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Abstract

p-ray-induced X-ray spectroscopy (BIXS) is a promising technique for tritium analysis that offers several unique advantages,
including substantial detection depth, nondestructive testing capabilities, and ease of operation. For thin solid tritium-con-
taining samples with substrates, the currently used BIXS analysis method can measure the tritium depth profile and content
when the sample thickness is known. In this study, a backpropagation (BP) neural network algorithm was used to predict the
tritium content and thickness of a thin solid tritium-containing sample with substrates and a uniformly distributed tritium
profile. A semi-analytical method was used to generate datasets for training and testing the BP neural network. A dataset
of f-decay X-ray spectra from 420 tritium-containing zirconium models with different known thicknesses and tritium-to-
zirconium ratios was used as the input data. The corresponding zirconium thicknesses and tritium-to-zirconium ratios served
as the output for training and testing the BP neural network. The mean relative errors (MREs) of the zirconium thickness in
the training and test datasets were 0.56% and 0.42%, respectively, whereas the MREs of the tritium-to-zirconium ratio were
0.59% and 0.38%, respectively. Furthermore, the trained BP neural network demonstrates excellent predictive capability
across various levels of statistical uncertainty. For the experimental f-decay X-ray spectra of two tritium-containing sam-
ples, the predicted zirconium thicknesses and tritium-to-zirconium ratios showed good agreement with the results obtained
through the elastic backscattering spectrometry (EBS).

Keywords Tritium analysis - f-ray induced X-ray - Uniformly distributed tritium - Unknown thickness - Semi-analytical -
Back propagation neural network

1 Introduction

Nondestructive detection techniques are widely used to
measure the tritium content and its distribution. Tritium
nondestructive detection techniques mainly include f
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particle counting [1], elastic backscattering spectrometry
(EBS) [2], calorimetry [3], imaging plate analysis [4], and
p decay-induced X-ray spectroscopy (BIXS) [5-11]. f par-
ticle counting and imaging plate analysis can only provide
information on the surface distribution of tritium, while
calorimetry can only determine the total tritium content;
none of these methods can obtain tritium depth profiles. In
contrast, EBS can obtain tritium depth profiles and tritium
contents but requires large equipment, such as an accelerator.
BIXS measures tritium depth profiles and tritium content
by detecting X-rays produced by electrons resulting from
trittum f decay in materials. This method has several notable
advantages, including a large detection depth, nondestructive
testing capabilities, and ease of operation [12]. BIXS analy-
sis methods can be classified into analytical BIXS method
[5] and Monte Carlo (MC)-based methods [9]. The analyti-
cal method proposed by Matsuyama [5] in 1998 was based
on empirical formulas and did not consider the complicated
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transport processes of electrons and photons in materi-
als. However, MC BIXS, introduced by An et al. [9], uses
Monte Carlo simulations (i.e., the PENELOPE code [13])
to model the tritium f-decay X-ray spectra and combines
the simulated and experimental spectra to obtain tritium
depth profiles and contents [14, 15]. Although MC BIXS
is more accurate owing to its consideration of the complex
geometry and electron and photon transport in materials, it
is time-consuming and requires sufficient statistical accuracy
in the simulated X-ray spectra. Therefore, we developed a
semi-analytical BIXS method that combines MC simulations
with analytical calculations [16]. This approach offers a 73
times improvement in computational efficiency compared to
MC BIXS and simultaneously maintains high accuracy, for
example, the difference in tritium content obtained by the
semi-analytical BIXS and MC BIXS for the same tritium-
containing sample was only 0.82% [16].

For thin solid tritium-containing samples with substrates,
which were the type of samples often encountered in the
application of BIXS [14, 15], the present BIXS methods
required prior knowledge of the thickness of the sample, and
the details of the BIXS analysis have been described in Refs
[14, 15]. The sample thickness needed in BIXS analysis is
often obtained by weighing during sample preparation or
by EBS. Currently, in the practical application of BIXS for
sample testing, a need has been proposed by the BIXS user;
that is, without prior knowledge of the sample’s thickness,
the tritium content and sample thickness can be obtained
simultaneously using BIXS for a thin solid tritium-contain-
ing sample with a substrate.

In some cases, a good linear relationship between tritium
content and X-ray intensities can be obtained [17, 18]; for
example, Matsuyama et al. discovered that the intensities of
characteristic X-rays Ar(Ka) exhibited a strong linear cor-
relation with the total tritium content in tritium-containing
graphite plates [17]; therefore, the tritium content can be
derived from the X-ray intensities by interpolation. However,
for thin solid tritium-containing samples with substrates, dif-
ferent combinations of sample thickness and tritium content
can yield identical X-ray intensities, making it impossible to
simultaneously determine both the thickness of the sample
and the tritium content through simple interpolation. In such
cases, the shape of the X-ray spectrum must be considered.
First, we studied the case in which tritium was uniformly
distributed in the sample. To simultaneously obtain both
the thickness and tritium content of a uniformly distributed
tritium sample, in this study, we propose a reconstruction
approach for BIXS based on an artificial neural network
(ANN) algorithm, in which a large dataset must be con-
structed to train the ANN; the fast semi-analytical model
developed by us [16] to calculate the X-ray spectrum of
the tritium-containing sample allows it to build a training
dataset. An ANN is highly fault-tolerant, fast, and scalable,
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with excellent parallel processing capabilities [19-22]. ANN
have been widely applied in nuclear science and technol-
ogy, including in neutron spectrum unfolding [23], nuclear
power plant dynamic behavior prediction [24], nuclear spec-
tral analysis [25], and Rutherford backscattering spectrum
analysis [26-29].

The backpropagation (BP) neural network developed
by Rumelhart et al. [30] is a specific implementation of an
ANN, particularly for training multilayer feed-forward net-
works. It consists of an input layer, hidden layers, and an
output layer, with the neurons in each layer fully connected
only to adjacent neurons. The simple structure and stability
of a BP neural network render it effective for high-precision
nonlinear fitting [31-35]. BP networks have been success-
fully applied to tasks, such as simple classification [36], neu-
tron spectrum resolution [37], nuclide identification [38],
and pulse shape discrimination [39]. Most recently, Zhao
et al. [40] used a BP neural network to reconstruct tritium
depth profiles in materials in a simulation study of BIXS,
with the analysis depth limited to 20 pm for a sample of
1 mm thick (i.e., equivalent to a semi-infinite sample).

The remainder of this paper is organized as follows: Sec-
tion 2 introduces the methods used in this work, including
the construction of the tritium f-decay X-ray spectra for BP
network training and the construction process of the BP net-
work. Section 3 presents and discusses the results, including
the detailed optimization process, test, and generalizability
of the BIXS BP network. The application of the BIXS BP
network to experimental X-ray spectra is discussed. Finally,
Sect. 4 concludes the paper.

2 Methods
2.1 Semi-analytical BIXS X-ray spectrum

A large dataset of BIXS spectra is required to train the ANN,
including the X-ray spectra induced by electrons from f
decays of tritium in the sample, corresponding tritium depth
profiles, and sample thicknesses. In this study, the semi-
analytical model developed in Ref. [16] for calculating the
X-ray spectrum of tritium-containing sample was employed
to generate the dataset. The experimental setup of the BIXS,
based on a silicon drift detector (SDD), is shown in Fig-
ure | and identical to the setup described in detail in [16]. A
5.01 pm-thick aluminum film was used as the f-ray stopping
layer, and tritium-containing samples (i.e., zirconium films
in this study) were supported by 1 mm-thick molybdenum
substrates.

To calculate the X-ray spectrum of the tritium-con-
taining sample using the semi-analytical model, inter-
nal bremsstrahlung (IB), external bremsstrahlung (EB),
and characteristic X-rays were considered. The detailed
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calculation process is described in Refs. [16], and a brief
description is provided here. The total X-ray fluence, which
is the differential in the photon energy k per f electron from
tritium decay per solid angle, can be expressed by the fol-
lowing formula [16]:

N™T(k, &,:2) = H(k, ,)x
CH o
(N (k,Q,:7)+ W

NEGK Q,57) + NP (K, ©,2) ),

where Nk, Q,:2), N¥B(k,Q,:Z), and N'B(k,Q,:Z) repre-
sent the corresponding fluences of the characteristic X-rays,
EB photons, and IB photons, respectively, and H(k, f)y) is
the attenuation of X-rays in the filters (i.e., the Be window
and Si dead layer). Z is the atomic number, Qy is the emis-
sion direction of the photons. The depth distributions of
characteristic X-rays in materials were simulated using the
modified MC PENEPMA code [41] and used to calculate
the NCH(k, Qy :Z). The electron distributions in materials,
including both energy and angular distributions, were simu-
lated with the modified MC PENELOPE code [13] and used
to calculate the NEB(k, Qy :Z), which can be determined as
follows [16]:

N™(k,$,:2)

Dz Emax
=n/ ds/ dE/
0 k

dON°(Dz, E, §,:7) @
&0, (k. Q, - Q.;Z, E)
X A
dkdQ,

f(Dz,k,Q,:Z),

where E,, is the maximum kinetic energy of electrons from
tritium f-decay, N°(Dz, E, fze;Z) is the electron distributions
in materials with energy £ moving in the direction Qe at
depth Dz generated by an electron from tritium f-decay, n is
the atomic or molecular density with a unit of number of

atoms or molecules per cubic centimeter, f(Dz,k, QY;Z) is

. o, (k,Q,-Q,ZE) .
the self-absorption of the target, % is the double
14

differential bremsstrahlung cross sections [42, 43]:
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where m,c? is the electron rest energy, S is the shape func-
tion of the bremsstrahlung angular distribution, the Kissel-
Quarles-Pratt (KQP) [44] theory was used in this work, and
 is the scaled cross-section differential in k. The other sym-
bols have the same definitions as those in Eqs. 1 and 2. The
Knipp-Uhlenbeck-Bloch (KUB) model proposed by Knipp
and Uhlenbeck [45] and Bloch [46] was used to calculate
NB(k, Qy :Z). Each X-ray spectrum consists of 200 energy
bins at interval of 0.093 keV.

2.2 Construction of BP network dataset

A total of 420 tritium-containing zirconium samples of
different thicknesses and tritium-to-zirconium ratios were
used to generate a dataset of tritium f-decay X-ray spec-
tra. The zirconium thicknesses before absorbing tritium
ranged between 3 pm and 5 pm, with the assumption that
tritium was uniformly distributed throughout the sample.
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The zirconium thickness was divided into 21 groups with
an interval of 0.1 pm, whereas the tritium-to-zirconium ratio
ranged from 0.1 to 2, divided into 20 groups with an interval
of 0.1. The time required by the semi-analytical method to
obtain a tritium f-decay X-ray spectrum for each combi-
nation of sample thickness and tritium-to-zirconium ratio
was approximately 1 h [16]. Thus, the total time required to
obtain 420 X-ray spectra is approximately 19 d [16]. From
Ref. [16], it is noted that the semi-analytical X-ray spectra
were expressed in unit of “counts per keV per f decay”. To
ensure consistency between the semi-analytical and experi-
mental spectra, the unit of the semi-analytical spectra was
converted to the unit of the experimental spectra, that is,
counts per keV per second, based on the number of tritium
atom decays, Ny, within a unit time #:

NT=NZr><R><<1—exp(—anTXt)>, )
where N, is the number of zirconium atoms, R is the tritium-
to-zirconium ratio, and 7 is the half-life of tritium (approxi-
mately 12.25 years.) The semi-analytical X-ray spectra were
convoluted using the Gaussian response function of the SDD
[47]. The full width at half maximum (FWHM) of the SDD
in the BIXS experimental setup was 185 eV at 5.89 keV, as
measured using a standard Fe-55 radioactive source:

FWHM = \[SWFEIn2 + AE =2V2In2o, s)

where W is the average energy for electron—hole creation
(3.62 eV), F is Fano factor (0.12), E is the X-ray energy,
A\E,.. is the electronic noise ( 141.55 eV), and o is the
standard deviation of the Gaussian distribution. Figure 2
shows the semi-analytical tritium g decay X-ray spectra
before and after convolution for a sample with a zirconium
thickness of 3 pm and a tritium-to-zirconium ratio of 0.1.

2.3 Construction of BP network

Figure 3 illustrates the structure of a backpropagation (BP)
network designed to predict the zirconium thickness and trit-
ium-to-zirconium ratio. The structure consists of three lay-
ers: input, hidden, and output layers. The number of hidden
layers shown in this figure differs from that of the optimized
configuration adopted for our application. Only the energy
region of the X-ray spectrum between 1 keV and 15 keV
was used to train the BP neural network to avoid noise in
the low-energy region and poor statistics in the high-energy
region of the experimental X-ray spectrum. The input layer
consisted of 150 neurons, corresponding to 150 energy bins
of the tritium f decay X-ray spectrum in the 1 keV-15 keV
range. The output layer contains two neurons that represent
the zirconium thickness and tritium-to-zirconium ratio. To
enhance the accuracy and computational efficiency of the
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Fig.2 Tritium semi-analytical f-decay X-ray spectrum before and
after convolution for a sample with a zirconium thickness of 3 pm
and a tritium-to-zirconium ratio of 0.1. Bremsstrahlung and Al K, Zr
L, and Fe K represent the bremsstrahlung plus Al K-shell characteris-
tic X-ray, Zr L-shell characteristic X-ray, and Fe K-shell characteristic
X-ray, respectively

neural network model, a scaling transformation of the input
and output data were performed [26], and the f-decay X-ray
spectra were treated as follows:

log,,(C(k))

Clth) = ———.

(6)
where C(k) and C1(k) are the photon counts with energy k
before and after processing, respectively. The thickness of
zirconium was divided by 10 and the tritium-to-zirconium
ratio was normalized as follows:

Nin — ]V—min’ (7)

max N, min

where N, and N,, are the actual and scaled tritium-to-zirco-
nium ratios, respectively. N, is the minimum tritium-to-
zirconium ratio (e.g., 0.1) and N,,,, is the maximum tritium-
to-zirconium ratio (e.g., 2.0).

The network was implemented and trained in Python 3.7
using the PyTorch library [48], with the error backpropa-
gation algorithm employed for training. The mean squared
error (MSE) [49] was used as the loss function, which was
commonly used in regression tasks. It is calculated by sum-
ming the squared differences between the predicted and true
values.

ax

1 o
MSE = — ¥ (v, — $)%,
201~ ®)
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where y; and y,; represent the true and predicted values, indicating that the neural network processes the entire train-
respectively, and m is the number of y,. With the same learn-  ing dataset once. The number of epochs was set to 10,000.

ing rate, the AdamW optimizer [50] consistently demon-

strated faster convergence and smaller test errors. Currently,

AdamW has been widely adopted and selected as the optimi- 3 Results and discussion

zation algorithm for the BIXS neural network structure. The

training process was repeated five times, resulting in five 3.1 Optimization of BP network structure

individual ANNS to evaluate the precision in terms of repro-

ducibility. This yielded the MSE values for the two ANN  To select the optimal network structure, the numbers of hid-
outputs ( tritium-to-zirconium ratio and zirconium thick-  den layers and neurons were optimized. To achieve nonlinear
ness). The training and testing datasets were randomly split  transformations, the ReLU activation function [51] was used
in a ratio of 0.8:0.2. The training process was performed  for all the hidden layers. Table 1 shows the MSEs as func-
iteratively to optimize network parameters, such as weights  tions of the numbers of hidden layers and neurons. From the
and biases, allowing for accurate pattern recognition and  results in Table 1, it can be observed that when the number
feature extraction. An iteration is referred to as an “epoch”,  of neurons exceeds 10, the MSEs tend to decrease as the

Table 1 MSE:s as a function of

Number of neurons

10 30 50 70 100 150

the number of hidden layers and Hidden layers
neurons
Training 1
2
3
5
7
10
Test 1
2
3
5
7
10

7.43x1073 4.75x10™ 3.82x107* 2.59x1074 1.68x10™ 1.15x107
4.43x107* 7.75%107° 4.53x107° 3.48x1073 2.48x1073 2.18x1073
5.57x1073 3.64x1073 1.79x1073 1.74x1073 1.36x1073 1.02x1073
6.56x1073 1.80x1073 1.26x1073 6.83x1076 6.54x1076 4.06x1076
9.48x1073 1.44x1073 9.07x1076 8.35x1076 8.54x1076 6.40x1076
1.88x1073 1.31x1073 1.91x1073 3.74x1073 3.74x1073 1.28x1073
7.07x1073 4.33x107* 3.28x107* 2.01x1074 1.23x1074 8.39x1073
3.93x107* 6.04x1073 3.80x1073 2.74x1073 1.91x107° 1.73x1073
4.66x1073 3.20x107° 1.46x107° 1.41x107 1.16x107 1.00x1073
6.61x1073 1.66x107° 1.08x107° 5.99x1076 7.70x107¢ 6.45x1076
8.71x1073 1.29x1073 9.72x1076 8.77x1076 7.70x1076 6.45x1076
2.09x1073 1.21x1073 2.08x1073 3.23x1073 3.23x1073 1.16x107°
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number of hidden layers and neurons increases. When the
number of hidden layers was between 2 and 10, and the num-
ber of neurons was between 30 and 150, the MSEs of the
neural network for predicting the zirconium target thickness
and tritium-to-zirconium ratio became small, ranging from
approximately 5.99x107 to 7.75x107>.

To simplify the neural-network structure while maintain-
ing a low MSE, we selected a relatively simple five-layer
neural network with three hidden layers, each containing 150
neurons. The total MSEs for the training and testing data-
sets were 1.02x107> and 1.00x1073, respectively. The mean
relative errors (MREs) [52] for the zirconium thickness
and tritium-to-zirconium ratio in the training dataset of the
neural network were 0.56 and 0.42%, respectively, whereas
those in the test dataset, the MREs were 0.59 and 0.38%,
respectively. The MRE [52] was calculated as follows:

1 Yi =i

MRE le| L ©)
where the definitions of y;, ¥; and m are identical to those
in 8.

3.2 Optimization of activation functions

In this study, the activation functions used in the hidden
layers were optimized. To simplify the optimization pro-
cess, the same activation function (i.e., ReLU [51], sigmoid
[53], or tanh [54]) was applied to all the hidden layers.
Table 2 shows the MSEs of the BP network for different
activation functions in the hidden layers. It can be observed
that the MSEs vary with the choice of activation function.
We selected the activation function that resulted in the best
MSE, i.e., the ReLU function. The MSEs for the training
and test datasets are 1.02x1075 and 1.00x1073, respectively.

Figure 4 presents the MSEs of the BP network for both
the training and test datasets as a function of the num-
ber of epochs. It can be observed that the BIXS neural
network converged rapidly, with sufficient convergence
achieved within 2000 iterations. Moreover, the MSEs for
both datasets exhibited minimal divergence as the num-
ber of epochs increased, indicating that overfitting did
not occur during training. Figure 5 presents the MREs
of the training dataset and test dataset for each training
period. For the tritium-to-zirconium ratio and zirconium

Table 2 MSE:s of the BP network for different activation functions in
the hidden layers

Parameters ReLU Tanh Sigmoid
MSE for training 1.02x1073 3.71x1073 1.62x1073
MSE for test 1.00x1073 3.01x1073 1.31x1073
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Fig.4 The MSEs of the BP network for both the training and test
datasets as a function of the number of epochs

thickness, the MRE differences obtained from each train-
ing were considerably small, indicating the good stability
of the system. Figure 6 shows a comparison between the
true and predicted values for the zirconium thickness and
tritium-to-zirconium ratio for all 420 sets of data. Excel-
lent predictions were obtained with the true and predicted
values in close agreement. The MREs for the 420 datasets
used to train and test the BP network are listed in Table 3.

3.3 Effect of statistical uncertainty

The experimental BIXS X-ray spectrum may exhibit var-
ying degrees of statistical uncertainty, which can affect
the prediction accuracy. To assess the effect of statisti-
cal uncertainty, the uncertainties ranging from 0.5 to 3%
were randomly with Gaussian distribution added to the
84 sets of test data of X-ray spectra, which were randomly
selected from the 420 data, as described in the section “C.
Construction of BP network”. Figure 7 compares the true
and predicted values for the 84 sets of test data without
statistical uncertainty. It can be observed that the true and
predicted results are in close agreement. Table 4 lists the
MREs for 84 sets of test data under different levels of
uncertainty. The results demonstrate that uncertainty can
affect the accuracy of neural network predictions to some
extent. Generally, the greater the uncertainty, the larger
the relative error in the prediction result. When the statis-
tical uncertainty of the test set is 3%, the neural network
maintains higher prediction accuracy for both zirconium
thickness and the tritium-to-zirconium ratio, with average
relative errors of 5.48% and 5.08%, respectively.
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Fig.6 Comparison between the true and predicted values of a zirconium thickness and b tritium-to-zirconium ratio for all 420 sets of data

Table 3 MRE:s for the 420 sets of data used to train and test the BP-
network

Parameters Training (%) Test (%)
Zirconium thickness 0.56 0.59
Tritium-to-Zirconium ratio 0.42 0.38

3.4 Generalizability of BP network

Additional 22 sets of data, with the zirconium thicknesses
outside the BP network training range from 3 pm to 5 pm,

were used to preliminarily test the generalization ability
of the BP neural network (i.e., the capability of extrapola-
tion). The zirconium thicknesses and tritium-to-zirconium
ratios for the 22 datasets are listed in Table 5, and the
MRE:s of the predicted results are listed in Table 6. From
Table 6, it can be observed that the BP neural network
demonstrates good prediction capability, even for the data-
set outside the training range. For the 22 sets of data, the
MREs of the predicted zirconium thicknesses and tritium-
to-zirconium ratios are 7.61 and 9.33%, respectively. For a
dataset outside the training parameter range, the prediction
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Table 4 MREs for the 84 sets of test data under the different levels of
uncertainty

Relative uncertainties Zr thickness (%) Tritium-
(%) to-Zr ratio
(%)

0 0.59 0.38

0.5 1.20 1.09

1 1.85 1.64

1.5 3.32 2.48

2 3.44 3.15

3 5.48 5.08

Table 5 Zirconium thicknesses and tritium-to-zirconium ratios of the
22 sets of data used to test the generalization of the BP neural net-
work

Tritium-to-Zr ratio (Zirconium thickness (pm))

0.2 (1.5) 0.5 (5.5) 1.5 (1.5) 1.63 (5.5)
0.2 (1.7) 0.5 (6.0) 1.5 (1.8) 1.63 (6.0)
0.2(2.2) 0.5 (6.5) 1.5 2.0) 1.63 (6.5)
0.2 (2.4) 0.5 (6.8) 1.52.3) 1.63 (6.8)
0.2 (2.8) 0.5 (7.0) 1.5 2.5) 1.63 (7.0)
1.0 2.5) 1.5(5.5)

Table 6 MRE:s for the 22 sets of data used to test the generalization
of the BP neural network

Prediction parameters MRE (%)
Zirconium thickness 7.61
Tritium-to-Zirconium ratio 9.33
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accuracy of the neural network decreases, which is consist-
ent with the conclusion in Ref. [27].

3.5 Application of BIXS BP neural network
3.5.1 Sample

Two tritium-containing samples were prepared, labeled No.
26 and No. 42, in which zirconium films were deposited
onto smooth molybdenum substrates (approximately 1 mm
thick) using the electron beam evaporation technique. The
processes for preparing the tritium-containing samples are
the same as those described in Refs.[15, 55].

The thicknesses of the zirconium films and the tritium
depth profiles of samples 26 and 42 were measured using the
elastic backscattering spectrometry (EBS) method. The EBS
experiment was conducted using a 3 MV tandetron accelera-
tor at Sichuan University [56]. The incident proton energy
was 3 MeV with a current intensity of approximately 2 nA.
The proton beams impacted the sample surface vertically,
and a Si detector (ORTEC U-012-050-100) was placed at
165° with respect to the proton beam direction. The experi-
mental details are presented in Refs.[15].

The experimental spectra of the EBS were analyzed using
the SIMNRA program [57] with the same processes as in
Refs.[14, 15] The parameters used in SIMNRA were consist-
ent with those in Ref. [15]. The uncertainties for the tritium
contents and zirconium thicknesses obtained using the EBS
were approximately 11.7% and 5%, respectively, mainly aris-
ing from uncertainties in the proton elastic scattering cross-
section data, stopping power, and statistical uncertainties
[14, 15]. For example, Figure 8 shows the EBS experimental
spectrum and SIMNRA simulation for sample 26, where the
tritium distribution in the SIMNRA simulation was assumed
to be uniform. The background spectrum was obtained by
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measuring a hydrogen-containing Zr film sample with a Mo
substrate, whose geometric dimensions and hydrogen iso-
tope-zirconium ratio were approximately the same as those
of samples 26 and 42; the EBS experimental conditions
were the same. The experimental net tritium spectrum was
obtained by deducting the background spectrum from the
experimental spectrum of the tritium-containing samples.
The measured results are summarized in Table 7. The EBS
results indicate that the tritium distributions for samples 26
and 42 were uniform.

3.5.2 Predictions of BP network

The experimental BIXS spectra of samples 26 and 42 were
obtained using the same experimental setup as in Refs.
[14, 15] and corrected for the signal pile-up effect by using
Monte Carlo method [15], as shown in Figure 9. Correc-
tions for the pile-up effect were less than 1%. The trained
BP neural network was used to analyze the experimental
BIXS spectra after correcting for the intrinsic detection
efficiency of the SDD. The predicted values of the zirco-
nium thicknesses and tritium-to-zirconium ratios are listed
in Table 7. The predicted tritium-to-zirconium ratios have
been converted to the tritium-to-zirconium ratios on the day
of the EBS experiment.

For sample 26, the predicted zirconium thickness is 1.60
pm, which deviates by 2.43% from the EBS result, whereas
for sample 42, the predicted zirconium thickness is 1.63 pm,
showing a 5.23% difference compared to the EBS result. The

predicted tritium-to-zirconium ratios for samples 26 and 42
are 1.85 and 1.91, with the relative deviations of 1.07% and
2.14% relative to the EBS results, respectively.

Considering that the predicted values from the BP neural
network are consistent with the measured results from the
EBS within experimental uncertainties, we can conclude
that the BP neural network can be used to predict the thick-
nesses and tritium contents simultaneously with higher accu-
racy for thin solid tritium-containing samples with substrates
and uniform tritium distribution. Previously, we employed
the MC BIXS method for tritium analysis, which required
prior information about the sample thickness, and its accu-
racy was affected by the reconstruction algorithm [9, 14,
15, 58, 59]. However, the present BIXS BP neural network
approach overcomes the difficulties inherent in traditional
regularization BIXS analysis methods.

4 Summary

In this study, an artificial neural network (ANN) algorithm
was employed to predict the tritium content and thickness
of thin solid tritium-containing samples with substrates and
uniform tritium distributions. The semi-analytical method
developed earlier for calculating the X-ray spectrum for trit-
ium-containing samples was used to generate the dataset for
training and testing the BIXS BP neural network. The neu-
ral network was optimized in several aspects, including the
number of hidden layers, neurons, and activation function.

@ Springer



172 Page 10 0f 12 H. Huang et al.
Fig.9 The experimental BIXS 80 — —Y7—7— 77—
spectra for samples 26 and 42,
which were corrected for the Bremsstrahlung and Al K
signal pile-up effect by employ- 70 |- ! N
ing Monte Carlo method - |

60 | —e— Sample 26

) — — -Sample 42
50 - NzrL .

Counts (photons/keV/s)
=
T

[y
<
T

[ W
(=] =]
T T T T
oo

The well-trained BIXS BP neural network delivers
accurate predictions for the parameters (i.e., the zirconium
thickness and tritium-to-zirconium ratio) within the training
range as well as demonstrates strong prediction performance
outside the training range. For the thickness of zirconium,
the MRE:s for the training dataset and test dataset are 0.56
and 0.59%, respectively. For the tritium-to-zirconium ratio,
the MREs for the training dataset and test dataset are 0.42%
and 0.38%, respectively. For parameters outside the training
range, the MREs for the zirconium thickness and tritium-
to-zirconium ratio are 7.61% and 9.33%, respectively. The
trained BP neural network shows excellent predictive capa-
bility across various levels of statistical uncertainty.

The BIXS BP neural network successfully predicted the
zirconium thicknesses and tritium-to-zirconium ratios from
the experimental X-ray spectra obtained in BIXS experi-
ments using two tritium-containing samples with substrates
and uniform tritium distributions, which were in good agree-
ment with the EBS results. This work demonstrates the
applicability of the BP neural network in the BIXS method

Table 7 Results of zirconium thickness and tritium-to-zirconium ratio
obtained by EBS and BP-Network

Samples Parameters EBS BP-network

26 Zirconium thickness (pm) 1.64 1.60
Tritium-to-Zirconium ratio 1.87 1.85

42 Zirconium thickness (pm) 1.72 1.63
Tritium-to-Zirconium ratio 1.87 1.91

@ Springer
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for analyzing thin solid samples with substrates and uniform
tritium distributions without the need for prior knowledge
of sample thicknesses.
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