching-ratio upper limit of light
dark Higgs particle from z%z*z~ channel for one-month running
of Huizhou # factory experiment, under a conservative event rate
of 100 MHz of inelastic reactions. The invariant mass of z%z*z~ is
required to be in the # mass region

mass range. The proposed super 5 factory will play an
important role in the search for light dark scalar portal
particles.

4.3 Cand CPviolationinn — mm n°

The CP violation in the flavor-nondiagonal process owing
to the Cabibbo—Kobayashi—-Maskawa (CKM) matrix phase
is insufficient to explain the matter—antimatter asymmetry
in the universe. Therefore, the search for new sources and

N\
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Fig. 11 (Color online) Estimated g, sensitivity of light dark Higgs
particle in a hadrophilic scalar model [40, 41], for one-month running
of Huizhou # factory experiment, under a conservative event rate of
100 MHz of inelastic reactions. The previous experimental data for
the shaded exclusion areas (BESIII, KLOE, MAMI, CHARM, and
SN1987A) in the figure are taken from Refs. [40, 83, 151-154]
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flavor-diagonal CP violation has become popular in the
field of high-energy physics. The z*z~z° decay channel
of the #n meson is of particular interests, as it provides
a unique process to probe the flavor-diagonal C and CP
violation beyond the SM. This type of CP violation is not
constrained by measurement of the nucleon electro-dipole
moment (EDM). Thus, high-precision experimental stud-
ies have been lacking in this regard [33]. Because of the
interference between the C-conserving and C-violating
amplitudes, the CP violation signal can be large. Small C
and CP violations can be detected from a precise measure-
ment of the mirror symmetry in the Dalitz decay plot of
the z*z~ 7" channel.

The direct observable of the charge asymmetry and CP
violation is mirror symmetry breaking in the Dalitz plot of
n — x*x~ 70 that is, asymmetry under the exchange of u and
1(UE P + Do) 1= (P +ppo)?, and s = (P +py)?).
The C and CP violation is reflected in the asymmetry of the
decay events of u > t and u < ¢. Typically, mirror asymmetry
is vividly illustrated in the Dalitz plot of X and Y variables,
which are defined as:

XE\/STIH'_TE‘_ \/5

o, o
3T )
_ 70 3 2
Y= —1= [(m, — m)* = 51— 1,
Qn 2m,1Q,1

where Q, =m, —m . —m,- —m, and T, are the total
kinematic energy and kinematic energy of z' in the # rest
frame, respectively. The distribution asymmetry across
X =0 is an observable of the new type of CP violation.
The Dalitz distribution of the decay probability can be
conveniently parameterized as a polynomial expansion
expressed as

N(X,Y) = Ny(1 +aY + bY* + cX + dX* + eXY

4
HY? 4+ gX2Y + hXY? +1X3 + ..), @

where a, b, c... are free parameters. The nonzero values of
the parameters c, e, h, or [ are a strong indication for the
flavor-diagonal C and CP violation.

The z*tz~z° channel is a major decay channel of
the n meson, and we can obtain a huge number of decay
events from the Huizhou n factory experiment. From the
simulation, the efficiency for the 3 pion channel is estimated
to be approximately 45%. The event distributions in the
different X and Y bins are shown in Fig. 12 for one-month
running of the experiment. The statistical error bars are too
small to display in the figure. We performed a model fit to
the data using Eq. (4). The uncertainty of the parameter c is
approximately 5 X 107>, which is two orders of magnitude
smaller than those of the current analyses of COSY and
KLOE-II data [77, 83]. Over the years running the project,
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Fig. 12 (Color online) Event distributions of n — z*z~z° decay
channel (black squares) in different X and Y bins for one-month run-
ning of Huizhou # factory experiment, under a conservative event
rate of 100 MHz of inelastic reactions. The Dalitz distribution of
n — zntx~ 7 is fitted with a simple model (red lines). See the main
text for more explanations

the C and CP violation can be tested at a satisfactory level
of precision.

4.4 Low-background ] data from exclusive channel
pd — n3He

Here, we emphasize that low-background data of # mesons
can be obtained at the Huizhou 1 factory via the *He tagged
events of the reaction pd — # 3He. In addition to the exclu-
sivity of the measurement, the momentum and angle of the
final-state particle are highly correlated in the two-body-to-
two-body scattering process. By tagging 3He and cutting
the momentum-angle correlation, the background is signifi-
cantly reduced. The cross-section of the pd — # *He reaction
is not small [101, 155-159]; it is 0.4 pb and near the produc-
tion threshold measured by the COSY-ANKE collaboration
[157]. The multiplicity of the final particles using deuterium
target is much smaller than that using other nuclear targets.
Therefore, the event rate for pd — # 3He measurement can
be set at a much higher rate to increase the amount of low-
background data.

Figure 13 shows the two-dimensional kinematic
distributions of *He and # in the momentum vs. angle
plane. Evidently, the final 3He mainly goes to the region of
scattering angle from 15° to 25°, whereas the # meson has
a scattering angle mainly in the range from 20° to 70°. The
conceptual design of the spectrometer is suitable for tagging
3He and collecting the decay particles of the # meson with
high acceptance. As evident from Fig. 13, the momentum
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Fig. 13 (Color online) Kinematic distributions of the reconstructed
3He and # from a fast simulation of the spectrometer. The scattering
angle and momentum are highly correlated for the particles in the
reaction pd — # *He. The angular and momentum resolutions are
small from the silicon pixel tracker

and angular resolutions of the silicon pixel tracker are
excellent for selecting exclusive events of pd — 5 *He.

In short, using the high-intensity proton beam and
deuterium target, we can measure with both high luminosity
and precision at the Huizhou 1 factory. These high-statistic
and low-background data are valuable in the search for new
light particles, looking for the violations of CP and other
discrete symmetries, measuring the transition form factor
and u — d quark mass difference, and testing the low-energy
effective theory of the strong interaction. The systematic
uncertainty from the background can be well controlled with
the tagged 5 data of pd — 5 *He.

5 Summary and outlook

A super 5 factory at Huizhou is proposed for pursuing a
variety of meaningful and challenging physical goals.
HIAF accelerator complex and conceptual design of the
spectrometer are briefly discussed. More than 10'3 # mesons
can be produced with 100% duty factor of the accelerator.
The performance of the spectrometer is studied with
Geant4 simulation, demonstrating satisfactory efficiency
and resolution. The designed spectrometer is particularly
useful for the detection of charged particles and exhibits the
radiation hardness required for high-luminosity experiments.

Through simulations, some key channels of the Huizhou
n factory experiment are investigated. The preliminary
results from the fast simulation show that the Huizhou

n factory will play a crucial role in searching for the
predicted light dark portal particles and new sources of
CP violation. The proposed experiment has the potential
to significantly constrain the parameter space of the
dark photon in the low-mass region together with other
experiments. The sensitivity to light dark scalar particle
is estimated to be at an unprecedented level. The C and CP
violation in the channel # — z*z~z° can be measured at
least two orders of magnitude more precisely than up-to-
date measurements worldwide. Based on the simulation,
the conceptual design of the spectrometer is capable of
measuring the tagged # events of the reaction pd — # *He.
The tagging *He method provides a measurement of both
high statistics and low background, which is vital for the
precise study of # physics.

After completing the planned accumulation of # decay
samples, we could increase the beam energy and produce
the #’ meson. The physical goals of high-precision studies
of #' meson decay closely resemble those of the # meson.
An advantage of studying n’ decay is the ability to explore
dark portal particles over a wider mass range, given that
the #’ meson is heavier than the # meson. High-precision
studies could also be conducted using the same spectrometer
on n’ and ¢ meson decays, thereby boosting the discovery
potential of the proposed Huizhou # factory project.

To further improve the discovery potential of the
spectrometer, it is essential to enhance its capacity to detect
neutral particles. The current lead glass EM calorimeter
exhibits standard energy resolution; therefore, new
calorimeter technologies with fast response times (< 100 ps)
and low energy resolution (< 3.5% at 1 GeV) is imperative.
With the rapid development of silicon photomultipliers
and electronics, dual-readout calorimetry for collecting
scintillation and Cherenkov photons is a viable option for
updating the EM calorimeter. The scintillation material
significantly improves the energy resolution, while the
Cherenkov light provides a sharp time resolution. The
particle identification ability can also be enhanced using
the dual-readout calorimeter by comparing scintillation
and Cherenkov signal amplitudes. Future developments
in silicon pixel detectors and electronics will benefit the
proposed Huizhou # factory project, enabling improvements
in radiation hardness and resolutions, which increase the
event-rate limit for the planned high-luminosity experiments.
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