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Abstract

The study of uranium isotopes plays a crucial role in advancing our knowledge of nuclear physics, particularly in the realm
of isospin and exotic nuclei. This study focused on the ground-state properties of uranium isotopes ranging from A = 203
to A = 305. The key physical quantities examined included binding energy, quadrupole deformation, isotopic displacement,
single-particle energy levels, and nucleon density distributions. Recent experimental advancements in uranium isotope
studies have emphasized the indispensable role of theoretical models in interpreting experimental data. Moreover, the
industrial applications of uranium—especially in nuclear energy production and weapons development—underscore the
importance and necessity of accurate theoretical insights. The framework of the finite-range droplet model (FRDM) was
utilized for comparative analysis because its predictions closely align with the experimental results. Through an analysis of
the single-particle energy levels and continuous-state occupancy, this study identified 27U as the proton drip line nucleus.
This research not only deepens our understanding of uranium isotopes but also provides a solid theoretical foundation to

guide future experimental investigations.
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1 Introduction

Exploration of the mass and charge limits of atomic nuclei is
a fundamental challenge in nuclear physics. With advance-
ments in heavy-ion accelerators and advanced detection
systems, the synthesis of new superheavy elements, such
as element 119, following the discovery of element 118,
has gained significant attention [1-6]. These efforts are cru-
cial not only for extending the periodic table but also for
deepening our understanding of nuclear shell structures.
The stability of heavy elements is intricately linked to the
arrangement of protons and neutrons, and many nuclear
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structure theories, from the shell model proposed by Mayer
and Jensen [7] to modern microscopic approaches, have
sought to predict these configurations, particularly the magic
numbers.

A key element in the study of nuclear structures is the
concept of "magic numbers." Magic numbers are specific
numbers of nucleons (protons or neutrons) that result in
highly stable atomic nuclei due to the closed shells in the
nuclear structure, analogous to the electron shells in atoms.
Historically, the classic magic numbers have been identified
as 2, 8, 20, 28, 50, 82, and 126. However, recent theoretical
advances and experimental observations have revealed the
existence of new magic numbers, particularly in superheavy
regions and exotic nuclei. For example, various nuclear
models, such as the Skyrme—Hartree—Fock and relativistic
continuum Hartree-Bogoliubov models [8], predict differ-
ent sets of magic numbers beyond traditional ones. These
include proton numbers Z = 114, 120, and 126 and neutron
numbers N = 172, 184, and 198 [9, 10], which are expected
to enhance the stability of superheavy nuclei. Moreover,
recent research by Rydin [11] suggested additional magic
numbers based on a geometrical packing approach, which
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implies new magic numbers such as Z =90, 100, and 118, as
well as neutron numbers such as N = 58, 68, and 76. These
findings indicate that the landscape of magic numbers is far
more nuanced than previously thought and that the concept
of magicity continues to evolve as new experimental data
become available.

Recently, the study of uranium isotopes has played an
essential role in both theoretical and applied nuclear physics.
Uranium is pivotal for nuclear energy and weapons applica-
tions and serves as a potential starting point for synthesiz-
ing superheavy nuclei [12] through nuclear decay pathways.
Understanding the uranium isotope chain, particularly in
terms of ground-state properties such as binding energy,
deformation, and density distributions, provides insights into
the broader aspects of nuclear stability and shell structure.

Recent experimental advancements have significantly
contributed to the study of uranium isotopes, particularly
the synthesis and characterization of new neutron-deficient
isotopes such as 21°U. In 2015, a new isotope, >!3U, was pro-
duced using a complete fusion reaction involving ''W and
“0Ar, followed by the separation of the evaporation residues
using the gas-filled recoil separator SHANS. The identifica-
tion of 2!3U was based on energy—position—time correlations,
with an observed alpha-particle energy of 8.428 MeV and
a half-life of approximately 0.73 ms [13]. Similarly, experi-
ments have determined the properties of uranium, showing a
consistent trend in the a-decay behavior of neutron-deficient
uranium isotopes [14]. These experimental efforts, aided by
facilities such as the Heavy Ion Research Facility in Lanzhou
(HIRFL), provide essential data that validate theoretical pre-
dictions and extend our knowledge of the stability and decay
characteristics of heavy nuclei [15].

Theoretical advancements in nuclear physics have led
to the development of several models to describe atomic
nuclei, including first-principle methods [16—18], the shell
model [19-22], and density functional theory (DFT) [23,
24]. Among these, relativistic mean field (RMF) theory, a
variant of DFT, has proved to be a powerful tool for describ-
ing nuclear structures. The RMF theory incorporates rela-
tivistic effects, providing a more comprehensive description
of nucleon interactions and allowing for the prediction of
ground-state properties and magic numbers with notable
accuracy. Previous studies have shown that the RMF the-
ory, combined with the Bardeen—Cooper—Schrieffer (BCS)
approach to treat pairing correlations [25, 26], is effective
for describing the ground-state properties of isotopes near
the proton drip line.

Despite these advances, several challenges remain in
understanding the complete behavior of uranium isotopes,
particularly those near the proton drip line, where conven-
tional models face difficulties owing to the intricate interplay
between pairing forces and continuum effects. In this study,
we employed the RMF theory framework utilizing the TM1
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parameter set to systematically investigate the ground-state
properties of uranium isotopes ranging from A =204 to A =
305. Our work aims to provide new insights into the binding
energies, deformation characteristics, and proton drip line
behavior by comparing the RMF results with the finite-range
droplet model (FRDM) [27, 28] predictions.

This paper is organized as follows: In Sect. 2, we provide
a brief overview of RMF theory and its application in our
study. Section 3 presents our analysis of the ground-state
properties of the uranium isotopes. Section 4 discusses the
identification of proton drip line nuclei within the uranium
chain. Finally, in Sect. 5, we summarize the results and their
implications for future experimental and theoretical studies
in this field.

2 Methodology and theoretical framework
2.1 Relativistic mean fields

We used the Lagrangian density
L= II_/i{i)’”aM - M}y,
1 —
+ Ed”aaﬂa - U(o) — g, yy,0
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The first row of the nucleon terms, y;, is the wave func-
tion of a nucleon, where i represents a nucleon inside the
nucleus. The next three terms are the ¢ meson, @ meson,
and p meson terms. M, m,, m,, and m,, are the masses of
the nucleus and three mesons, respectively. g,, g, and &g,
are the coupling constants of the three mesons, respectively.
The values of the nonlinear potential U(c) for the o term [31]
and those of the meson and electromagnetic field tensors are
as follows:

1 1 1
U(o) = Em(,o2 + §g263 + Zg30'4, 2)

Q¥ = o'w" — 0" ",
RM" = ot p¥ — 0" p#, 3
F* = 9g"AY — 9"A¥.
The Dirac and Klein—Gordon equations were derived from
the Lagrangian density using the variational method. For the
numerical solution of these equations, an axially symmetric

harmonic oscillator was used as the basis for expanding the
wave function in cylindrical coordinates, allowing for the
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effective treatment of deformed nuclei. Initially, trial calcu-
lations were performed using N; = N, = 12 for the selection
of the major shell components representing the number of
oscillator shells for fermions and bosons. To improve the
accuracy of the results, the model parameters were later
refined to N; = N, = 20, the iteration limit was set to 1600,
and the error value was 107, which ensures a more precise
representation of the nucleon wave functions, especially in
the context of deformed nuclear systems (Table 1).

To further enhance the analysis, three parameter
sets—NL1, TM1, and NLSH—were utilized in this study.
Each set provides different values for the coupling con-
stants and meson masses, affecting the representation of
nuclear interactions and, consequently, nuclear structure
predictions. Specifically, the TM1 parameter set, widely
acknowledged for its effectiveness in ground-state property
calculations, was chosen as the primary model for most
calculations presented in this work. For investigations near
the proton drip line, comparisons were made among the
NL1, TM1, and NLSH sets to assess their respective accu-
racy and consistency in predicting the properties of exotic
nuclei. The parameters for each set are as follows [29-31]:

2.2 Ground-state properties

In the following, we outline the methods used to calculate
several important nuclear properties, including binding
energy, quadrupole deformation, continuum occupation
numbers (or single-particle energy levels), and nucleon
density distributions. The relationships and formulas used
were derived from a study by Gambhir et al. (1990) [32].
These calculations provide comprehensive insight into the
ground-state characteristics of uranium isotopes.

The average binding energy, an essential quantity for
determining nuclear stability, was obtained by integrating
the energy densities of the nucleons and meson fields. The
total binding energy was expressed as follows:

Table 1 Parameter sets used in RMF model: TM1, NL1, and NLSH

Parameter T™M1 NL1 NLSH

my (MeV) 511.198 492.25 526.059

m,, (MeV) 783.0 795.36 783.0

m, (MeV) 770.0 763.0 763.0

& 10.0289 10.138 10.4434

8o 12.6139 13.285 12.945

g, 4.6322 4.975 4.382

b —7.2325 x107* —6.9099 x10~* —6.9099x 104
c 0.6183 —5.4965 x1073 0.615

E(y v;,0,0° 0", A% v) = Ey + E, + E, + E,

part
“
+E. + Epi + Ecm —AM,

where E,, represents the kinetic energy of the nucleons.
E,, E, and E, represent the contributions from the interac-
tions mediated by the scalar meson field (¢ meson), vector
meson field (w meson), and isovector-vector meson field (p
meson), respectively, which are responsible for the effective
nuclear force between nucleons. E_ refers to the Coulomb
energy, accounting for the electrostatic repulsion between
protons. E ;. describes the pairing energy between the
nucleons, which is particularly important for maintaining
nuclear stability by minimizing the total energy. E,\, refers
to the center-of-mass correction energy, which ensures the
accuracy of the calculation by correcting for the spurious
motion of the center of mass.

The quadrupole deformation parameter was used to quan-
tify the shape of the nuclei. Deformation parameters were
calculated based on the quadrupole moment of the nucleus.

16_”—AR2/3 )

0=0,+0,=1/=

where R, = 1.2A'/3(fm). The quadrupole moments were
calculated using the following expressions:

an = <2r2P2(COS 0)>n, p= (212 - x2 - y2>n, p* (6)
For single-particle energy levels and continuum occupation
numbers, we used the BCS approach to account for pairing
correlations. The occupation number for each single-particle
state is given by

€ —A
no=v=ifjo 524 , )

€; represents the single-particle energy of the specific state
i. Ais the chemical potential ensuring particle number con-
servation, and A is the pairing gap, which quantifies the
strength of the pairing interaction between nucleons, such
as paired neutrons or protons. The coefficients y; and v,
denote the probability amplitudes for a single-particle state
i to be occupied or unoccupied, respectively, and they satisfy
yiz + ui2 =1L

RMF theory is an effective framework for describing
nuclear structures by considering the interactions between
nucleons mediated by various mesons. However, this alone
does not fully account for the pairing interactions between
nucleons, which play a significant role in determining the
stability and deformation properties of nuclei, particularly
in open-shell configurations. To address this, the BCS the-
ory [32, 33] was employed, as it allows for the effective
treatment of these pairing correlations and provides a more
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complete and accurate depiction of the nuclear ground-state
properties. This is especially important for heavy elements,
such as uranium, where pairing interactions influence many
key properties, including binding energy and deformation.
Many properties of the nucleus exhibit a parity depend-
ence, leading to distinct pair correlations between protons
and neutrons. The RMF approach used here incorporates
these pair interactions by employing the BCS theory as a
perturbative correction, specifically incorporating the effec-
tive pair force constants for protons and neutrons, given by

21 N-P
=2 (1-2=L
G A< 24 )

27(, N-P
G,==(1+3=5),
(1+45)

P A

where A is the mass number, and N and P represent the neu-
tron and proton numbers, respectively. In addition, in sys-
tems with an odd number of nucleons, one nucleon remains
unpaired, which can significantly affect pairing correlations.
Thus, the blocking method is an important complemen-
tary technique used when dealing with this case of odd-A
nuclei, which ensures that this unpaired nucleon is "frozen"
in its specific orbital, characterized by an energy level ¢,
thus preventing it from participating in the overall pairing
interaction [34].

Thus, the integration of BCS theory, blocking method,
and RMF theory forms a comprehensive framework for stud-
ying uranium isotopes. These methods allow for accurate
calculation of pairing interactions, single-particle energies,
and deformation parameters, which are essential for under-
standing both the stability and structural nuances of heavy
nuclei, including those near the proton drip line.

®)

3 Determination of drip line nucleus in U
isotope chain

To determine the proton drip line [35-37], we analyzed the
continuum-state occupation number of uranium isotopes
calculated with different relativistic mean field parameters:
NLI1, TM1, and NLSH. As depicted in Fig. 1, the contin-
uum-state occupation number shows distinct behavior for
different parameter sets. For isotopes with mass numbers
ranging from A =203 to A = 305, the occupation num-
ber generally remains low for mid-range isotopes, indicat-
ing bound systems. However, as shown in the figure, each
parameter set predicts a different mass number for the pro-
ton drip line nucleus. Specifically, the NL1 parameter set
identifies A = 210 as the proton drip line nucleus, whereas
the TM1 and NLSH parameter sets predict proton drip lines
at A =206 and A = 208, respectively. These differences
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Fig.1 (Color online) Continuum-state occupation number and drip
line of protons

highlight the sensitivity of drip line predictions to the choice
of interaction parameters.

In Fig. 2, the single-particle energy levels near the Fermi
surface of the drip line nuclei and their neighboring isotopes
are displayed for NL1, TM1, and NLSH parameters. These
energy level distributions illustrate that for nuclei at the pro-
ton drip line, the occupation of continuum states becomes
prominent, signifying their unbound nature. Thus, the proton
drip line kernels for the three parameter sets are 2°U(NL1),
205U(TM1), 27U(NLSH). Importantly, different results for
the three parameter sets reflect the sensitivity of the RMF
model to the choice of parameters. In the absence of defini-
tive experimental data, it is advisable to consider the results
from multiple parameter sets to form a more representative
prediction and acknowledge this uncertainty in the analysis.

To describe the region of nuclei with relatively more pro-
tons along the isotopic chain by applying the better param-
eter set NLSH, we consider the proton drip line nuclei as a
result of the calculation of the NLSH parameter set 207U.
For the NLSH parameter set, the analysis of 2°’U and 28U
reveals significant details regarding the occupation of energy
states near the Fermi surface. In 297U, the first positive-
energy state above the Fermi surface, identified as ;, has an
energy of 1.32 MeV and an occupation probability of 30.8%.
This suggests that a substantial fraction of protons occupies
an unbound state, indicating that 2°’U is at the proton drip
line for the NLSH parameter set. Conversely, for 2081, the
last proton resides in a negative-energy state, and the first
positive-energy state above the Fermi surface shows zero
occupancy and occupation probability. This clearly high-
lights the difference in the binding behavior between 297U
and 2%8U, confirming that 2°7U lies on the proton drip line,
whereas 28U remains bound and stable. This analysis pro-
vides further evidence of the NLSH parameter set’s balanced
approach in predicting the proton drip line by accurately
capturing the transition between bound and unbound states.
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As the occupation number of the continuum state fluctu-
ated significantly on the neutron-rich side of the uranium
isotopic chain, a distinct anomaly was observed compared
with the proton side. This anomaly is particularly evident at
mass numbers A = 277 and A = 278, where the continuum
occupation number exhibits an abrupt change from 0.99 to
3.38. This step-like transition suggests that the mean field
strength and pairing correlation strength are comparable
in magnitude for these nuclei. In such cases, treating pair-
ing correlations merely as perturbations is no longer valid
because their contribution is significant enough to substan-
tially influence nucleon dynamics. Consequently, pairing
correlations must be rigorously included in self-consistent
equations of motion rather than as a small correction.

The improper perturbative treatment of these pairing
effects leaves some neutron-rich nuclei in a state where the
last neutrons occupy continuum levels, which is unphysical
under these conditions and results in an incorrect represen-
tation of the binding properties of the nucleus occupying
continuum states. This implies that the pairing correlations
should be inherently included in the mean field framework,
as these correlations are essential for stabilizing the nuclear
system and determining the drip line. Therefore, the sharp
increase in the continuum occupation number at A = 277
and A = 278 cannot be interpreted accurately without con-
sistently incorporating these pairing correlations.

To further clarify the determination of the neutron drip
line, we analyzed the one-neutron separation energy S, and
the two-neutron separation energy S,,, as shown in Figs. 3
and 4. The experimental data were obtained from [38]. The
results indicate that for the last nuclei in the uranium chain,
neither the one-neutron nor the two-neutron separation ener-
gies exhibit a clear trend toward zero, which signifies a drip
line. Instead, the separation energies decreased gradually
without reaching a definitive cut-off, implying that these
nuclei were still marginally bound. This lack of a clear zero
crossing in the separation energies suggests that using only
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Fig.3 (Color online) One-neutron separation energy S, of U isotope
chains
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Fig. 4 Two-neutron separation energy S,, of U isotope chains

the S, and S, values is insufficient for precisely identifying
the neutron drip line.

4 Properties of ground state of nucleiin U
isotope chain

The average binding energies are presented in Fig. 5. It is
evident that our calculations are in good agreement with
the finite-range droplet model (FRDM) data, with the low-
est binding energy observed at the neutron magic number
N = 126. This agreement indicates that our chosen force
constants, treatment of pairing correlations, and implemen-
tation of the blocking method for odd-A nuclei provide a
reliable theoretical framework. Furthermore, our results
show that at N = 126 (corresponding to 2'3U) [39], the aver-
age binding energy reaches its maximum value. The bind-
ing energy of 23U calculated with our approach is notably
higher than that predicted by the FRDM, suggesting the
enhanced representativeness of our model.

The deformation of the uranium isotope chains is shown
in Fig. 6. The red line represents the finite-range drop-
let model (FRDM) predictions, whereas the black line

L —— RMF
—— FRDM

—— expertimental data

= 6.0}

Binding Energy per Nucleon

200 20 240 260 230 300
Mass Number A

Fig.5 (Color online) Binding energy per nucleon
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Fig.7 Isotope shifts r2(A) — r2(ref) for U isotope chain

corresponds to the relativistic mean field (RMF) calcula-
tions. A comparison reveals that, unlike the FRDM results,
the RMF model shows a smoother deformation [40] trend
without the abrupt changes observed at mass numbers
A = 284 — 296 This smoother trend suggests that the RMF
approach provides a more consistent representation of the
quadrupole deformation, particularly in regions where
spherical symmetry is expected. Additionally, the deforma-
tion pattern indicates that nuclei with mass numbers less
than A = 208 exhibit a prolate, elongated ellipsoidal shape,
whereas those between A = 208 — 228 are almost spherical
and exhibit very small deformations. Beyond A = 228, the
deformation alternates between prolate and spherical, except
at A = 256, where the deformation suddenly decreases to a
spherical shape. Throughout the isotopic chain, there are
no pronounced oblate or flat ellipsoidal shapes, and the few
negative deformation values can be interpreted as spheroidal
rather than strongly oblate shapes.

Using 28 a semi-magic nucleus, as a reference, we
analyzed the isotope shifts presented in Fig. 7. The data
exhibited a generally smooth increase, with noticeable flat-
tening for nuclei with mass numbers A = 247 to A = 256.

In nuclear physics, a "kink" in isotope shift data refers to
an abrupt change in the trend of nuclear charge radii as a
function of neutron number, typically occurring at neutron
magic numbers. This phenomenon has been observed in
rare-earth elements, where such kinks appear near neutron
magic numbers, indicating changes in nuclear structure and
stability [39, 41-46]

However, in our study of uranium isotopes, no evident
kink was observed at A = 218, which corresponds to the
neutron magic number N = 126. This absence suggests that
the expected shell closure effect at N = 126 does not mani-
fest prominently in the U isotope shift data. Consequently,
based on the isotope shift analysis alone, we cannot confirm
that A = 218 is a magic number nucleus. This finding is con-
sistent with those of similar studies [47, 48], indicating that
the manifestation of magic numbers can vary across different
elements and isotopic chains (Fig. 8).

The analysis of the neutron and proton density distribu-
tions along the major axes of uranium isotopes, including
205y, 206, and 23U, provides important insights into their
structural characteristics and deformation properties.

First, the density distributions of protons and neutrons are
generally centered around the nucleus, with a distinct peak
near the core. In all isotopes analyzed, the neutron density
extends further than the proton density, indicating the pres-
ence of a "neutron skin." The neutron skin, where neutrons
dominate the outer regions of the nucleus, is a common
feature of neutron-rich heavy nuclei and contributes to the
enhanced stability of these uranium isotopes. However, the
proton density is more concentrated toward the center, which
reflects the influence of Coulomb repulsion, pushing protons
inward to counterbalance their mutual repulsive forces.

Among the isotopes, 23U displayed the smallest defor-
mation, suggesting a nearly spherical shape, whereas
238U exhibited the largest deformation, characterized by
significant elongation along the major axis. 2¥U shows
intermediate deformations that can be described as prolate
and resembling elongated ellipsoids. The neutron skins in
these nuclei become more pronounced as the mass number
increases, which agrees with the increasing neutron-to-pro-
ton ratio [49].

These findings collectively emphasize the significance of
neutron excess and nuclear deformation in determining the
density profiles of uranium isotopes. The presence of neu-
tron skins in all the analyzed isotopes indicates that neutrons
dominate the periphery of these nuclei, which has important
implications for understanding nuclear stability, interaction
cross sections, and the behavior of these nuclei near the
dripline. RMF theory effectively captures these differences
in density distributions and provides a comprehensive pic-
ture of the underlying nuclear structure of heavy isotopes,
contributing to a better understanding of their stability and
deformation characteristics.
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5 Summary

We calculated the ground-state properties of nuclei in the
uranium isotope chain using the relativistic mean field
(RMF) theory, incorporating pairing correlations through the
Bardeen—Cooper—Schrieffer (BCS) approach. Our results,
which show good agreement with the finite-range drop-
let model (FRDM) data, particularly at the neutron magic
number N = 126 validate the robustness of our approach in
modeling the binding energies and deformation properties
of uranium isotopes. By analyzing the Fermi surface and
single-particle energy levels, we confirmed that U is a
proton dripline nucleus due to its continuum-state proton
occupancy, whereas 28U remains bound, highlighting the
precise identification of the dripline.

In the future, the continued development of RMF theory,
incorporating more advanced treatments of pairing and
beyond-mean-field effects, holds great promise for under-
standing the properties of nuclei near the dripline, particu-
larly for superheavy elements, which are crucial for prac-
tical applications, especially in nuclear fission processes
relevant to energy production and reactor safety. Addition-
ally, advancements in experimental facilities will be key
to validating theoretical predictions and exploring new
regions of the nuclear chart. The synergy between theoreti-
cal advancements and experimental verification will deepen
our understanding of nuclear structure, stability, and broader
implications for nuclear technology.
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