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Abstract

A method is proposed for high-resolution neutron spectrum regulation across the entire energy domain. It was applied to
in-reactor transuranic isotope production. This method comprises four modules: a neutron spectrum perturbation module,
a neutron spectrum calculation module, a neutron spectrum valuation module, and an intelligent optimization module. It
makes it possible to determine the optimal neutron spectrum for transuranic isotope production and a regulation scheme to
establish this neutron spectrum within the reactor. The state-of-the-art production schemes for 2>2Cf and 2**Pu in the High
Flux Isotope Reactor were optimized, improving the yield of 232Cf by 12.16% and that of >*8Pu by 7.53-25.84%. Moreover,
the proposed optimization schemes only disperse certain nuclides into the targets without modifying the reactor design
parameters, making them simple and feasible. The new method achieves efficient and precise neutron spectrum optimization,

maximizing the production of transuranic isotopes.
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1 Introduction

Transuranic isotopes [1] are isotopes of elements with
atomic numbers greater than uranic (element 92), such
as californium-252 (?2Cf), curium-242 (***Cm), ameri-
cium-241 **'Am), and plutonium-238 (**®Pu). These iso-
topes are widely used in industry, agriculture, medicine,
and national defense [2]. For example, BICE, with its high
neutron source intensity and continuous energy spectrum,
is used as a neutron source for reactor startup [3]; >**Pu,
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characterized by its long half-life, high thermal power den-
sity, and easy shielding of a-decay, is employed as radioac-
tive heat sources [4], and >*! Am, a high-quality low-energy
gamma source, is utilized in smoke detectors and isotope
thickness gauges [5]. Currently, only the USA and Russia
possess stable production capabilities for transuranic iso-
topes. However, during the past 60 years, the USA has only
produced 10.2 g of 2>2Cf [6]. Therefore, transuranic isotopes
are scarce strategic materials.

Transuranic isotopes are primarily produced through
reactor irradiation, but this process faces the challenges of
low nuclide conversion rates and high production costs [7].
Taking the production of >’Cf through the irradiation of
242py as an example, as shown in Fig. 1, this process requires
242py to absorb ten neutrons continuously without undergo-
ing fission reactions. Otherwise, all previous efforts would
be wasted. However, the nuclide conversion chain consists of
neutron-rich nuclides, which are prone to fission reactions,
leading to fission losses of up to 99% [8]. Neutrons of dif-
ferent energy regions have different capacities for inducing
various nuclear reactions, and regulating the neutron spec-
trum can control the nuclear reaction process [9]. There-
fore, by adjusting the neutron spectrum within the irradiation
channel, fission losses can be reduced, and the production
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Fig. 1 (Color online) Nuclide chain and fission losses of 2>Cf production by irradiated 2**Pu

efficiency of transuranic isotopes can be increased by up to
65 times [10]. However, this process faces two challenges:
(1) determining the optimal neutron spectrum for transuranic
isotope production and (2) determining how to construct the
optimal neutron spectrum.

Regarding the first challenge, the research team at Shang-
hai Jiao Tong University conducted studies to identify the
optimal neutron spectrum for transuranic isotope produc-
tion. (1) Rapid diagnostic method [10]: The relationship
between production efficiency and neutron spectrum was
established, and the concept of energy spectrum total value
replaced burnup calculation for efficient evaluation of irra-
diation schemes. However, this method can only consider
the initial neutron spectrum and nuclide composition of the
initial target, resulting in theoretical flaws. (2) Key nuclide
analysis method [11]: The most negative nuclides (key
nuclides) during the entire irradiation period were found,
and the production efficiency was improved by suppressing
the nuclear reactions of these key nuclides. However, this
method fails to consider the dynamic evolution of the neu-
tron spectrum and still has theoretical flaws. (3) Subgroup-
burnup and extreme-burnup analysis methods [12]: The
values of neutrons in different energy ranges for transuranic
isotope production were quantified, and all nuclides and
all neutron spectra throughout the entire irradiation period
were considered. However, the results of these two methods
are influenced by reactor parameters (neutron flux and irra-
diation duration), limiting their universal applicability. (4)
Optimal spectrum database [13]: Genetic algorithms and
point burnup calculations were combined to search for the
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theoretically optimal neutron spectrum under different irra-
diation durations and neutron fluxes, which comprehensively
answers the first question from a scientific perspective.
Regarding the second challenge, neutron spectrum regu-
lation is difficult because neutrons are electrically neutral,
unlike charged particles, such as electrons and protons.
Current research on this topic is still in its nascent stages
and is characterized by four defects: (1) a narrow energy
range for neutron spectrum regulation, (2) low spectral
resolution during the regulation process, (3) large devia-
tion between the actual and target spectra, and (4) poor
universality in terms of the source and target spectra. For
example, based on the findings of the first challenge, the
research team at Shanghai Jiao Tong University adopted
spectrum filtering technology [11] for neutron spectrum
regulation, thereby enhancing the production efficiency
of transuranic isotopes. However, this method can only
reduce the neutron flux at a single energy point or within a
narrow energy range, limiting its spectral regulation capa-
bilities. Muhrer [14] proposed the “golden rule” to define
the relationship between the neutron moderation effect and
the hydrogen content in the moderating material, which
can guide the process of neutron moderation. However,
the neutron spectrum resolution that can be achieved using
this process is low. Scherr and Tsvetkov [15] relied on
manual experience to adjust the materials and geometric
dimensions of the regulation modules to match the reactor
spectrum to the target spectrum. However, this iterative
trial-and-error method struggles to ensure the accuracy
of the regulation results and is labor intensive. Cao [16]
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suggested an inverse correction method for spectrum regu-
lation; however, it is constrained by the low precision of
spectrum calculations and the limitations of the regula-
tion modules, which restrict the achievable target spectra.
Therefore, technology capable of achieving high-precision
and high-universality neutron spectrum regulation across
the full energy range with high spectral resolution remains
lacking.

A method for high-resolution neutron spectrum regu-
lation across the full energy range is proposed. It can be
applied to improve the yield of transuranic isotopes by opti-
mizing the neutron spectrum. The remainder of this article
is structured as follows. In Sect. 2, the methods are intro-
duced. The applications are discussed in Sect. 3. Section 4
concludes the article.

2 Methods
2.1 Rapid calculation of neutron spectrum

A genetic algorithm [17] was employed for neutron spec-
trum optimization. A large number of irradiation schemes
are screened, necessitating a rapid algorithm for calculating
the neutron spectrum, where a previously proposed method
[18] was adopted.

Assuming that a neutron with energy E; undergoes a
nuclear reaction with a non-absorbing nuclide, the energy
of the neutron then changes to

Ej = ZPi,/(Ei)'Ei’ 1)

where E; and E; represent the neutron energies before and
after the reaction, respectively, and P, ; denotes the prob-
ability of the energy transfer from E; to E,. If the continuous
energy is divided into n energy bins, P;; can be written as
an n X n matrix,

Re=| . 7| @)

and Eq. (1) can also be rewritten in matrix form,

where V,, and V| represent the neutron spectra before and
after the reaction; R, is the spectrum response matrix for
nuclide k; and the matrix element r;; represents the prob-
ability of energy transfer from energy bin i to energy bin j.

To consider absorption reactions, each row of the matrix
is normalized,

ai"‘zri,j:ls €]
j=1

where q; is the neutron absorption probability in energy bin
i.

Equation (4) makes the sum of each row of R, less than 1.0,
causing the norm of V, also to be less than 1.0, where Eq. (3)
fails to yield a stable neutron spectrum. In this case, V is used
to supplement the reduction in V| after each iteration,

[Vo| — IRV
V=R Vy+ V. 5)
Vol
To consider the presence of multiple nuclides in a material,
the spectrum response matrices of each nuclide are used to
form a spectrum response matrix of this material,

R, =Y F.R,, ©6)
k=0

where F is a diagonal matrix composed of the weights of
nuclide k,

R=l e | )
fk,n

where the matrix element f; ; represents the weight of nuclide
k in energy bin i. It reflects the importance of nuclide & to
the spectrum transfer process in this material,
Zk,i
total
fei= 50 ®)
Ztotal

where Zf(’)ial is the macroscopic total cross section of nuclide
kin energy bin iand X  is the macroscopic total cross sec-
tion of the material in energy bin i.

To consider different geometries, the leakage of neutrons is
calculated because some neutrons fly out of the system with-
out reaction. The probability p; of a neutron not undergoing a

collision can be derived based on the exponential decay law,
p; = e Zuab, )

where b is the distance to the boundary, which is related to
the geometric parameters of the system. Then, the spectrum
response matrix is revised to

Rreal = Rk X (I _P)’ (10)

where R, is the true spectrum response matrix for the
geometry, I is the identity diagonal matrix, and P is a diago-
nal matrix composed of the non-collision probabilities,
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P1
p=| (1)
Pn

With Egs. (3), (5), (6), and (10), the output neutron spec-
trum for any source neutron spectrum under any geometric
and material conditions can be calculated rapidly.

2.2 High-resolution spectrum regulation

Equation (8) indicates that the response relationship of neu-
tron spectra is correlated with the isotopic composition of
the materials. Therefore, the neutron spectrum can be modu-
lated by altering the isotopic composition within a spatial
region. The spectrum response matrices of 423 isotopes
were built, and the full energy range was divided into 238
energy bins [19] to enhance the spectral resolution and preci-
sion of neutron spectrum regulation.

The source neutron spectrum (n energy bins) is denoted
as y;, = {x, x,, ..., x,}, and the output neutron spectrum is
denoted as y,, = {y, 2, ..., ¥, A stable output neutron
spectrum can be obtained from the iterative convergence
of Eq. (3),

Vou = Z (o (12)
m=1

where ¢,, represents the neutron spectrum after m collisions,
which is calculated by

G =Ricar - by = ereal Py ==
m—1 m
Rreal ' ¢1 = Rreal Yin- (13)

Combining Eqgs. (12) and (13), one obtains

2

©
3
You = Z ¢m =y, t Rreal Y t+ Rreal Y t+ Rreal Wit
m=1

If matrix A can be constructed with a certain isotopic com-
position of these 423 nuclides, then the high-resolution neutron
spectrum is achieved without any deviation. However, because
the full energy range has been divided into 238 energy bins
for high resolution, A is a 238 X 238 matrix, making the con-
struction of A quite challenging. A cannot be obtained solely
based on these 423 matrices. Instead, one can use only these
423 matrices to construct a matrix-approximating matrix A.

2.3 Yield maximum with optimal spectrum
regulation

Previous studies have demonstrated that transuranic isotope
production can be improved greatly by neutron spectrum
optimization and have provided the importance curves that
quantify the values of neutrons in various energy bins for the
production of transuranic isotopes [12], as shown in Fig. 2.
To determine the optimal neutron spectrum further, a genetic
algorithm was employed to build an optimal spectrum data-
base that provides the optimal neutron spectra under different
neutron fluxes and irradiation durations [13]. The theoretical
maximum yields of **Pu under different irradiation conditions
are shown in Fig. 3. Therefore, once this optimal neutron spec-
trum is constructed within the target, the yields of transuranic
isotopes can be maximized.

To construct the optimal neutron spectrum inside the target
based on an initial irradiation scheme, it is necessary to build
a spectrum response matrix that converts the initial neutron
spectrum into the optimal one. However, it is impossible to
construct the optimal neutron spectrum using only the spec-
trum response matrices of these 423 nuclides. Therefore, a
genetic algorithm is employed to search for the optimal pro-
portions of these 423 nuclides, such that the neutron spectrum
inside the target is closest to the optimal one, thereby maximiz-

Vin
—_"m 14
I-R._,’ (14)

real

and simplifying Eq. (14) yields

_r
T-R

real

Wou = Vin =4 Vi (15)
where A is a spectral matrix that transforms the source neu-
tron spectrum into the output neutron spectrum. Many matri-

ces satisfy Eq. (15), for example,

MV o Xah
app Ay o+ a X "2 YN a2 "2 x
11 42 In 1 U R A 1 Vi
Gpp Ayp == o || X2 | | T12 372 FE | IR [ )
NV X Y
Ap1 Gy Anp Xn ]n ’2 zﬂ ’2 ’,,—ynz Xn Yn
PHEIDIHE 1%
(16)
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ing the yields of transuranic isotopes. As shown in Fig. 4, the
specific calculation process is as follows.

(1) Constructing the initial population for the genetic algo-
rithm: Various nuclides are randomly added to the target,
constructing different neutron spectrum regulation schemes.
Assuming that there are originally i types of nuclide in the
target, the spectrum response matrix inside the target at this
time is

;
Ry =) F R xI-P), (17)

k=0

and the spectrum response matrix inside the target is
changed after j new types of nuclides are added to the target,
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(2) Calculation of the neutron spectrum inside the tar-
get: In the case of a known fixed source term, the neu-
tron spectrum can be directly calculated using Eq. (14).
However, because the incident neutron spectrum of the
irradiation channel also changes after the target material is
modified, the incident neutron spectrum must be updated
according to the nuclide composition of the target. Linear
interpolation is used to provide the incident neutron spec-
tra for various nuclide compositions inside the target, as
shown in Fig. 5.

To accomplish this, one first must determine two initial
source terms: the incident neutron spectra y;, o and v,
when the cross sections of the material in the irradiation
channel are zero and infinity, respectively. Then, the non-
collision probability P in Eq. (9) is used as the interpola-
tion factor to calculate the incident neutron spectrum for
different nuclide compositions inside the target,

Vinrea = I = P) X W0 + P Xy, . (19)

After the spectrum response matrix of the target and
incident initial neutron spectrum are determined, the

@ Springer
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Fig.5 Schematic diagram for determining the incident neutron spec-
tra

neutron spectrum inside the target can be quickly calcu-
lated using the following equation:

_ V’in,real
You = I— R;eal' (20)
(3) Calculating the yields of transuranic isotopes: To
meet the high computational demand of the genetic algo-
rithm, the yields of transuranic isotopes are calculated by
solving the burnup equation [20, 21],

= E A i @1
i#f

where n, is the density of the i nuclide, lieff is the effective
decay constant of the ith nuclide, and b, Jeff is the branch-
ing ratio for the transmutation of the ith nuclide to the jth
nuclide. In addition, 1 and b, Jeff can be calculated from the
following formula,

= A +¢Za

b = (b4, +frl,<zb)/ﬁr

(22)

where 4; is the decay constant of the i nuclide, ¢ is the
neutron flux, and 0;;1s the one-group cross section where the
reaction of the i nuchde generates the /™ nuclide.

The one-group macroscopic cross sections .. of a neu-
tron spectrum needed by the point burnup calculation are
calculated by

238

T = 0 Wous (23)
i=1

where the subscript i represents an energy bin; subscript r
represents a reaction type, ¥, ; represents the normalized
output neutron spectrum, and ¢ represents the grouped
microscopic cross section.

(4) Performing evolutionary operations on the popu-
lation: With the yield of transuranic isotopes as the
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optimization objective, the population is screened, crossed,
and mutated to obtain a new population. Step (2) is then
repeated until the evolution of the population is completed.

(5) Outputting the optimal neutron spectrum regulation
scheme: The optimal neutron spectrum regulation scheme is
described in terms of the types and proportions of nuclides
added to the target, along with the yields of transuranic iso-
topes under this optimal scheme and its enhancement effect
compared with the original production scheme.

The nuclear data, such as decay data, cross-section data,
and fission yield data required for the neutron spectrum and
burnup calculation in this study, all originate from ENDF/B-
VII.1 [9]. The spatial self-shielding effect of the target can
be considered during neutron energy spectrum calculation.

3 Applications
3.1 State-of-the-artirradiation scheme

The High Flux Isotope Reactor (HFIR) [22] is currently the
primary facility for transuranic isotope production, account-
ing for 70% of the global 2>2Cf supply. HFIR has a steady-
state neutron thermal flux of 2.5x 10" cm™ s~! and a refu-
eling cycle of 25 days. HFIR and the target are modeled
using the RMC code [23-25], as shown in Fig. 6.

The volumetric neutron spectrum inside the target is
changed by adding various nuclides to it. The state-of-the-art
irradiation scheme (called “SOTA”) employs a target with
a diameter of 5 mm, whereas the diameter of the reactor is
110 cm, resulting in an extremely narrow range for neutron
spectrum regulation. For comparison, an alternative irra-
diation scheme (called “ALTER”) was envisioned in which
targets are placed throughout the entire neutron flux trap.
In this hypothetical scenario, the diameter of the target is
12.6 cm, which has a larger range of neutron spectrum regu-
lation than SOTA. Monte Carlo simulations were employed
to obtain the incident neutron spectra when the cross sec-
tions of the target are zero and infinity. Furthermore, based
on Egs. (19) and (20), the adjustable range of the neutron
spectrum for 232Cf production using the two irradiation
schemes was calculated, as shown in Fig. 7. The average
relative deviation (Ave.Re) of the neutron spectrum is used
to measure its adjustable range,

d)Oi - d)ooi /
0 Tedl fo3g
Do @9

238

Ave Re = Z

i=1

where ¢ ; and ¢, ; are the volumetric neutron spectra inside
the target when the cross sections of the target are zero and
infinity, respectively.

Table 1 presents the Ave.Re of the incident neutron spec-
tra, the volumetric neutron spectrum inside the target for

Fig.6 (Color online) Modeling
diagram of HFIR and the target
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Table 1 Ave.Re of the neutron spectra

Table 2 Nuclide components of the target for 2>Cf production

Scheme Incident 22ct 238py (237Np) 238py (*1 Am)
SOTA  1.38x107! 1.35x107" 7.53x1072 1.01x107!
ALTER 2.14x107" 1.87x107" 2.22x107! 2.30x107!

232Cf and 2*®Pu (two types of target) production when the
cross sections of the target are zero and infinity.

As shown in Fig. 7 and Table 1, the range for neutron
spectrum regulation is small, which makes neutron spec-
trum optimization extremely difficult. The HFIR irradiation
scheme of transuranic isotope production, which is currently
the optimal irradiation scheme available, is chosen as the
initial approach in this study. If the research presented in this
paper can further enhance these state-of-the-art irradiation
schemes through neutron spectrum regulation, the signifi-
cance of our work can be demonstrated.

In the subsequent analysis, the neutron spectrum within
the flux trap and target is adopted as the starting point for
neutron spectrum regulation. The neutron flux for point
burnup calculations is 2.5x 10> cm™2s7!, with a burnup
time of 25 days, which is divided into 10 subburnup steps.
During the calculation process, the genetic algorithm is
first used to search for and identify the 20 most important
nuclides for enhancing the yield of transuranic isotopes.
The concentrations of these 20 nuclides are then optimized.
Hence, in the next section, the addition of these 20 most
important nuclides for yield improvement is discussed.

3.2 Volumetric neutron spectrum regulation
for 52Cf production

The target for 2>2Cf production is a mixture of plutonium,
americium, and curium [26, 27], whose nuclide components
are listed in Table 2. The calculation procedure outlined in
Fig. 4 was used to optimize the neutron spectrum for the
SOTA and ALTER irradiation schemes.

For the SOTA irradiation scheme, the yield of *>>Cf
after 25-day irradiation of this target in HFIR is 1.33x10'®
atom/cm?. After the nuclides listed in Table 3 are added to
the target, a maximum yield of 1.49 x 10'® atom/cm?® can
be achieved, a 12.16% increase compared with the original
SOTA irradiation scheme.

For the ALTER irradiation scheme, the yield of 2cf
after 25-day irradiation of this target in HFIR is 1.15x 10"
atom/cm?. After the nuclides listed in Table 4 are added to
the target, a maximum yield of 1.77 x 10! atom/cm?® can
be achieved, which is a 54.54% increase compared with the
original ALTER irradiation scheme.

The nuclides listed in Tables 3 and 4 are added to the
target by dispersion, with the density of the added nuclides
not exceeding 1% of the initial nuclide density of the target.

@ Springer

Isotopes Number Isotopes Number Isotopes Number
density density density
(atom/cm®) (atom/cm?) (atom/cm?)

10 3.68x10%"  °Fe 7.66%x10"  2#2mAm  1.33x10"

27Al 472x10% Fe 1.74x10"® 2Am  1.18x10%

Ca 7.38%x 10"  FFe 227%x10"7 2Cm  3.71x10'°

“Ca 4.69%10'7  28¥py 1.86x10'® 2Cm  2.61x10"

BCa 9.56x10' 2¥py 1.66x10'7 *Cm  3.60x10%

#Ca 1.44%x10"® 2%0py  351%x10" 2%Cm  8.44x10'

4Ca 2.65x10%  24py 1.12x10'  2Cm  1.11x10%

Ca 1.19%x10"7 2Py 463x10"7 *'Cm  3.14x10"

4Fe 5.06x10"% 2Y'Am 329%10" 28Cm  2.46x10%

Table 3 Nuclei additions for the SOTA irradiation scheme of *>2Cf
production

Isotopes Number Isotopes Number Isotopes Number
density density density
(atom/cm?) (atom/cm?) (atom/cm?)

'H 5.14x10%° 7Ge 525%10%° M0La  4.93%x10%

Be 451x10%° ™Ge 5.04x10%° 20Hg  4.45x10%°

Ar 520%x10%° Ry 520x10%° 2%Hg  4.72x10%°

BAr 488x10% 1Ry 4.45x10%° 209pp 5.25%10%°

Ni 5.25%10%° 192pgq 5.14x10%°  208pp 5.20%x10%°

PNi 1.06x10"  106pq 5.25%10%° 209Bj 5.25%10%°

%Cu 5.09%10%° 3%Ce  5.09%10%

Table 4 Nuclei additions for the ALTER irradiation scheme of >>2Cf
production

Isotopes Number Isotopes Number Isotopes Number
density density density
(atom/cm?) (atom/cm®) (atom/cm’)

'H 1.59% 10" 1'2C 5.25%x10% s 5.14x10%

’H 472%x10% BN 4.56x10% s 4.98%10%

H 493%x10% 0 4.83%x10% s 5.20%10%

“He 477%x10%  2si 4.88x10% 3C1 5.25%10%

Li 477%10%  ¥si 4.56%10%  “O0Ar 5.20%10%

Be 435%10%  ¥si 5.20%10%

B 5.04x10%° 3% 4.51%10%

After the addition of the nuclides, the density of the original
nuclides in the target decreases accordingly. Meanwhile, in
this study, a high-resolution neutron spectrum regulation
method, achieved by adjusting the proportions of these 423
nuclides within a certain spatial region, was developed.
Theoretically, the more the nuclides that can be used for
neutron spectrum regulation, the higher the regulation capa-
bility. However, many nuclides are unstable and extremely
expensive, which makes them difficult to use in practical
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Table 5 Nuclide components of the targets for 2**Pu production

AmO, NpO,

Isotopes Number density Isotopes Number den-
(atom/cm?) sity (atom/

cm3)

) 5.11x10% %0 4.97x10%

1 Am 2.55%10%

22Am 2.04x 10" ZNp 2.49x 102

3 Am 1.06x 10"

Table 6 Nuclei additions for the SOTA scheme (AmO,) of 238py pro-
duction

Isotopes Number Isotopes Number Isotopes Number

density density density

(atom/cm?) (atom/cm?) (atom/cm®)
184y 7.43%10%°  205Tj 751x10%° 2%Ra  7.13x10%°
98Hg  7.28x10%° 2MPb  6.74x10%° 2BPAc  7.28x10%
MHe  7.28x10° 2%pb  7.36x10%° H0Th  7.59%x10%°
Mg  751x10° 2Pb 7.59%x10%° 22Th  7.59%10%°
MHe  7.43x10° 8pp 7.51x10%° 4Th 7.28x10%°
WHg  7.28x10%  209Bj 7.13%x10%
2031y 7.59%10%° 2Ra  7.13x10%

engineering applications. Therefore, it is recommended that
readily available nuclides or natural elements be adopted to
develop neutron spectrum regulation schemes in practical
engineering.

3.3 Volumetric neutron spectrum regulation
for 228Pu production

238py is produced by the in-reactor irradiation of ameri-
cium-241 (**'Am) [28, 29] or neptunium-237 (**’Np) [30,
31], with the nuclide components of the targets listed in
Table 5. Experience has shown that the in-reactor irradia-
tion of 2¥’Np facilitates a higher yield of 2**Pu, whereas the
in-reactor irradiation of 2*! Am facilitates a higher abundance
of 233Pu. Therefore, these two irradiation methods are cur-
rently the practical solutions adopted, and analyses of both
methods were conducted.

3.3.1 In-reactor irradiation of 24'Am

For the SOTA irradiation scheme, the yield of **®*Pu after
25-day irradiation of the AmO, target in HFIR is 3.11 x 10%
atom/cm’. After the nuclides listed in Table 6 are added to
the target, a maximum yield of 3.92 x 10?° atom/cm?® can

Table 7 Nuclei additions for the ALTER scheme (AmO,) of 23*Pu
production

Isotopes Number Isotopes Number Isotopes Number

density density density

(atom/cm?) (atom/cm?) (atom/cm’)
%Er  751x10%° 22Hg  7.13x10%° 2%pp  7.05x10%
68Er  7.59%x10%° 2MHg  7.59%x10%° 29Bj 7.05x10%
BO0Hf  7.20x10%° 203Ti 7.13%x10% 2%Ra  7.05%x10%
184w 7.36x 102 205Tj 743%x10% 20Th  7.13x10%
%Hg  6.90x10%° 2%pp  7.28x10%° 22Th  7.28x10%
MWHe 75110 2%Pb  6.82x10%
Mg 743%x10%° 27ppb  7.36%x10%

Table 8 Nuclei additions for the SOTA scheme (NpO,) of 2*3Pu pro-
duction

Isotopes Number Isotopes Number Isotopes Number

density density density

(atom/cm?) (atom/cm?) (atom/cm®)
1708y 7.38%x10%° '"Hg  7.30%x10%° 2pp 7.08x10%°
BHf  6.78x10%° 202Hg  7.38x10%° 203pp 6.33%x10%°
180wy 6.93x10° 2™MHg  6.70x10%*° 29Bj 6.63%x10%°
184w 7.38x10%° 2037y 6.56x10% 2%Ra  7.30x10%
186wy 6.70x10%° 25Ty 7.15%x10% 22Th  7.23x10%
%Hg  7.30x10%° 2MPb  6.85x10%
g  6.93x10%° 2%pp  6.85%x10%

be achieved, a 25.84% increase compared with the original
SOTA irradiation scheme.

For the ALTER irradiation scheme, the yield of 238py
after 25-day irradiation of the AmO, target in HFIR is
1.14 x 10" atom/cm?. After the nuclides listed in Table 7
are added to the target, a maximum yield of 2.08 x 10"
atom/cm?® can be achieved, an 81.83% increase compared
with the original ALTER irradiation scheme.

3.3.2 In-reactor irradiation of 2>’Np

For the SOTA irradiation scheme, the yield of 238py
after 25-day irradiation of the NpO, target in HFIR is
2.99 x 10?! atom/cm?. After the nuclides listed in Table 8
are added to the target, a maximum yield of 3.21 x 102!
atom/cm? can be achieved, a 7.53% increase compared
with the original SOTA irradiation scheme.

For the ALTER irradiation scheme, the yield of 238py
after 25-day irradiation of the NpO, target in HFIR is
2.56 x 10*° atom/cm?>. After the nuclides listed in Table 9
are added to the target, a maximum yield of 4.32 x 10%°
atom/cm® can be achieved, a 68.74% increase compared
with the original ALTER irradiation scheme.
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Table 9 Nuclei additions for the ALTER scheme (NpO,) of 23*Pu
production

Isotopes Number Isotopes Number Isotopes Number
density density density
(atom/cm?) (atom/cm?) (atom/cm?)

WNd  7.23x10%° 2Hg  6.93x10%® 2%ph  5.66x10%

BONd  6.63x10%° 20'Hg  7.23x10%® 27pb  7.30x10%

0G4 7.38x10*° 22Hg  6.93x10*° 2%pb  7.08x10%

68r  6.26x10%° 2MHg  7.38x10%° 29Bj 7.30x 102

BO0Hf  6.78x10%° 203Ti 7.23%x10% 2%Ra  6.85x10%

184w 6.93x10%° 20Ty 730%x10% 22Th  6.70x10%

%Hg  7.38x10%° 2%Pb  7.38x10%

3.4 Comparison and analyses

The yields of these irradiation schemes are compared in
Table 10, showing that the volumetric neutron spectrum
regulation method proposed can enhance the production of
transuranic isotopes. Even for the state-of-the-art irradiation
schemes that are currently optimal, one can still improve
their efficiencies. Furthermore, the spectrum optimization
schemes proposed are simple and feasible, requiring only
the dispersion of various nuclides inside the target with-
out the need to modify reactor design or irradiation channel
parameters, making them highly practical for engineering
applications.

A comparison between the SOTA irradiation scheme and
the ALTER irradiation scheme reveals the following conclu-
sions. (1) The SOTA irradiation scheme consistently out-
performs the ALTER irradiation scheme, demonstrating the
significance of neutron spectrum regulation for transuranic
isotope production. (2) The larger the range for neutron
spectrum regulation, the more pronounced the promotion
in enhancing transuranic isotope production. Therefore, the
volumetric neutron spectrum regulation method proposed
can identify and construct an optimal neutron spectrum
within a limited range. The calculated results provided only
cover a narrow range and fail to reflect the overall physi-
cal process. In this study, only the effectiveness of this
regulation scheme and its technical value are emphasized,
without delving into its physical significance in detail. If
further increasing the production of transuranic isotopes is

required, merely altering the nuclide composition of the tar-
get is insufficient. At this point, modifications to the reactor
design are necessary to broaden the regulation range of the
neutron spectrum within the irradiation channels. This will
be explored in planned future research.

4 Conclusion

Transuranic isotopes are scarce strategic materials primarily
produced through the in-reactor irradiation of targets; how-
ever, they face the challenge of low production efficiency.
Optimizing the volumetric neutron spectrum inside the
target can enhance the production of transuranic isotopes.
A neutron spectrum regulation method was proposed to
construct the optimal volumetric neutron spectrum inside
the target and apply this method to producing transuranic
isotopes, improving their production efficiency.

The new method utilizes a genetic algorithm to search
for the optimal neutron spectrum regulation scheme, which
is divided into four modules. (1) Neutron spectrum pertur-
bation module: This module alters the neutron spectrum
inside the target by dispersing various nuclides throughout
it, thereby constructing diverse neutron spectra. (2) Neu-
tron spectrum calculation module: Leveraging the spectrum
response matrices, this module swiftly obtains the neutron
spectrum inside the target on a timescale of seconds. (3)
Neutron spectrum valuation module: Employing the burnup
calculation method, this module obtains the yield of tran-
suranic isotopes under various neutron spectra, evaluat-
ing the fitness of each scheme. (4) Intelligent optimization
module: Based on the selection, crossover, and mutation
operations of the genetic algorithm, this module evolves
the neutron spectrum regulation schemes to determine the
optimal one.

Optimizations were performed starting from the produc-
tion schemes of the HFIR. The production schemes for 2>>Cf
and 2*8Pu were optimized. The optimized schemes enhance
the production efficiency of >Cf by 12.16% and increase
the production efficiencies of *®Pu by 25.84% and 7.53%.
Because these schemes are currently the optimal ones avail-
able, these efficiency improvements demonstrate the effec-
tiveness of the proposed approach. Furthermore, the neutron

Table 10 Comparison of
irradiation schemes

Scheme

Original (atom/cm?) Optimal (atom/cm?) Promotion (%)

252Cf
238Pu (241Am)
238Pu (237Np)
252Cf
238Pu (241Am)
238Pu (237Np)

SOTA

ALTER

1.33x10'8 1.49x10'® 12.16
3.11x10%° 3.92x10% 25.84
2.99x 107! 3.21x10%! 7.53
1.15x 10" 1.77x 10" 54.54
1.14x 10" 2.08x 10" 81.83
2.56x10%° 4.32x10%° 68.74
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spectrum was optimized solely by dispersing nuclides within
the target, without modifying the reactor design, which is an
advantage from the engineering viewpoint. However, many
nuclides are unstable and extremely expensive, which makes
them difficult to use in practical engineering applications.
Therefore, it is recommended that readily available nuclides
or natural elements be adopted to develop neutron spectrum
regulation schemes in practical engineering.
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