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Abstract
�-ray-induced X-ray spectroscopy (BIXS) is a promising technique for tritium analysis that offers several unique advantages, 
including substantial detection depth, nondestructive testing capabilities, and ease of operation. For thin solid tritium-con-
taining samples with substrates, the currently used BIXS analysis method can measure the tritium depth profile and content 
when the sample thickness is known. In this study, a backpropagation (BP) neural network algorithm was used to predict the 
tritium content and thickness of a thin solid tritium-containing sample with substrates and a uniformly distributed tritium 
profile. A semi-analytical method was used to generate datasets for training and testing the BP neural network. A dataset 
of �-decay X-ray spectra from 420 tritium-containing zirconium models with different known thicknesses and tritium-to-
zirconium ratios was used as the input data. The corresponding zirconium thicknesses and tritium-to-zirconium ratios served 
as the output for training and testing the BP neural network. The mean relative errors (MREs) of the zirconium thickness in 
the training and test datasets were 0.56% and 0.42%, respectively, whereas the MREs of the tritium-to-zirconium ratio were 
0.59% and 0.38%, respectively. Furthermore, the trained BP neural network demonstrates excellent predictive capability 
across various levels of statistical uncertainty. For the experimental �-decay X-ray spectra of two tritium-containing sam-
ples, the predicted zirconium thicknesses and tritium-to-zirconium ratios showed good agreement with the results obtained 
through the elastic backscattering spectrometry (EBS).

Keywords  Tritium analysis · �-ray induced X-ray · Uniformly distributed tritium · Unknown thickness · Semi-analytical · 
Back propagation neural network

1  Introduction

Nondestructive detection techniques are widely used to 
measure the tritium content and its distribution. Tritium 
nondestructive detection techniques mainly include � 

particle counting [1], elastic backscattering spectrometry 
(EBS) [2], calorimetry [3], imaging plate analysis [4], and 
� decay-induced X-ray spectroscopy (BIXS) [5–11]. � par-
ticle counting and imaging plate analysis can only provide 
information on the surface distribution of tritium, while 
calorimetry can only determine the total tritium content; 
none of these methods can obtain tritium depth profiles. In 
contrast, EBS can obtain tritium depth profiles and tritium 
contents but requires large equipment, such as an accelerator. 
BIXS measures tritium depth profiles and tritium content 
by detecting X-rays produced by electrons resulting from 
tritium � decay in materials. This method has several notable 
advantages, including a large detection depth, nondestructive 
testing capabilities, and ease of operation [12]. BIXS analy-
sis methods can be classified into analytical BIXS method 
[5] and Monte Carlo (MC)-based methods [9]. The analyti-
cal method proposed by Matsuyama [5] in 1998 was based 
on empirical formulas and did not consider the complicated 
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transport processes of electrons and photons in materi-
als. However, MC BIXS, introduced by An et al. [9], uses 
Monte Carlo simulations (i.e., the PENELOPE code [13]) 
to model the tritium �-decay X-ray spectra and combines 
the simulated and experimental spectra to obtain tritium 
depth profiles and contents [14, 15]. Although MC BIXS 
is more accurate owing to its consideration of the complex 
geometry and electron and photon transport in materials, it 
is time-consuming and requires sufficient statistical accuracy 
in the simulated X-ray spectra. Therefore, we developed a 
semi-analytical BIXS method that combines MC simulations 
with analytical calculations [16]. This approach offers a 73 
times improvement in computational efficiency compared to 
MC BIXS and simultaneously maintains high accuracy, for 
example, the difference in tritium content obtained by the 
semi-analytical BIXS and MC BIXS for the same tritium-
containing sample was only 0.82% [16].

For thin solid tritium-containing samples with substrates, 
which were the type of samples often encountered in the 
application of BIXS [14, 15], the present BIXS methods 
required prior knowledge of the thickness of the sample, and 
the details of the BIXS analysis have been described in Refs 
[14, 15]. The sample thickness needed in BIXS analysis is 
often obtained by weighing during sample preparation or 
by EBS. Currently, in the practical application of BIXS for 
sample testing, a need has been proposed by the BIXS user; 
that is, without prior knowledge of the sample’s thickness, 
the tritium content and sample thickness can be obtained 
simultaneously using BIXS for a thin solid tritium-contain-
ing sample with a substrate.

In some cases, a good linear relationship between tritium 
content and X-ray intensities can be obtained [17, 18]; for 
example, Matsuyama et al. discovered that the intensities of 
characteristic X-rays Ar(K�) exhibited a strong linear cor-
relation with the total tritium content in tritium-containing 
graphite plates [17]; therefore, the tritium content can be 
derived from the X-ray intensities by interpolation. However, 
for thin solid tritium-containing samples with substrates, dif-
ferent combinations of sample thickness and tritium content 
can yield identical X-ray intensities, making it impossible to 
simultaneously determine both the thickness of the sample 
and the tritium content through simple interpolation. In such 
cases, the shape of the X-ray spectrum must be considered. 
First, we studied the case in which tritium was uniformly 
distributed in the sample. To simultaneously obtain both 
the thickness and tritium content of a uniformly distributed 
tritium sample, in this study, we propose a reconstruction 
approach for BIXS based on an artificial neural network 
(ANN) algorithm, in which a large dataset must be con-
structed to train the ANN; the fast semi-analytical model 
developed by us [16] to calculate the X-ray spectrum of 
the tritium-containing sample allows it to build a training 
dataset. An ANN is highly fault-tolerant, fast, and scalable, 

with excellent parallel processing capabilities [19–22]. ANN 
have been widely applied in nuclear science and technol-
ogy, including in neutron spectrum unfolding [23], nuclear 
power plant dynamic behavior prediction [24], nuclear spec-
tral analysis [25], and Rutherford backscattering spectrum 
analysis [26–29].

The backpropagation (BP) neural network developed 
by Rumelhart et al. [30] is a specific implementation of an 
ANN, particularly for training multilayer feed-forward net-
works. It consists of an input layer, hidden layers, and an 
output layer, with the neurons in each layer fully connected 
only to adjacent neurons. The simple structure and stability 
of a BP neural network render it effective for high-precision 
nonlinear fitting [31–35]. BP networks have been success-
fully applied to tasks, such as simple classification [36], neu-
tron spectrum resolution [37], nuclide identification [38], 
and pulse shape discrimination [39]. Most recently, Zhao 
et al. [40] used a BP neural network to reconstruct tritium 
depth profiles in materials in a simulation study of BIXS, 
with the analysis depth limited to 20 μm for a sample of 
1 mm thick (i.e., equivalent to a semi-infinite sample).

The remainder of this paper is organized as follows: Sec-
tion 2 introduces the methods used in this work, including 
the construction of the tritium �-decay X-ray spectra for BP 
network training and the construction process of the BP net-
work. Section 3 presents and discusses the results, including 
the detailed optimization process, test, and generalizability 
of the BIXS BP network. The application of the BIXS BP 
network to experimental X-ray spectra is discussed. Finally, 
Sect. 4 concludes the paper.

2 � Methods

2.1 � Semi‑analytical BIXS X‑ray spectrum

A large dataset of BIXS spectra is required to train the ANN, 
including the X-ray spectra induced by electrons from � 
decays of tritium in the sample, corresponding tritium depth 
profiles, and sample thicknesses. In this study, the semi-
analytical model developed in Ref. [16] for calculating the 
X-ray spectrum of tritium-containing sample was employed 
to generate the dataset. The experimental setup of the BIXS, 
based on a silicon drift detector (SDD), is shown in Fig-
ure 1 and identical to the setup described in detail in [16]. A 
5.01 μm-thick aluminum film was used as the �-ray stopping 
layer, and tritium-containing samples (i.e., zirconium films 
in this study) were supported by 1 mm-thick molybdenum 
substrates.

To calculate the X-ray spectrum of the tritium-con-
taining sample using the semi-analytical model, inter-
nal bremsstrahlung (IB), external bremsstrahlung (EB), 
and characteristic X-rays were considered. The detailed 
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calculation process is described in Refs. [16], and a brief 
description is provided here. The total X-ray fluence, which 
is the differential in the photon energy k per � electron from 
tritium decay per solid angle, can be expressed by the fol-
lowing formula [16]:

where NCH(k, Ω̂𝛾 ;Z) , NEB(k, Ω̂𝛾 ;Z) , and NIB(k, Ω̂𝛾 ;Z) repre-
sent the corresponding fluences of the characteristic X-rays, 
EB photons, and IB photons, respectively, and H(k, Ω̂𝛾 ) is 
the attenuation of X-rays in the filters (i.e., the Be window 
and Si dead layer). Z is the atomic number, Ω̂𝛾 is the emis-
sion direction of the photons. The depth distributions of 
characteristic X-rays in materials were simulated using the 
modified MC PENEPMA code [41] and used to calculate 
the NCH(k, Ω̂𝛾 ;Z) . The electron distributions in materials, 
including both energy and angular distributions, were simu-
lated with the modified MC PENELOPE code [13] and used 
to calculate the NEB(k, Ω̂𝛾 ;Z) , which can be determined as 
follows [16]:

(1)

NTOT(k, Ω̂𝛾 ;Z) = H(k, Ω̂𝛾 )×(
NCH(k, Ω̂𝛾 ;Z)+

NIB(k, Ω̂𝛾 ;Z) + NEB(k, Ω̂𝛾 ;Z)
)
,

(2)

NEB(k, Ω̂𝛾 ;Z)

= n∫
Dz

0

ds∫
Emax

k

dE ∫
dΩ̂eN

e(Dz,E, Ω̂e;Z)

×
d2𝜎br(k, Ω̂𝛾 ⋅ Ω̂e;Z,E)

dkdΩ̂𝛾

f (Dz, k, Ω̂𝛾 ;Z),

where Emax is the maximum kinetic energy of electrons from 
tritium �-decay, Ne(Dz,E, Ω̂e;Z) is the electron distributions 
in materials with energy E moving in the direction Ω̂e at 
depth Dz generated by an electron from tritium �-decay, n is 
the atomic or molecular density with a unit of number of 
atoms or molecules per cubic centimeter, f (Dz, k, Ω̂𝛾 ;Z) is 
the self-absorption of the target, d

2𝜎br(k,Ω̂𝛾 ⋅Ω̂e;Z,E)

dkdΩ̂𝛾

 is the double 

differential bremsstrahlung cross sections [42, 43]:

where mec
2 is the electron rest energy, S is the shape func-

tion of the bremsstrahlung angular distribution, the Kissel-
Quarles-Pratt (KQP) [44] theory was used in this work, and 
� is the scaled cross-section differential in k. The other sym-
bols have the same definitions as those in Eqs. 1 and 2. The 
Knipp-Uhlenbeck-Bloch (KUB) model proposed by Knipp 
and Uhlenbeck [45] and Bloch [46] was used to calculate 
NIB(k, Ω̂𝛾 ;Z) . Each X-ray spectrum consists of 200 energy 
bins at interval of 0.093 keV.

2.2 � Construction of BP network dataset

A total of 420 tritium-containing zirconium samples of 
different thicknesses and tritium-to-zirconium ratios were 
used to generate a dataset of tritium �-decay X-ray spec-
tra. The zirconium thicknesses before absorbing tritium 
ranged between 3 μ m and 5 μ m, with the assumption that 
tritium was uniformly distributed throughout the sample. 

(3)

d
2𝜎br(k, Ω̂𝛾 ⋅ Ω̂e;Z,E)

dkdΩ̂𝛾

= 𝜒
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Fig. 1   The geometrical model 
for the BIXS setup X-ray Detector

1563.88 μm
Be

35 mm
Al

Fe Fe
1160 μm

Sample

5.01μm

7.5 μm

Φ=3.03 mm

Φ=18 mm

Φ= 3460.12 μm

2.1 mm

Si
Si Dead Layer

Φ =4763.8 μm

306.7 μm

0.5023 mm
150 nm

225
μm

"。

X-ray DetectorΦ= 2.76 mm

Tritium-Containing SampleΦ=16 mm

Mo

Sample

1 mm

Al

Ti

Cr

W

Al

Ti

Cr

W

Φ= 2386.36 μm

Φ =4763.8 μm

75 μm
15 μm

35 μm

100 μm

Multilayer Collimator

Multilayer Collimator



	 H. Huang et al.172  Page 4 of 12

The zirconium thickness was divided into 21 groups with 
an interval of 0.1 μ m, whereas the tritium-to-zirconium ratio 
ranged from 0.1 to 2, divided into 20 groups with an interval 
of 0.1. The time required by the semi-analytical method to 
obtain a tritium �-decay X-ray spectrum for each combi-
nation of sample thickness and tritium-to-zirconium ratio 
was approximately 1 h [16]. Thus, the total time required to 
obtain 420 X-ray spectra is approximately 19 d [16]. From 
Ref. [16], it is noted that the semi-analytical X-ray spectra 
were expressed in unit of “counts per keV per � decay”. To 
ensure consistency between the semi-analytical and experi-
mental spectra, the unit of the semi-analytical spectra was 
converted to the unit of the experimental spectra, that is, 
counts per keV per second, based on the number of tritium 
atom decays, NT , within a unit time t:

where NZr is the number of zirconium atoms, R is the tritium-
to-zirconium ratio, and T is the half-life of tritium (approxi-
mately 12.25 years.) The semi-analytical X-ray spectra were 
convoluted using the Gaussian response function of the SDD 
[47]. The full width at half maximum (FWHM) of the SDD 
in the BIXS experimental setup was 185 eV at 5.89 keV, as 
measured using a standard Fe-55 radioactive source:

where W is the average energy for electron–hole creation 
( 3.62 eV), F is Fano factor (0.12), E is the X-ray energy, 
△Eelec is the electronic noise ( 141.55 eV), and � is the 
standard deviation of the Gaussian distribution. Figure 2 
shows the semi-analytical tritium � decay X-ray spectra 
before and after convolution for a sample with a zirconium 
thickness of 3 μ m and a tritium-to-zirconium ratio of 0.1.

2.3 � Construction of BP network

Figure 3 illustrates the structure of a backpropagation (BP) 
network designed to predict the zirconium thickness and trit-
ium-to-zirconium ratio. The structure consists of three lay-
ers: input, hidden, and output layers. The number of hidden 
layers shown in this figure differs from that of the optimized 
configuration adopted for our application. Only the energy 
region of the X-ray spectrum between 1 keV and 15 keV 
was used to train the BP neural network to avoid noise in 
the low-energy region and poor statistics in the high-energy 
region of the experimental X-ray spectrum. The input layer 
consisted of 150 neurons, corresponding to 150 energy bins 
of the tritium � decay X-ray spectrum in the 1 keV–15 keV 
range. The output layer contains two neurons that represent 
the zirconium thickness and tritium-to-zirconium ratio. To 
enhance the accuracy and computational efficiency of the 

(4)NT = NZr × R ×
(
1 − exp

(
−
ln 2 × t

T

))
,

(5)FWHM =

�
8WFE ln 2 +△E2

elec
= 2

√
2 ln 2�,

neural network model, a scaling transformation of the input 
and output data were performed [26], and the �-decay X-ray 
spectra were treated as follows:

where C(k) and C1(k) are the photon counts with energy k 
before and after processing, respectively. The thickness of 
zirconium was divided by 10 and the tritium-to-zirconium 
ratio was normalized as follows:

where Ni and Nin are the actual and scaled tritium-to-zirco-
nium ratios, respectively. Nmin is the minimum tritium-to-
zirconium ratio (e.g., 0.1) and Nmax is the maximum tritium-
to-zirconium ratio (e.g., 2.0).

The network was implemented and trained in Python 3.7 
using the PyTorch library [48], with the error backpropa-
gation algorithm employed for training. The mean squared 
error (MSE) [49] was used as the loss function, which was 
commonly used in regression tasks. It is calculated by sum-
ming the squared differences between the predicted and true 
values.

(6)C1(k) =
log10(C(k))

10
,

(7)Nin =
Ni − Nmin

Nmax − Nmin

,

(8)MSE =
1

m

m∑

i=1

(yi − ŷi)
2,

Fig. 2   Tritium semi-analytical �-decay X-ray spectrum before and 
after convolution for a sample with a zirconium thickness of  3 μ m 
and a tritium-to-zirconium ratio of 0.1. Bremsstrahlung and Al K, Zr 
L, and Fe K represent the bremsstrahlung plus Al K-shell characteris-
tic X-ray, Zr L-shell characteristic X-ray, and Fe K-shell characteristic 
X-ray, respectively
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where yi and ŷi represent the true and predicted values, 
respectively, and m is the number of yi . With the same learn-
ing rate, the AdamW optimizer [50] consistently demon-
strated faster convergence and smaller test errors. Currently, 
AdamW has been widely adopted and selected as the optimi-
zation algorithm for the BIXS neural network structure. The 
training process was repeated five times, resulting in five 
individual ANNs to evaluate the precision in terms of repro-
ducibility. This yielded the MSE values for the two ANN 
outputs ( tritium-to-zirconium ratio and zirconium thick-
ness). The training and testing datasets were randomly split 
in a ratio of 0.8:0.2. The training process was performed 
iteratively to optimize network parameters, such as weights 
and biases, allowing for accurate pattern recognition and 
feature extraction. An iteration is referred to as an “epoch”, 

indicating that the neural network processes the entire train-
ing dataset once. The number of epochs was set to 10,000.

3 � Results and discussion

3.1 � Optimization of BP network structure

To select the optimal network structure, the numbers of hid-
den layers and neurons were optimized. To achieve nonlinear 
transformations, the ReLU activation function [51] was used 
for all the hidden layers. Table 1 shows the MSEs as func-
tions of the numbers of hidden layers and neurons. From the 
results in Table 1, it can be observed that when the number 
of neurons exceeds 10, the MSEs tend to decrease as the 

Fig. 3   The structure of BP 
network used to predict the zir-
conium thickness and tritium-
to-zirconium ratio

Input:
BIXS X-ray Spectrum

…
…

…

Zr Thickness

Tritium-to-Zr Ratio

Input Layer Hidden Layer Output Layer

Output:

…
…

…
…

Table 1   MSEs as a function of 
the number of hidden layers and 
neurons

Hidden layers Number of neurons

10 30 50 70 100 150

Training 1 7.43×10−3 4.75×10−4 3.82×10−4 2.59×10−4 1.68×10−4 1.15×10−4

2 4.43×10−4 7.75×10−5 4.53×10−5 3.48×10−5 2.48×10−5 2.18×10−5

3 5.57×10−3 3.64×10−5 1.79×10−5 1.74×10−5 1.36×10−5 1.02×10−5

5 6.56×10−5 1.80×10−5 1.26×10−5 6.83×10−6 6.54×10−6 4.06×10−6

7 9.48×10−5 1.44×10−5 9.07×10−6 8.35×10−6 8.54×10−6 6.40×10−6

10 1.88×10−3 1.31×10−5 1.91×10−5 3.74×10−5 3.74×10−5 1.28×10−5

Test 1 7.07×10−3 4.33×10−4 3.28×10−4 2.01×10−4 1.23×10−4 8.39×10−5

2 3.93×10−4 6.04×10−5 3.80×10−5 2.74×10−5 1.91×10−5 1.73×10−5

3 4.66×10−3 3.20×10−5 1.46×10−5 1.41×10−5 1.16×10−5 1.00×10−5

5 6.61×10−5 1.66×10−5 1.08×10−5 5.99×10−6 7.70×10−6 6.45×10−6

7 8.71×10−5 1.29×10−5 9.72×10−6 8.77×10−6 7.70×10−6 6.45×10−6

10 2.09×10−3 1.21×10−5 2.08×10−5 3.23×10−5 3.23×10−5 1.16×10−5
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number of hidden layers and neurons increases. When the 
number of hidden layers was between 2 and 10, and the num-
ber of neurons was between 30 and 150, the MSEs of the 
neural network for predicting the zirconium target thickness 
and tritium-to-zirconium ratio became small, ranging from 
approximately 5.99×10−6 to 7.75×10−5.

To simplify the neural-network structure while maintain-
ing a low MSE, we selected a relatively simple five-layer 
neural network with three hidden layers, each containing 150 
neurons. The total MSEs for the training and testing data-
sets were 1.02×10−5 and 1.00×10−5 , respectively. The mean 
relative errors (MREs) [52] for the zirconium thickness 
and tritium-to-zirconium ratio in the training dataset of the 
neural network were 0.56 and 0.42%, respectively, whereas 
those in the test dataset, the MREs were 0.59 and 0.38%, 
respectively. The MRE [52] was calculated as follows:

where the definitions of yi , ŷi and m are identical to those 
in 8.

3.2 � Optimization of activation functions

In this study, the activation functions used in the hidden 
layers were optimized. To simplify the optimization pro-
cess, the same activation function (i.e., ReLU [51], sigmoid 
[53], or tanh [54]) was applied to all the hidden layers. 
Table 2 shows the MSEs of the BP network for different 
activation functions in the hidden layers. It can be observed 
that the MSEs vary with the choice of activation function. 
We selected the activation function that resulted in the best 
MSE, i.e., the ReLU function. The MSEs for the training 
and test datasets are 1.02×10−5 and 1.00×10−5 , respectively.

Figure 4 presents the MSEs of the BP network for both 
the training and test datasets as a function of the num-
ber of epochs. It can be observed that the BIXS neural 
network converged rapidly, with sufficient convergence 
achieved within 2000 iterations. Moreover, the MSEs for 
both datasets exhibited minimal divergence as the num-
ber of epochs increased, indicating that overfitting did 
not occur during training. Figure 5 presents the MREs 
of the training dataset and test dataset for each training 
period. For the tritium-to-zirconium ratio and zirconium 

(9)MRE =
1

m

m∑

i=1

|
yi − ŷi

yi
|,

thickness, the MRE differences obtained from each train-
ing were considerably small, indicating the good stability 
of the system. Figure 6 shows a comparison between the 
true and predicted values for the zirconium thickness and 
tritium-to-zirconium ratio for all 420 sets of data. Excel-
lent predictions were obtained with the true and predicted 
values in close agreement. The MREs for the 420 datasets 
used to train and test the BP network are listed in Table 3.

3.3 � Effect of statistical uncertainty

The experimental BIXS X-ray spectrum may exhibit var-
ying degrees of statistical uncertainty, which can affect 
the prediction accuracy. To assess the effect of statisti-
cal uncertainty, the uncertainties ranging from 0.5 to 3% 
were randomly with Gaussian distribution added to the 
84 sets of test data of X-ray spectra, which were randomly 
selected from the 420 data, as described in the section “C. 
Construction of BP network”. Figure 7 compares the true 
and predicted values for the 84 sets of test data without 
statistical uncertainty. It can be observed that the true and 
predicted results are in close agreement. Table 4 lists the 
MREs for 84 sets of test data under different levels of 
uncertainty. The results demonstrate that uncertainty can 
affect the accuracy of neural network predictions to some 
extent. Generally, the greater the uncertainty, the larger 
the relative error in the prediction result. When the statis-
tical uncertainty of the test set is 3%, the neural network 
maintains higher prediction accuracy for both zirconium 
thickness and the tritium-to-zirconium ratio, with average 
relative errors of 5.48% and 5.08%, respectively.

Table 2   MSEs of the BP network for different activation functions in 
the hidden layers

Parameters ReLU Tanh Sigmoid

MSE for training 1.02×10−5 3.71×10−5 1.62×10−5

MSE for test 1.00×10−5 3.01×10−5 1.31×10−5

Fig. 4   The MSEs of the BP network for both the training and test 
datasets as a function of the number of epochs
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3.4 � Generalizability of BP network

Additional 22 sets of data, with the zirconium thicknesses 
outside the BP network training range from 3 μ m to 5 μ m, 

were used to preliminarily test the generalization ability 
of the BP neural network (i.e., the capability of extrapola-
tion). The zirconium thicknesses and tritium-to-zirconium 
ratios for the 22 datasets are listed in Table 5, and the 
MREs of the predicted results are listed in Table 6. From 
Table 6, it can be observed that the BP neural network 
demonstrates good prediction capability, even for the data-
set outside the training range. For the 22 sets of data, the 
MREs of the predicted zirconium thicknesses and tritium-
to-zirconium ratios are 7.61 and 9.33%, respectively. For a 
dataset outside the training parameter range, the prediction 

Fig. 5   The MREs of the train-
ing dataset and the test dataset 
in each repeated training

Fig. 6   Comparison between the true and predicted values of a zirconium thickness and b tritium-to-zirconium ratio for all 420 sets of data

Table 3   MREs for the 420 sets of data used to train and test the BP-
network

Parameters Training (%) Test (%)

Zirconium thickness 0.56 0.59
Tritium-to-Zirconium ratio 0.42 0.38
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accuracy of the neural network decreases, which is consist-
ent with the conclusion in Ref. [27].

3.5 � Application of BIXS BP neural network

3.5.1 � Sample

Two tritium-containing samples were prepared, labeled No. 
26 and No. 42, in which zirconium films were deposited 
onto smooth molybdenum substrates (approximately 1 mm 
thick) using the electron beam evaporation technique. The 
processes for preparing the tritium-containing samples are 
the same as those described in Refs.[15, 55].

The thicknesses of the zirconium films and the tritium 
depth profiles of samples 26 and 42 were measured using the 
elastic backscattering spectrometry (EBS) method. The EBS 
experiment was conducted using a 3 MV tandetron accelera-
tor at Sichuan University [56]. The incident proton energy 
was 3 MeV with a current intensity of approximately 2 nA. 
The proton beams impacted the sample surface vertically, 
and a Si detector (ORTEC U-012-050-100) was placed at 
165° with respect to the proton beam direction. The experi-
mental details are presented in Refs.[15].

The experimental spectra of the EBS were analyzed using 
the SIMNRA program [57] with the same processes as in 
Refs.[14, 15] The parameters used in SIMNRA were consist-
ent with those in Ref. [15]. The uncertainties for the tritium 
contents and zirconium thicknesses obtained using the EBS 
were approximately 11.7% and 5%, respectively, mainly aris-
ing from uncertainties in the proton elastic scattering cross-
section data, stopping power, and statistical uncertainties 
[14, 15]. For example, Figure 8 shows the EBS experimental 
spectrum and SIMNRA simulation for sample 26, where the 
tritium distribution in the SIMNRA simulation was assumed 
to be uniform. The background spectrum was obtained by 

Fig. 7   Comparison between the true and predicted values of a zirconium thickness and b tritium-to-zirconium ratio for the 84 sets of test data 
without statistical uncertainty

Table 4   MREs for the 84 sets of test data under the different levels of 
uncertainty

Relative uncertainties 
(%)

Zr thickness (%) Tritium-
to-Zr ratio 
(%)

0 0.59 0.38
0.5 1.20 1.09
1 1.85 1.64
1.5 3.32 2.48
2 3.44 3.15
3 5.48 5.08

Table 5   Zirconium thicknesses and tritium-to-zirconium ratios of the 
22 sets of data used to test the generalization of the BP neural net-
work

Tritium-to-Zr ratio (Zirconium thickness ( μm))

0.2 (1.5) 0.5 (5.5) 1.5 (1.5) 1.63 (5.5)
0.2 (1.7) 0.5 (6.0) 1.5 (1.8) 1.63 (6.0)
0.2 (2.2) 0.5 (6.5) 1.5 (2.0) 1.63 (6.5)
0.2 (2.4) 0.5 (6.8) 1.5 (2.3) 1.63 (6.8)
0.2 (2.8) 0.5 (7.0) 1.5 (2.5) 1.63 (7.0)
1.0 (2.5) 1.5 (5.5)

Table 6   MREs for the 22 sets of data used to test the generalization 
of the BP neural network

Prediction parameters MRE (%)

Zirconium thickness 7.61
Tritium-to-Zirconium ratio 9.33
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measuring a hydrogen-containing Zr film sample with a Mo 
substrate, whose geometric dimensions and hydrogen iso-
tope-zirconium ratio were approximately the same as those 
of samples 26 and 42; the EBS experimental conditions 
were the same. The experimental net tritium spectrum was 
obtained by deducting the background spectrum from the 
experimental spectrum of the tritium-containing samples. 
The measured results are summarized in Table 7. The EBS 
results indicate that the tritium distributions for samples 26 
and 42 were uniform.

3.5.2 � Predictions of BP network

The experimental BIXS spectra of samples 26 and 42 were 
obtained using the same experimental setup as in Refs.
[14, 15] and corrected for the signal pile-up effect by using 
Monte Carlo method [15], as shown in Figure 9. Correc-
tions for the pile-up effect were less than 1%. The trained 
BP neural network was used to analyze the experimental 
BIXS spectra after correcting for the intrinsic detection 
efficiency of the SDD. The predicted values of the zirco-
nium thicknesses and tritium-to-zirconium ratios are listed 
in Table 7. The predicted tritium-to-zirconium ratios have 
been converted to the tritium-to-zirconium ratios on the day 
of the EBS experiment.

For sample 26, the predicted zirconium thickness is 1.60 
μm , which deviates by 2.43% from the EBS result, whereas 
for sample 42, the predicted zirconium thickness is 1.63 μ m, 
showing a 5.23% difference compared to the EBS result. The 

predicted tritium-to-zirconium ratios for samples 26 and 42 
are 1.85 and 1.91, with the relative deviations of 1.07% and 
2.14% relative to the EBS results, respectively.

Considering that the predicted values from the BP neural 
network are consistent with the measured results from the 
EBS within experimental uncertainties, we can conclude 
that the BP neural network can be used to predict the thick-
nesses and tritium contents simultaneously with higher accu-
racy for thin solid tritium-containing samples with substrates 
and uniform tritium distribution. Previously, we employed 
the MC BIXS method for tritium analysis, which required 
prior information about the sample thickness, and its accu-
racy was affected by the reconstruction algorithm [9, 14, 
15, 58, 59]. However, the present BIXS BP neural network 
approach overcomes the difficulties inherent in traditional 
regularization BIXS analysis methods.

4 � Summary

In this study, an artificial neural network (ANN) algorithm 
was employed to predict the tritium content and thickness 
of thin solid tritium-containing samples with substrates and 
uniform tritium distributions. The semi-analytical method 
developed earlier for calculating the X-ray spectrum for trit-
ium-containing samples was used to generate the dataset for 
training and testing the BIXS BP neural network. The neu-
ral network was optimized in several aspects, including the 
number of hidden layers, neurons, and activation function.

Fig. 8   The experimental spec-
trum of EBS and the SIMNRA 
simulation for sample 26. The 
normalized simulation spectrum 
represents the simulation spec-
trum that was normalized to the 
experimental tritium counts (see 
the text for other details)
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The well-trained BIXS BP neural network delivers 
accurate predictions for the parameters (i.e., the zirconium 
thickness and tritium-to-zirconium ratio) within the training 
range as well as demonstrates strong prediction performance 
outside the training range. For the thickness of zirconium, 
the MREs for the training dataset and test dataset are 0.56 
and 0.59%, respectively. For the tritium-to-zirconium ratio, 
the MREs for the training dataset and test dataset are 0.42% 
and 0.38%, respectively. For parameters outside the training 
range, the MREs for the zirconium thickness and tritium-
to-zirconium ratio are 7.61% and 9.33%, respectively. The 
trained BP neural network shows excellent predictive capa-
bility across various levels of statistical uncertainty.

The BIXS BP neural network successfully predicted the 
zirconium thicknesses and tritium-to-zirconium ratios from 
the experimental X-ray spectra obtained in BIXS experi-
ments using two tritium-containing samples with substrates 
and uniform tritium distributions, which were in good agree-
ment with the EBS results. This work demonstrates the 
applicability of the BP neural network in the BIXS method 

for analyzing thin solid samples with substrates and uniform 
tritium distributions without the need for prior knowledge 
of sample thicknesses.
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