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Abstract
The study of uranium isotopes plays a crucial role in advancing our knowledge of nuclear physics, particularly in the realm 
of isospin and exotic nuclei. This study focused on the ground-state properties of uranium isotopes ranging from A = 203 
to A = 305. The key physical quantities examined included binding energy, quadrupole deformation, isotopic displacement, 
single-particle energy levels, and nucleon density distributions. Recent experimental advancements in uranium isotope 
studies have emphasized the indispensable role of theoretical models in interpreting experimental data. Moreover, the 
industrial applications of uranium—especially in nuclear energy production and weapons development—underscore the 
importance and necessity of accurate theoretical insights. The framework of the finite-range droplet model (FRDM) was 
utilized for comparative analysis because its predictions closely align with the experimental results. Through an analysis of 
the single-particle energy levels and continuous-state occupancy, this study identified 207 U as the proton drip line nucleus. 
This research not only deepens our understanding of uranium isotopes but also provides a solid theoretical foundation to 
guide future experimental investigations.
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1  Introduction

Exploration of the mass and charge limits of atomic nuclei is 
a fundamental challenge in nuclear physics. With advance-
ments in heavy-ion accelerators and advanced detection 
systems, the synthesis of new superheavy elements, such 
as element 119, following the discovery of element 118, 
has gained significant attention [1–6]. These efforts are cru-
cial not only for extending the periodic table but also for 
deepening our understanding of nuclear shell structures. 
The stability of heavy elements is intricately linked to the 
arrangement of protons and neutrons, and many nuclear 

structure theories, from the shell model proposed by Mayer 
and Jensen [7] to modern microscopic approaches, have 
sought to predict these configurations, particularly the magic 
numbers.

A key element in the study of nuclear structures is the 
concept of "magic numbers." Magic numbers are specific 
numbers of nucleons (protons or neutrons) that result in 
highly stable atomic nuclei due to the closed shells in the 
nuclear structure, analogous to the electron shells in atoms. 
Historically, the classic magic numbers have been identified 
as 2, 8, 20, 28, 50, 82, and 126. However, recent theoretical 
advances and experimental observations have revealed the 
existence of new magic numbers, particularly in superheavy 
regions and exotic nuclei. For example, various nuclear 
models, such as the Skyrme–Hartree–Fock and relativistic 
continuum Hartree–Bogoliubov models [8], predict differ-
ent sets of magic numbers beyond traditional ones. These 
include proton numbers Z = 114, 120, and 126 and neutron 
numbers N = 172, 184, and 198 [9, 10], which are expected 
to enhance the stability of superheavy nuclei. Moreover, 
recent research by Rydin [11] suggested additional magic 
numbers based on a geometrical packing approach, which 
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implies new magic numbers such as Z = 90, 100, and 118, as 
well as neutron numbers such as N = 58, 68, and 76. These 
findings indicate that the landscape of magic numbers is far 
more nuanced than previously thought and that the concept 
of magicity continues to evolve as new experimental data 
become available.

Recently, the study of uranium isotopes has played an 
essential role in both theoretical and applied nuclear physics. 
Uranium is pivotal for nuclear energy and weapons applica-
tions and serves as a potential starting point for synthesiz-
ing superheavy nuclei [12] through nuclear decay pathways. 
Understanding the uranium isotope chain, particularly in 
terms of ground-state properties such as binding energy, 
deformation, and density distributions, provides insights into 
the broader aspects of nuclear stability and shell structure.

Recent experimental advancements have significantly 
contributed to the study of uranium isotopes, particularly 
the synthesis and characterization of new neutron-deficient 
isotopes such as 215 U. In 2015, a new isotope, 215 U, was pro-
duced using a complete fusion reaction involving 180 W and 
40Ar, followed by the separation of the evaporation residues 
using the gas-filled recoil separator SHANS. The identifica-
tion of 215 U was based on energy–position–time correlations, 
with an observed alpha-particle energy of 8.428 MeV and 
a half-life of approximately 0.73 ms [13]. Similarly, experi-
ments have determined the properties of uranium, showing a 
consistent trend in the �-decay behavior of neutron-deficient 
uranium isotopes [14]. These experimental efforts, aided by 
facilities such as the Heavy Ion Research Facility in Lanzhou 
(HIRFL), provide essential data that validate theoretical pre-
dictions and extend our knowledge of the stability and decay 
characteristics of heavy nuclei [15].

Theoretical advancements in nuclear physics have led 
to the development of several models to describe atomic 
nuclei, including first-principle methods [16–18], the shell 
model [19–22], and density functional theory (DFT) [23, 
24]. Among these, relativistic mean field (RMF) theory, a 
variant of DFT, has proved to be a powerful tool for describ-
ing nuclear structures. The RMF theory incorporates rela-
tivistic effects, providing a more comprehensive description 
of nucleon interactions and allowing for the prediction of 
ground-state properties and magic numbers with notable 
accuracy. Previous studies have shown that the RMF the-
ory, combined with the Bardeen–Cooper–Schrieffer (BCS) 
approach to treat pairing correlations [25, 26], is effective 
for describing the ground-state properties of isotopes near 
the proton drip line.

Despite these advances, several challenges remain in 
understanding the complete behavior of uranium isotopes, 
particularly those near the proton drip line, where conven-
tional models face difficulties owing to the intricate interplay 
between pairing forces and continuum effects. In this study, 
we employed the RMF theory framework utilizing the TM1 

parameter set to systematically investigate the ground-state 
properties of uranium isotopes ranging from A = 204 to A = 
305. Our work aims to provide new insights into the binding 
energies, deformation characteristics, and proton drip line 
behavior by comparing the RMF results with the finite-range 
droplet model (FRDM) [27, 28] predictions.

This paper is organized as follows: In Sect. 2, we provide 
a brief overview of RMF theory and its application in our 
study. Section 3 presents our analysis of the ground-state 
properties of the uranium isotopes. Section 4 discusses the 
identification of proton drip line nuclei within the uranium 
chain. Finally, in Sect. 5, we summarize the results and their 
implications for future experimental and theoretical studies 
in this field.

2 � Methodology and theoretical framework

2.1 � Relativistic mean fields

We used the Lagrangian density

The first row of the nucleon terms, �i , is the wave func-
tion of a nucleon, where i represents a nucleon inside the 
nucleus. The next three terms are the � meson, � meson, 
and � meson terms. M, m� , m� , and m� are the masses of 
the nucleus and three mesons, respectively. g� , g� , and g� 
are the coupling constants of the three mesons, respectively. 
The values of the nonlinear potential U(�) for the � term [31] 
and those of the meson and electromagnetic field tensors are 
as follows:

The Dirac and Klein–Gordon equations were derived from 
the Lagrangian density using the variational method. For the 
numerical solution of these equations, an axially symmetric 
harmonic oscillator was used as the basis for expanding the 
wave function in cylindrical coordinates, allowing for the 
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effective treatment of deformed nuclei. Initially, trial calcu-
lations were performed using Nf = Nb = 12 for the selection 
of the major shell components representing the number of 
oscillator shells for fermions and bosons. To improve the 
accuracy of the results, the model parameters were later 
refined to Nf = Nb = 20 , the iteration limit was set to 1600, 
and the error value was 10−7 , which ensures a more precise 
representation of the nucleon wave functions, especially in 
the context of deformed nuclear systems (Table 1).

To further enhance the analysis, three parameter 
sets—NL1, TM1, and NLSH—were utilized in this study. 
Each set provides different values for the coupling con-
stants and meson masses, affecting the representation of 
nuclear interactions and, consequently, nuclear structure 
predictions. Specifically, the TM1 parameter set, widely 
acknowledged for its effectiveness in ground-state property 
calculations, was chosen as the primary model for most 
calculations presented in this work. For investigations near 
the proton drip line, comparisons were made among the 
NL1, TM1, and NLSH sets to assess their respective accu-
racy and consistency in predicting the properties of exotic 
nuclei. The parameters for each set are as follows [29–31]:

2.2 � Ground‑state properties

In the following, we outline the methods used to calculate 
several important nuclear properties, including binding 
energy, quadrupole deformation, continuum occupation 
numbers (or single-particle energy levels), and nucleon 
density distributions. The relationships and formulas used 
were derived from a study by Gambhir et al. (1990) [32]. 
These calculations provide comprehensive insight into the 
ground-state characteristics of uranium isotopes.

The average binding energy, an essential quantity for 
determining nuclear stability, was obtained by integrating 
the energy densities of the nucleons and meson fields. The 
total binding energy was expressed as follows:

where Epart represents the kinetic energy of the nucleons. 
E� , E� and E� represent the contributions from the interac-
tions mediated by the scalar meson field ( � meson), vector 
meson field ( � meson), and isovector-vector meson field ( � 
meson), respectively, which are responsible for the effective 
nuclear force between nucleons. Ec refers to the Coulomb 
energy, accounting for the electrostatic repulsion between 
protons. Epair describes the pairing energy between the 
nucleons, which is particularly important for maintaining 
nuclear stability by minimizing the total energy. EAM refers 
to the center-of-mass correction energy, which ensures the 
accuracy of the calculation by correcting for the spurious 
motion of the center of mass.

The quadrupole deformation parameter was used to quan-
tify the shape of the nuclei. Deformation parameters were 
calculated based on the quadrupole moment of the nucleus.

where R0 = 1.2A1∕3(fm). The quadrupole moments were 
calculated using the following expressions:

For single-particle energy levels and continuum occupation 
numbers, we used the BCS approach to account for pairing 
correlations. The occupation number for each single-particle 
state is given by

�i represents the single-particle energy of the specific state 
i. � is the chemical potential ensuring particle number con-
servation, and Δ is the pairing gap, which quantifies the 
strength of the pairing interaction between nucleons, such 
as paired neutrons or protons. The coefficients �i and �i 
denote the probability amplitudes for a single-particle state 
i to be occupied or unoccupied, respectively, and they satisfy 
�2
i
+ �2

i
= 1.

RMF theory is an effective framework for describing 
nuclear structures by considering the interactions between 
nucleons mediated by various mesons. However, this alone 
does not fully account for the pairing interactions between 
nucleons, which play a significant role in determining the 
stability and deformation properties of nuclei, particularly 
in open-shell configurations. To address this, the BCS the-
ory [32, 33] was employed, as it allows for the effective 
treatment of these pairing correlations and provides a more 
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Table 1   Parameter sets used in RMF model: TM1, NL1, and NLSH

Parameter TM1 NL1 NLSH

m� (MeV) 511.198 492.25 526.059
m� (MeV) 783.0 795.36 783.0
m� (MeV) 770.0 763.0 763.0
g� 10.0289 10.138 10.4434
g� 12.6139 13.285 12.945
g� 4.6322 4.975 4.382
b −7.2325 ×10−4 −6.9099 ×10−4 −6.9099×10−4

c 0.6183 −5.4965 ×10−5 0.615
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complete and accurate depiction of the nuclear ground-state 
properties. This is especially important for heavy elements, 
such as uranium, where pairing interactions influence many 
key properties, including binding energy and deformation.

Many properties of the nucleus exhibit a parity depend-
ence, leading to distinct pair correlations between protons 
and neutrons. The RMF approach used here incorporates 
these pair interactions by employing the BCS theory as a 
perturbative correction, specifically incorporating the effec-
tive pair force constants for protons and neutrons, given by

where A is the mass number, and N and P represent the neu-
tron and proton numbers, respectively. In addition, in sys-
tems with an odd number of nucleons, one nucleon remains 
unpaired, which can significantly affect pairing correlations. 
Thus, the blocking method is an important complemen-
tary technique used when dealing with this case of odd-A 
nuclei, which ensures that this unpaired nucleon is "frozen" 
in its specific orbital, characterized by an energy level �k 
thus preventing it from participating in the overall pairing 
interaction [34].

Thus, the integration of BCS theory, blocking method, 
and RMF theory forms a comprehensive framework for stud-
ying uranium isotopes. These methods allow for accurate 
calculation of pairing interactions, single-particle energies, 
and deformation parameters, which are essential for under-
standing both the stability and structural nuances of heavy 
nuclei, including those near the proton drip line.

3 � Determination of drip line nucleus in U 
isotope chain

To determine the proton drip line [35–37], we analyzed the 
continuum-state occupation number of uranium isotopes 
calculated with different relativistic mean field parameters: 
NL1, TM1, and NLSH. As depicted in Fig. 1, the contin-
uum-state occupation number shows distinct behavior for 
different parameter sets. For isotopes with mass numbers 
ranging from A = 203 to A = 305 , the occupation num-
ber generally remains low for mid-range isotopes, indicat-
ing bound systems. However, as shown in the figure, each 
parameter set predicts a different mass number for the pro-
ton drip line nucleus. Specifically, the NL1 parameter set 
identifies A = 210 as the proton drip line nucleus, whereas 
the TM1 and NLSH parameter sets predict proton drip lines 
at A = 206 and A = 208 , respectively. These differences 
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highlight the sensitivity of drip line predictions to the choice 
of interaction parameters.

In Fig. 2, the single-particle energy levels near the Fermi 
surface of the drip line nuclei and their neighboring isotopes 
are displayed for NL1, TM1, and NLSH parameters. These 
energy level distributions illustrate that for nuclei at the pro-
ton drip line, the occupation of continuum states becomes 
prominent, signifying their unbound nature. Thus, the proton 
drip line kernels for the three parameter sets are 209U(NL1), 
205U(TM1), 207U(NLSH). Importantly, different results for 
the three parameter sets reflect the sensitivity of the RMF 
model to the choice of parameters. In the absence of defini-
tive experimental data, it is advisable to consider the results 
from multiple parameter sets to form a more representative 
prediction and acknowledge this uncertainty in the analysis.

To describe the region of nuclei with relatively more pro-
tons along the isotopic chain by applying the better param-
eter set NLSH, we consider the proton drip line nuclei as a 
result of the calculation of the NLSH parameter set 207 U. 
For the NLSH parameter set, the analysis of 207 U and 208 U 
reveals significant details regarding the occupation of energy 
states near the Fermi surface. In 207 U, the first positive-
energy state above the Fermi surface, identified as 1

2

+
 , has an 

energy of 1.32 MeV and an occupation probability of 30.8%. 
This suggests that a substantial fraction of protons occupies 
an unbound state, indicating that 207 U is at the proton drip 
line for the NLSH parameter set. Conversely, for 208 U, the 
last proton resides in a negative-energy state, and the first 
positive-energy state above the Fermi surface shows zero 
occupancy and occupation probability. This clearly high-
lights the difference in the binding behavior between 207 U 
and 208 U, confirming that 207 U lies on the proton drip line, 
whereas 208 U remains bound and stable. This analysis pro-
vides further evidence of the NLSH parameter set’s balanced 
approach in predicting the proton drip line by accurately 
capturing the transition between bound and unbound states.

Fig. 1   (Color online) Continuum-state occupation number and drip 
line of protons
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Fig. 2   Energy levels near Fermi surface of dripline nuclei for NL1, TM1, and NLSH parameters. a Single-particle energy levels of 205 U and 206 U 
for TM1; b Single-particle energy levels of 207 U and 208 U for NLSH; c Single-particle energy levels of 209 U and 210 U for NL1
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As the occupation number of the continuum state fluctu-
ated significantly on the neutron-rich side of the uranium 
isotopic chain, a distinct anomaly was observed compared 
with the proton side. This anomaly is particularly evident at 
mass numbers A = 277 and A = 278 , where the continuum 
occupation number exhibits an abrupt change from 0.99 to 
3.38. This step-like transition suggests that the mean field 
strength and pairing correlation strength are comparable 
in magnitude for these nuclei. In such cases, treating pair-
ing correlations merely as perturbations is no longer valid 
because their contribution is significant enough to substan-
tially influence nucleon dynamics. Consequently, pairing 
correlations must be rigorously included in self-consistent 
equations of motion rather than as a small correction.

The improper perturbative treatment of these pairing 
effects leaves some neutron-rich nuclei in a state where the 
last neutrons occupy continuum levels, which is unphysical 
under these conditions and results in an incorrect represen-
tation of the binding properties of the nucleus occupying 
continuum states. This implies that the pairing correlations 
should be inherently included in the mean field framework, 
as these correlations are essential for stabilizing the nuclear 
system and determining the drip line. Therefore, the sharp 
increase in the continuum occupation number at A = 277 
and A = 278 cannot be interpreted accurately without con-
sistently incorporating these pairing correlations.

To further clarify the determination of the neutron drip 
line, we analyzed the one-neutron separation energy Sn and 
the two-neutron separation energy S2n , as shown in Figs. 3 
and 4. The experimental data were obtained from [38]. The 
results indicate that for the last nuclei in the uranium chain, 
neither the one-neutron nor the two-neutron separation ener-
gies exhibit a clear trend toward zero, which signifies a drip 
line. Instead, the separation energies decreased gradually 
without reaching a definitive cut-off, implying that these 
nuclei were still marginally bound. This lack of a clear zero 
crossing in the separation energies suggests that using only 

the Sn and S2n values is insufficient for precisely identifying 
the neutron drip line.

4 � Properties of ground state of nuclei in U 
isotope chain

The average binding energies are presented in Fig. 5. It is 
evident that our calculations are in good agreement with 
the finite-range droplet model (FRDM) data, with the low-
est binding energy observed at the neutron magic number 
N = 126 . This agreement indicates that our chosen force 
constants, treatment of pairing correlations, and implemen-
tation of the blocking method for odd-A nuclei provide a 
reliable theoretical framework. Furthermore, our results 
show that at N = 126 (corresponding to 218 U) [39], the aver-
age binding energy reaches its maximum value. The bind-
ing energy of 218 U calculated with our approach is notably 
higher than that predicted by the FRDM, suggesting the 
enhanced representativeness of our model.

The deformation of the uranium isotope chains is shown 
in Fig. 6. The red line represents the finite-range drop-
let model (FRDM) predictions, whereas the black line 

Fig. 3   (Color online) One-neutron separation energy Sn of U isotope 
chains

Fig. 4   Two-neutron separation energy S2n of U isotope chains

Fig. 5   (Color online) Binding energy per nucleon
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corresponds to the relativistic mean field (RMF) calcula-
tions. A comparison reveals that, unlike the FRDM results, 
the RMF model shows a smoother deformation [40] trend 
without the abrupt changes observed at mass numbers 
A = 284 − 296 This smoother trend suggests that the RMF 
approach provides a more consistent representation of the 
quadrupole deformation, particularly in regions where 
spherical symmetry is expected. Additionally, the deforma-
tion pattern indicates that nuclei with mass numbers less 
than A = 208 exhibit a prolate, elongated ellipsoidal shape, 
whereas those between A = 208 − 228 are almost spherical 
and exhibit very small deformations. Beyond A = 228 , the 
deformation alternates between prolate and spherical, except 
at A = 256 , where the deformation suddenly decreases to a 
spherical shape. Throughout the isotopic chain, there are 
no pronounced oblate or flat ellipsoidal shapes, and the few 
negative deformation values can be interpreted as spheroidal 
rather than strongly oblate shapes.

Using 218 U, a semi-magic nucleus, as a reference, we 
analyzed the isotope shifts presented in Fig. 7. The data 
exhibited a generally smooth increase, with noticeable flat-
tening for nuclei with mass numbers A = 247 to A = 256 . 

In nuclear physics, a "kink" in isotope shift data refers to 
an abrupt change in the trend of nuclear charge radii as a 
function of neutron number, typically occurring at neutron 
magic numbers. This phenomenon has been observed in 
rare-earth elements, where such kinks appear near neutron 
magic numbers, indicating changes in nuclear structure and 
stability [39, 41–46]

However, in our study of uranium isotopes, no evident 
kink was observed at A = 218 , which corresponds to the 
neutron magic number N = 126 . This absence suggests that 
the expected shell closure effect at N = 126 does not mani-
fest prominently in the U isotope shift data. Consequently, 
based on the isotope shift analysis alone, we cannot confirm 
that A = 218 is a magic number nucleus. This finding is con-
sistent with those of similar studies [47, 48], indicating that 
the manifestation of magic numbers can vary across different 
elements and isotopic chains (Fig. 8).

The analysis of the neutron and proton density distribu-
tions along the major axes of uranium isotopes, including 
205 U, 206 U, and 238 U, provides important insights into their 
structural characteristics and deformation properties.

First, the density distributions of protons and neutrons are 
generally centered around the nucleus, with a distinct peak 
near the core. In all isotopes analyzed, the neutron density 
extends further than the proton density, indicating the pres-
ence of a "neutron skin." The neutron skin, where neutrons 
dominate the outer regions of the nucleus, is a common 
feature of neutron-rich heavy nuclei and contributes to the 
enhanced stability of these uranium isotopes. However, the 
proton density is more concentrated toward the center, which 
reflects the influence of Coulomb repulsion, pushing protons 
inward to counterbalance their mutual repulsive forces.

Among the isotopes, 205 U displayed the smallest defor-
mation, suggesting a nearly spherical shape, whereas 
238 U exhibited the largest deformation, characterized by 
significant elongation along the major axis. 238 U shows 
intermediate deformations that can be described as prolate 
and resembling elongated ellipsoids. The neutron skins in 
these nuclei become more pronounced as the mass number 
increases, which agrees with the increasing neutron-to-pro-
ton ratio [49].

These findings collectively emphasize the significance of 
neutron excess and nuclear deformation in determining the 
density profiles of uranium isotopes. The presence of neu-
tron skins in all the analyzed isotopes indicates that neutrons 
dominate the periphery of these nuclei, which has important 
implications for understanding nuclear stability, interaction 
cross sections, and the behavior of these nuclei near the 
dripline. RMF theory effectively captures these differences 
in density distributions and provides a comprehensive pic-
ture of the underlying nuclear structure of heavy isotopes, 
contributing to a better understanding of their stability and 
deformation characteristics.

Fig. 6   (Color online) Deformation of nuclei in chain of uranium iso-
topes for 20 shells

Fig. 7   Isotope shifts r2
c
(A) − r2

c
(ref) for U isotope chain
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Fig. 8   (Color online) Density distribution of neutrons and protons
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5 � Summary

We calculated the ground-state properties of nuclei in the 
uranium isotope chain using the relativistic mean field 
(RMF) theory, incorporating pairing correlations through the 
Bardeen–Cooper–Schrieffer (BCS) approach. Our results, 
which show good agreement with the finite-range drop-
let model (FRDM) data, particularly at the neutron magic 
number N = 126 validate the robustness of our approach in 
modeling the binding energies and deformation properties 
of uranium isotopes. By analyzing the Fermi surface and 
single-particle energy levels, we confirmed that 207 U is a 
proton dripline nucleus due to its continuum-state proton 
occupancy, whereas 208 U remains bound, highlighting the 
precise identification of the dripline.

In the future, the continued development of RMF theory, 
incorporating more advanced treatments of pairing and 
beyond-mean-field effects, holds great promise for under-
standing the properties of nuclei near the dripline, particu-
larly for superheavy elements, which are crucial for prac-
tical applications, especially in nuclear fission processes 
relevant to energy production and reactor safety. Addition-
ally, advancements in experimental facilities will be key 
to validating theoretical predictions and exploring new 
regions of the nuclear chart. The synergy between theoreti-
cal advancements and experimental verification will deepen 
our understanding of nuclear structure, stability, and broader 
implications for nuclear technology.
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