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Abstract

We investigated the chiral magnetic effect (CME) in relativistic heavy-ion collisions through an improved two-plane method
analysis of the Ay observable, probing CP-symmetry breaking in the strong interactions and topological properties of the
QCD vacuum. Using a multiphase transport model with tunable CME strengths, we systematically compared the Au+Au
and isobar collisions at m = 200 GeV. We observed a reduced difference in the CME signal-to-background ratio between

the spectator and participant planes for Au+Au collisions compared with isobar collisions. A comprehensive chi-square
analysis across all three collision systems revealed stronger CME signatures in Au+Au collisions than in isobar collisions,
particularly when measured with respect to the spectator plane. Our findings demonstrate the enhanced experimental reliabil-
ity of the two-plane method for CME detection in Au+Au collisions.
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1 Introduction

Relativistic heavy-ion collisions create a unique environ-
ment where a quark—gluon plasma with strong collectivity
is formed [1-8], accompanied by the strongest known mag-
netic field generated by spectator protons from the colliding
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nuclei [9-16]. This environment provides an ideal laboratory
for studying the topological properties of the QCD vacuum
and anomalous chiral transport phenomena under extreme
magnetic field conditions. The chiral magnetic effect (CME),
which induces electric charge separation along the magnetic
field direction in systems with chiral imbalances, is crucial
for detecting these phenomena [17-19].

The charge-dependent azimuthal correlation
Yap = (c0s(¢p, + ¢y — 2Wgp)) was initially proposed as a
potential observable for detecting the CME [20]. In this cor-
relator, ¢, denotes the azimuthal angle of a charged parti-
cle a(f), and Wyp represents the angle of the reaction plane.
The difference between opposite-charge and same-charge
correlations is represented by Ay. Early measurements of
this correlation by the STAR Collaboration [21-24] at
RHIC and the ALICE Collaboration [25] at the LHC aligned
with CME expectations. However, significant background
effects, especially those arising from an elliptical flow, influ-
ence the measured correlator [26-31]. In recent
RHIC-STAR measurements [32], the best measurement was
14.7% in 20-50% centrality for the full-event method,
although there could be residual non-flow background as
well as discrepancy between a and b. Some measurements
incorporating the non-flow effect have limited the CME
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fraction to approximately 10% [33-37] for Au+Au collisions
at /s . = 200 GeV. Several methods have been proposed for

separating potential CME signals from the dominant back-
ground [34, 36, 38—41]. One promising approach involves
using isobar collisions, which consist of systems with the
same nucleon number but different proton numbers, such as
2°Ru +3¢ Ru and 957Zr +0 Zr collisions [42, 43]. The latest
STAR evaluation of the CME signal established an upper
limit of approximately 10% for the CME fraction in the Ay
measurement at a 95% confidence level in isobar collisions

at , /sNN = 200 GeV, after correcting for non-flow contamina-

tion [44—46]. However, the nuclear structure effect poses a
challenge when searching for the CME in isobar collisions
because it introduces differences in the backgrounds of the
two isobar systems [47-57]. Based on the AMPT model, the
newly developed state-of-the-art Chiral Anomalous Trans-
mission (CAT) module reveals that the upper limit of the
CME signal in isobar collisions is 15% [58, 59], which
aligns with the STAR data.

Numerous experimental observables have been employed
to detect true CME signals while minimizing the background
interference in Au+Au and isobar collisions. For this pur-
pose, a two-plane measurement method utilizing charge-
dependent azimuthal correlations relative to the spectator
plane (SP) and participant plane (PP) was proposed [60, 61].
This method is based on the fact that background and CME
signals exhibit different sensitivities or correlations to the
two planes [62]. The STAR collaboration applied this
method to quantify the fraction of the CME signal within the
inclusive Ay correlation in both Au+Au and isobar colli-
sions. For Au+Au collisions at m = 200 GeV, the STAR

results suggest that the fraction of CME-induced charge
separation is consistent with zero in the peripheral centrality
bins, whereas finite CME signals may exist in the mid-cen-
tral centrality bins [32]. This method is believed to eliminate
most of the collective flow effect in the background; how-
ever, certain non-flow background effects require further
investigation [37]. Furthermore, the SP and PP methodology
assumes that the ratio a of the elliptical flow relative to dif-
ferent reaction planes is equivalent to the ratio b of the CME
signals relative to different reaction planes [32, 37, 63].
However, these two ratios may differ. In our previous
study [64], we calculated the CME signal-to-background
ratio of b over a (b/a = 0.65 + 0.18) in isobar collisions at
\/m = 200 GeV using the AMPT model with an initial

CME signal, thereby providing theoretical support for the
experimental measurement of the CME in isobar collisions.
In this study, the experimental search for CME signals in
Au+Au collisions and the need to explore the values of b
across different collision systems motivated us to extend our
calculations to Au+Au collisions at \/m =200 GeV. We

aimed to simultaneously fit the experimental observables
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related to the CME in three different collision systems,
Au+Au, Zr+Zr, and Ru+Ru, within the AMPT model
framework, thereby achieving a synchronous constraint and
extraction of the CME strengths in these three collision sys-
tems. We focus on studying how the evolution of different
collision systems affects the imported CME signal, which is
introduced manually rather than derived from first princi-
ples, such as the magnetic field and chirality imbalance.

The remainder of this paper is organized as follows. In
Sect. 2, we describe the setup of the AMPT model with an
initial CME signal and outline our two-plane method for
extracting the fraction of the CME signal from the inclu-
sive Ay. Our model results are presented and compared
with measurements from the STAR experiment in Sect. 3,
in which we discuss the implications of our findings for the
interpretation of the experimental data and possible physical
sources. Finally, Sect. 4 summarizes the main conclusions
of the study.

2 Model and method
2.1 The AMPT model with initial CME signal

The AMPT model is a multiphase transport framework
designed to simulate the four main stages of relativistic
heavy-ion collisions [65-67], which includes the following
components:

(1) The HIJING model provides the initial conditions.
The transverse density profile of the colliding nucleus
is modeled as a Woods—Saxon distribution. Multiple
scatterings among the participant nucleons generate the
spatial and momentum distributions of minijet partons
and soft excited strings. Using a string-melting mecha-
nism, quark plasma is generated by melting the parent
hadrons.

(2) Zhang’s parton cascade (ZPC) model simulates the par-
ton cascade stage. The ZPC model describes parton
interactions via two-body elastic scattering. The parton
cross section is calculated using leading-order pQCD
for gluon—gluon interactions.

(3) A quark coalescence model combines two or three near-
est quarks into hadrons to simulate hadronization.

(4) A relativistic transport (ART) model simulates the stage
of hadronic rescatterings, including resonance decays
and all hadronic reactions involving elastic and inelastic
scatterings among baryon—baryon, baryon—-meson, and
meson—meson interactions.

Numerous previous studies have demonstrated that the AMPT
model effectively describes various experimental observables
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in both large and small collision systems at the RHIC and
LHC [65-74].

According to the methodology described in Ref. [75], we
implemented a CME-like charge separation mechanism in the
initial partonic stage of the AMPT model. The CME signal
strength can be controlled by adjusting the percentage p, which
defines the fraction of quarks participating in the CME-like
charge separation. The percentage p is defined as follows:

) <NT++NJ)—<Nj+NT‘) 0
<NT+ +Nl‘> + <Nf +NT‘)’

where N is the number of quarks of a given species (u, d, or
s). N, ;r: Number of positively charged quarks moving parallel
(1) to the magnetic field. N Number of negatively charged
quarks moving anti-parallel () to the magnetic field. Nf:
Number of positively charged quarks moving anti-parallel
(}) to the magnetic field. N7 Number of negatively charged
quarks moving parallel (1) to the magnetic field.

2.2 Spectator and participant planes

The two-plane method utilizes distinct plane correlations,
that is, the elliptical flow-driven background is predominantly
correlated with the PP, whereas the CME signal exhibits a
stronger correlation with the SP [60, 61]. The SP and PP can
be reconstructed using the following equations:

atan2(<r121 sin (26, )), (rﬁ cos (2¢, )))

= 2
Ysp ) s 2

atan2(<r§ sin (2¢P )> <r§ cos (2¢p )>> +7r 3)

Ypp = 2 ’

where r, and ¢, represent the displacement and azimuthal
angle of the spectator neutrons in the transverse plane,
respectively, whereas r, and ¢, represent the displacement
and azimuthal angle of the participating partons in the trans-
verse plane, respectively. All spatial information regarding
the displacement and azimuthal angle was obtained from
the initial state of the AMPT model. (...) means averaged
over all corresponding particles for each event. The PP can
be experimentally determined using the event plane recon-
structed from final-state hadrons [76]. In this study, the PP
was employed to minimize the non-flow effect [37] in the
reconstructed yp. However, we systematically verified that
all conclusions remained quantitatively consistent when the
event plane (EP) method was employed. The corresponding
elliptic flow coefficients, v, {SP} and v, {PP}, using the SP
(wgp) and PP (ypp) methods, respectively, are as follows:
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Fig.1 (Color online) AMPT results on centrality dependence of
elliptic flow v, {PP} (solid symbols) and v, {SP} (open symbols) in
Au+Au collisions at [So = 200 GeV from the AMPT model with

different strengths of the CME. The data points are shifted along the
x axis for clarity

v2{SP} = ((cos2( — wsp) ) ). @

v,{PP} = ({cos2(¢ — wpp) ) ). ®)

where ¢ represents the azimuthal angle of the final hadrons
in the transverse momentum plane, and {{...)) means aver-
aged over all charged hadrons for all events. Because the PP
in experiments is reconstructed using the momenta of final-
state particles, it often introduces non-flow contributions to
the experimental measurements of v,{PP} [76]. However,
our PP is theoretically reconstructed based on the initial
parton positions using Eq. (3), which significantly sup-
presses the non-flow effect [77, 78]. The self-correlation is
also significantly reduced because the dynamic evolution of
heavy-ion collisions largely breaks the correlation between
the final-state hadrons and our initial-state participant parton
plane [77, 78].

Figure 1 presents the centrality dependence of v, {PP} and
v, {SP} for charged hadrons with 0.2 < p; < 2.0 GeV/c and
|7| < 1, obtained from the AMPT model with varying CME
strengths in Au+Au collisions at m = 200 GeV. As antici-
pated, v, { PP} is consistently larger than v,{SP} in all cases,
because the elliptical flow is more strongly correlated with
the PP than with the SP. The values of both v,{PP} and
v,{SP} increase slightly with p for the peripheral collisions.
This is because our CME is introduced by reversing the frac-
tion p of the parton momenta, while preserving their spatial
positions. This approach intentionally maintains the initial-
state geometry but introduces initial-state residual momen-
tum anisotropy. This initial flow likely couples with the
final-state interactions, leading to an increase in the elliptical
flow v, with p for the peripheral collisions [79].
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Fig.2 (Color online) Centrality dependence of elliptic flow v,{PP}
(solid symbols) and v,{SP} (open symbols) ratios of Au+Au col-
lisions to Ru+Ru and Zr+Zr collisions, respectively, at , /sNN =200

GeV from the AMPT model with different strengths of the CME, in
comparison with the STAR data [32, 80]. The data points are shifted
along the x axis for clarity

Figure 2 shows the ratios of v,{PP} and v,{SP} for
Au+Au collisions relative to Ru+Ru and Zr+Zr collisions.
Note that all the calculations for the Ru+Ru and Zr+Zr col-
lisions were taken from Ref. [64]. Because the CME is more
likely to occur at centrality bins of 20-50%, and to avoid
large errors, the comparison is restricted to these central-
ity bins. The ratio of v, {PP} is larger than that of v, {SP},
which is consistent with the experimental trends. Compared
with the experimental data, a relatively larger ratio in our
results arises because the v, {PP} and v,{SP} values calcu-
lated from our isobar collision simulations are smaller than
the experimental results. Similarly, the v,{PP} and v,{SP}
ratios of Au+Au to Ru+Ru collisions are smaller than those
of Au+Au to Zr+Zr collisions, reflecting the influence of the
nuclear structure. This indicates that the v, {PP} and v, { SP}
values for Ru+Ru collisions are larger than those for Zr+Zr
collisions owing to the nuclear structure effect [54, 64]. In
the 20-50% centrality bin, the changes in v, {PP} and v, { SP}
values for Au+Au collisions are mere; however, in isobar
collisions, the v,{PP} and v,{SP} values decrease with
increasing p [64], resulting in an increase in the v, {PP} and
v,{SP} ratios with the strength of the CME.

2.3 Two-plane method to extract fcye

This subsection presents the original two-plane method
for detecting and extracting the fraction of the CME signal
and its optimization using the AMPT model. The experi-
mentally measurable CME observable, denoted as Ay,
consists of the CME signal and background effect. These
background effects are predominantly attributed to the
elliptic flow and non-flow effects, which originate from
the resonance decays and jet correlations. Consequently,
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the experimentally measured observable with respect to
different planes can be mathematically expressed as the
sum of two components:

Ar{w} = Ayge W} + Avemeivwl, (6)

where y represents either the SP (ygp) or PP (ypp). The
ratios of the elliptical flow and the measured observable with
respect to the two different planes are defined as a and A,
respectively, as follows:

a =v,{SP}/v,{PP}, (N

A = Ay{SP}/Ay{PP}. ®)

The parameter a is expected to be governed by the two-plane
correlation factor, which can be quantitatively expressed by
the following relationship: a = (cos 2(ypp — wgp) ) [60, 81,
82]. Through a straightforward mathematical transformation,
the fractional contribution of the CME signal to the total
measured observable, denoted by f-yg, can be expressed as

Aycme{PP}  Aja—1 9
Ay{PP} ~ 1/a®-1 ©)

Jeme =

Equation (9) indicates that the fraction of the CME signal
within the measured observable CME can be determined
by measuring A and a. However, as noted in Refs. [37, 63],
a potential discrepancy may exist between the ratio of the
CME signal and inverse ratio of the elliptic flow. This dis-
crepancy was quantitatively verified using our recent AMPT
calculations for isobar collisions [64]. Therefore, in a more
general case, the following relationship holds:

Aycme{PP} = bAycyqe{SP}. (10

where b represents the ratio of the CME signals with respect
to the different planes. Thus, the following equation was
derived:

Aycme{PP}

b an

Ay{SP} = aAyg, (PP} +

After accounting for b, a more realistic estimation of the
fraction of the CME signal to the total observable signal can
be expressed using the following modified relation:

Aycme (PP} _ Afa—1
Ay{PP} 1/ab—1"

Jemeib} = 12)
The remaining task is to calculate b, which can be theoreti-
cally determined. In the AMPT model, the CME signal is
simulated by introducing a certain percentage p of partons
in the initial state to participate in the charge separation phe-
nomenon. Therefore, the value of b can be determined in the
AMPT model using the following relation:
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Fig.3 (Color online) Centrality dependence of Ay{PP} (solid sym-
bols) and Ay {SP} (open symbols) in Au+Au collisions at , /S = 200

GeV from the AMPT model with different strengths of the CME, in
comparison with the STAR data linked with the dotted line [32]. The
data points are shifted along the x axis for clarity
_Ay{PP}(p#0) - Ay{PP}(p=0)
Ay{SP}(p # 0) — Ay{SP}(p = 0)’

13)

where the numerator and denominator represent the CME
signals within the measured CME observable with respect
to the PP and SP, respectively.

3 Results and discussion

This section presents the AMPT model results, focusing on
the charge-dependent azimuthal correlations for charged
particles relative to both the SP and PP. For comparison
with the measurements from the STAR experiment, we used
kinetic cuts of 0.2 < pr < 2.0 GeV/c and || < 1, which are
consistent with the STAR experimental setup.

Figure 3 shows the centrality dependence of Ay {PP} and
Ay {SP} from the AMPT model with varying CME strengths
in Au+Au collisions at /s = 200 GeV. Compared with the

STAR data, the CME signal percentage at p = 5% or 7.5%
aligns more closely with the experimental results. Notably,
Ay {SP} exceeds Ay {PP}, indicating that the SP serves as a
more sensitive probe for the CME because of its stronger
correlation with the magnetic field direction compared with
the PP.

Figure 4a and b presents the centrality dependence of the
Ay{PP}and Ay {SP} ratios for Au+Au collisions relative to
the Ru+Ru and Zr+Zr collisions, respectively. Considering
the effect of errors, both the experimental and theoretical
results indicate that the Ay value for Au+Au collisions is
smaller than that for isobar collisions, because most of the
ratios are less than one. For the ratio of Ay {PP} in Fig. 4a,
the AMPT results without the CME signal agree closely
with the experimental results, whereas for the ratio Ay { SP}
in Fig. 4b, the AMPT results with the CME signal show
better agreement with the experimental results. As the CME
signal correlates more strongly with the SP than with the
PP, we observe that the ratio of Ay {SP} in Fig. 4b decreases
with increasing CME strength. This suggests that Ay {SP}in
isobar collisions increases more rapidly than that in Au+Au
collisions as the CME strength increases.

Figure 5 shows the centrality dependence of
A = Ay{SP}/Ay{PP} and a=v,{SP}/v,{PP} from
the AMPT model with varying CME strengths, com-
pared with STAR experimental data [32]. As the CME
strength in the AMPT model increases, the value of
a remains nearly constant and is consistently below
unity. It is expected that a follows the expectation
a = (cos2(wpp — wsp) ) & v,{SP}/v,{PP} [60, 81, 82]. In
Fig. 6, we utilized the AMPT model to directly calculate the
values of (cos 2(ypp — Wgp) ) and compared them with the
results of v, { SP} /v, { PP}, denoted as a in Fig. 5. We observe
that v, {SP} /v, {PP} closely follows { cos 2 (wpp — wsp) ) ith

Fig.4 (Color online) Central- 3F

ity dependence of Ay {PP} a
and Ay {SP} b ratios of Au+Au
collisions to Ru+Ru collisions
(solid symbols) and Zr+Zr col-
lisions (open symbols), respec-
tively, at m =200 GeV from
the AMPT model with different
strengths of the CME, in com-
parison with the STAR data [32,

Ratio of Ay

T T
Ratio of Ay{PP}

(a)]

T T
Ratio of Ay{SP}

Au/Ru Au/Zr
o

D% ¢ ADpnm
oowvd

a

p
0

2%
5%
7.5%
10%

STAR y{TPC}

o Abanm

e}

o owvd

Au/Ru AwZr p

0

2%

5%
7.5%

10%
STAFJﬁ/{ZDC }

(b)]

T
—-—
g
—0—4
e%
F3d

80]. The data points are shifted
along the x axis for clarity

Centrality (%)

Centrality (%)

@ Springer



170 Page6of14

A a p 1
I | Au+Au  * o 10%
+ * Q 7.5%
< > 5% E
A v 2% .
| ] e} 0
= STAR a +
STAR A

Aora

i

oL A=ay(sp}/aypp i
L a = v,{SP} /v,{PP}

0 10 20 30 40 50 60 70 80
Centrality (%)

Fig.5 (Color online) Centrality dependence of A (solid symbols) and
a (open symbols) in Au+Au collisions at m =200 GeV from the
AMPT model with different strengths of the CME, in comparison
with the STAR data linked with the dotted line [32]. The data points
are shifted along the x axis for clarity

T T T T T T T
A L0 .
& [ - Au+ Au
z o
E F g & e 28
& 0.8F 8D @ 4
> L ﬁ k
5 &
3
3 L e
Y oo06k i
= b viSP}/v,(PP} <cos2(y{PP}-y{SP})> p
= s . o 0
= - A v 2%
= 04F < > s%
) (o . o 75% @
= r * o) 10%
1 1 1 1

0 10 20 30 40 50 60 70 80
Centrality (%)

Fig.6 (Color online) Centrality dependence of v,{SP}/v,{PP} (solid
symbols) and <cos Q(pr - wsp)> (open symbols) in Au+Au col-
lisions at /S = 200 GeV from the AMPT model with different

strengths of the CME. The data points are shifted along the x axis for
clarity

small differences that can be attributed to non-flow effects.
In contrast, the values of A increase with p, suggesting that
the CME affects Ay differently for the two planes. For small
values of p, the model results align more closely with the
experimental data.

Figure 7 shows the centrality dependence of the A and a
ratios for Au+Au collisions relative to Ru+Ru and Zr+Zr
collisions, respectively. The ratio of a remains nearly
unchanged, which is consistent with the experimental data
within error. An a ratio greater than one indicates that the
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Fig.7 (Color online) Centrality dependence of A (solid symbols) and
a (open symbols) ratios of Au+Au collisions to Ru+Ru and Zr+Zr
collisions, respectively, at m =200 GeV from the AMPT model
with different strengths of the CME, in comparison with the STAR
data [32, 80]. The data points are shifted along the x axis for clarity

6 Au+Au p ]

*  10% ]

5t * 75% ]

< 5% 1

4 He A 29 ]
R 3.‘ =0 + ]
< STAR 1
2 H ]

M ]

il ]

N ]

0 ]

0 10 20 30 40 50 60 70 80
Centrality (%)

Fig.8 (Color online) Centrality dependence of A/a in Au+Au col-
lisions at /S = 200 GeV from the AMPT model with different

strengths of the CME, in comparison with the STAR data linked with
the dotted line [32]. The data points are shifted along the x axis for
clarity

<cos Z(pr - q/sp)> value is larger, implying a smaller dif-
ference angle between ypp and ygp for Au+Au collisions
than that for isobar collisions. For larger CME strengths,
the ratio of A is less than one, indicating that the ratios of
Ay{SP} and Ay {PP} are smaller in Au+Au collisions than
in isobar collisions, that is, Ay {SP} and Ay {PP} are closer
in Au+Au collisions than those in isobar collisions.

Figure 8 shows A/a as a function of the centrality pre-
dicted by the AMPT model with varying CME strengths.
According to Eqgs. (9) and (12), A/a values greater than
unity indicate the presence of a CME signal within the Ay
observable. Focusing on mid-central collisions (20-50%
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Fig.9 (Color online) Centrality dependence of A/a ratios of
Au+Au collisions to Ru+Ru and Zr+Zr collisions, respectively,
at /s =200 GeV from the AMPT model with different strengths

of the CME, in comparison with the STAR data [32, 80]. The data
points are shifted along the x axis for clarity

centrality), where the CME effect is more measurable,
A/a > 1is observed for all cases except when p = 0 and
p = 2%. Notably, A/a increases with CME strength, sug-
gesting that this ratio reflects the strength of the CME signal.
The experimental data are closer to the cases with lower
strengths of the CME signal.

Figure 9 shows the centrality dependence of the A/a
ratios for Au+Au collisions relative to Ru+Ru and Zr+Zr
collisions. Focusing on mid-central collisions (20-50% cen-
trality), the A/a ratios for the Au+Au and isobar collisions
exhibit a trend similar to that of the A ratio shown in Fig. 7,
driven by a smaller variation in @ and larger variation in A.
The experimental data are also closer to the cases with lower
strengths of the CME signal.

Figure 10 shows the centrality dependence of a and b
calculated using Eq. (13), based on the AMPT model with
varying CME strengths. Notably, a and b exhibit significant
differences. In the 20-50% centrality bins, b remains consist-
ently smaller than a. Moreover, a shows minimal depend-
ence on CME strength, as presented in Fig. 5. By contrast, b
reflects the capability of the PP method to capture the CME
signal observed in the SP method. Although the statistical
errors are substantial, b shows no significant variation with
CME strengths, except for the 2% CME strength case, which
is excluded because of its large statistical uncertainties.

Figure 11 shows the centrality dependence of the a and
b ratios for Au+Au collisions relative to Ru+Ru and Zr+Zr
collisions, respectively, based on the AMPT model with
various CME strengths. Focusing on the 20-50% centrality
bins, the a ratio remains nearly unchanged and is smaller
than the b ratio. The uncertainties of b ratios are large.
According to Eq. (13), a larger b value indicates a smaller
difference in the net CME strength between the two planes.

1.5F ]
Au+ Au
1 e T L SETE FRP P -
'D ?
5 0.5 i
< a b P 4
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0.0 - 4 > 59, B
<& L 7.5%
-05 C 1 ﬁl |' 1 10%I 1 1 I 1
0 10 20 30 40 50 60 70 80

Centrality (%)

Fig. 10 (Color online) AMPT results on centrality dependence of
a (solid symbols) and b (open symbols) in Au+Au collisions at
V5w =200 GeV from the AMPT model with different strengths of the

CME. The data points are shifted along the x axis for clarity

Therefore, our results indicate that the difference is smaller
in Au+Au collisions than in isobar collisions.

Figure 12 shows the centrality dependence of the b/a
ratio as predicted by the AMPT model with varying CME
strengths. Focusing on the 20-50% centrality bins in
Au+Au collisions at m = 200 GeV, the b/a ratio can be

approximated by using a constant function, yielding
b/a = 0.88(x0.08). Our previous study shows that isobar
collisions yield b/a = 0.65(+0.18) [64]. This result implies
that the relative ratio of CME signals across different
planes does not simply invert the elliptical flow ratio
among these planes. This finding has significant
implications for extracting the fraction of the CME signal

T
4 FAWRu Au/Zr Ratio of a T

[m} O p=0
N > p=5%
3F © ol p=75% .
© e ol p=10%
5
< p
s 2T + ++ 7
2 odox OBOO @ i oppDd @ @
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Fig. 11 (Color online) AMPT results on centrality dependence of the
a (open symbols) and b (solid symbols) ratios of Au+Au collisions
to Ru+Ru and Zr+Zr collisions, respectively, at /Sy, =200 GeV
from the AMPT model with different strengths of the CME. The data
points are shifted along the x axis for clarity
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Fig. 12 (Color online) Centrality dependence of b/a in Au+Au col-
lisions at /5, =200 GeV from the AMPT model with different

strengths of the CME. The data points are shifted along the x axis for
clarity

within the Ay observable, which will be discussed
further.

Figure 13 shows the centrality dependence of b/a for
Au+Au collisions relative to Ru+Ru and Zr+Zr collisions,
respectively, based on the AMPT model with varying CME
strengths. Because the value of @ remains nearly constant,
the ratio b/a follows the trend of the ratio » shown in Fig. 11.
The same p input is employed for each centrality in Figs. 11
and 13. However, it should be pointed out that as the mag-
netic field is expected to be stronger for Au+Au collisions
than for isobaric collisions at the same centrality, the p val-
ues should differ for these systems.

AwRu Auw/Zr 1
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41 i
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Fig. 13 (Color online) Centrality dependence of the b/a ratios of
Au+Au collisions to Ru+Ru and Zr+Zr collisions, respectively, at
VS = 200 GeV from the AMPT model with different strengths of the

CME. The data points are shifted along the x axis for clarity
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Fig. 14 (Color online) Upper panel: Centrality dependence of
Jeme{b} and foyg in AutAu collisions at /s =200 GeV from

the AMPT model with different strengths of the CME, in compari-
son with the STAR data [32]. The solid and open symbols represent
the results for foyg{b} and feyg, respectively. Lower panel: Central-
ity dependence of the ratio of foyg{b} to foug. The data points are
shifted along the x axis for clarity

The upper panel of Fig. 14 shows the centrality depend-
ence of the two types of f-yg based on the AMPT model
with varying CME strengths. The open and solid sym-
bols represent foyg and foyg{b} calculated using Egs. (9)
and (12), respectively. Our results are consistent with the
STAR experimental data [32], favoring the cases of p = 0%
and p = 2%. Notably, for the 20-50% centrality bins, when
p #0, fome{b} is smaller than fq\z. The negative foyg
values at p = 0% arise from statistical fluctuations in the
baseline measurement. The lower panel of Fig. 14 shows
the centrality dependence of the ratio fryp{b} to fome,
which is less than unity for-20-50% centrality bins. This
implies that assuming b = a leads to an overestimation of
the CME signal fraction within the Ay observable.

Figure 15 shows the foyg, fomel?), and foygpip] ratios
for Au+Au collisions relative to Ru+Ru and Zr+Zr colli-
sions, respectively, in the 20-50% centrality bins at
m = 200 GeV. Note that the STAR data for the Ru+Ru
and Zr+Zr collisions were obtained by averaging the data
reported in Ref [80], which indicates that without account-
ing for the effect of b, the fraction of CME signals in Ay
is slightly larger in isobar collisions than in Au+Au colli-
sions. The foygp{p]} ratio was calculated using the method
described in Ref. [64]. fomp{p} is defined as follows:
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Fig. 15 (Color online) foye, fome (P}, and foygpip) ratios of Au+-Au
collisions to Ru+Ru and Zr+Zr collisions, respectively, in 20-50%
centrality bins at \/ﬁ =200 GeV from the AMPT model with dif-
ferent strengths of the CME. The solid, open symbols, and open sym-
bols with X represent the results for the AMPT model with different
strengths of the CME in comparison with the STAR data [32, 80].
The data points are shifted along the x axis for clarity

Ayeme{PP}(p # 0)
fewelp) = = (14)
where
Ayeme{PP}(p # 0) = Ay {PP}(p # 0) — Ay{PP}(p = 0).
(15)

The observables Ay {PP}(p = 0) and Ay{PP}(p # 0) can
be obtained from the AMPT model without the CME and
with different strengths of the CME, respectively. However,
the ratio of Au+Au collisions relative to isobar collisions
increases after applying the correction for b, which indicates
that, after accounting for b, the fraction of CME signals in
Ay is greater for Au+Au collisions than for isobar colli-
sions. Therefore, it is important to consider the effect of b to
achieve real facts about the CME.

As the introduced CME signal strength increases, the
ratios calculated using all the three methods decrease. This is
because the A/a value increases more significantly in isobar
collisions than in Au+Au collisions, leading to a reduction
in the calculated ratios. It is also observed that the Au/Ru
ratio is smaller than the Au/Zr ratio in the presence of CME
signals, indicating that the fraction of CME signal is higher
in Ru+Ru than in Zr+Zr.

The preceding results demonstrate that the ratio
b/a = 0.88(x0.08) significantly influences the final result
of foumg in the 20-50% centrality bins for Au+Au colli-
sions. To elucidate the origin of this relationship, we
investigated the evolution of a and b at different stages of
the Au+Au collisions at \/% =200 GeV in the AMPT

model, assuming a CME strength of p = 10%. We focused
on four distinct stages: the initial stage, after parton

O.S-W:ﬁﬁﬁ@@ |

0.6 - '.# - ++ :? ‘+

= 04 If’*’Au +Au
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Fig. 16 (Color online) Upper panel: Centrality dependence of a and
b in Au+Au collisions at 1/Syy = 200 GeV for four different stages of

the AMPT model with a CME strength of p = 10%. The open and
solid symbols represent the results for a and b, respectively. Lower
panel: centrality dependence of the ratio b/a for the different stages
in Au+Au collisions. The same symbols as b in the upper panel are
used to indicate different stages. The data points are shifted along the
x axis for clarity

cascade, after coalescence, and after hadron rescatterings.
As shown in the upper panel of Fig. 16, the value of a
remained constant during the last three stages. The initial
stage is excluded from the a calculation because the ellip-
tical flow is initially zero. In contrast, the value of b is
consistently smaller than a and decreases with each stage
in the 20-50% centrality bins. The lower panel of Fig. 16
illustrates the decreasing trend of the b/a ratio during the
evolution stage, which is primarily driven by a decrease in
b. This decrease in b suggests weaker correlation between
CME signals across different planes, which can be attrib-
uted to the effects of final-state interactions during the
evolution of heavy-ion collisions [54, 75, 83, 84].

In Ref. [75], the authors demonstrated that the final-
state interactions in relativistic heavy-ion collisions sig-
nificantly suppress the initial charge separation, with a
reduction factor reaching up to an order of magnitude. In
our previous work [64], we found that, because of the ani-
sotropic overlap zone, these interactions not only reduce
the magnitude of the CME current but also alter its direc-
tion, resulting in a modified maximum current orientation.
Figure 17 shows the centrality dependence of the b/a ratio
in the Ru+Ru [64] and Au+Au collisions at m =200

GeV for different stages in the AMPT model with a CME

@ Springer
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Fig.17 (Color online) Centrality dependence of the ratio of b/a in
Ru+Ru [64] and Au+Au collisions at V5w =200 GeV for different
stages from the AMPT model with the CME strength of p = 10%.
The open and solid symbols represent the results for Ru+Ru and
Au+Au, respectively. The data points are shifted along the x axis for
clarity

strength of p = 10%. For the 20-50% centrality bins, the
b/a ratios show a decreasing trend with the stage evolution
for both Ru+Ru and Au+Au collisions. Furthermore, the
bla values for Ru+Ru collisions are consistently smaller
than those for Au+Au collisions across different stages
and decrease more rapidly. This observation implies that
the effect of the final-state interactions on the decorrela-
tion of CME signals relative to the SP and PP is less pro-
nounced in Au+Au collisions, making it more favorable
to detect CME signals using the two-plane method. In our
previous AMPT study [64, 75], we showed that assuming
b = a in isobar collisions overestimates the final-state
CME fraction in the measured Ay observable because the
signal is subsequently damped and washed out during the
final-state evolution of relativistic heavy-ion collisions.
We found that b/a = 0.88 + 0.08 was larger in Au+Au col-
lisions than in isobar collisions at the same centrality
(b/a = 0.65 £ 0.18), indicating that the signal was damped
and washed out to a lesser extent in Au+Au collisions than
in isobar collisions.

To constrain the CME strengths across Au+Au and iso-
bar collisions simultaneously, we performed a chi-square
analysis using the following method. We aimed to compare
the CME observable between our results with different
CME strengths and the experimental data for those three
collision systems simultaneously. The chi-square for a
CME observable O in centrality bin i is defined as follows:

2
" (0, - E,
=Y (o—E) — S (16)
k=0 4

@ Springer

where we select the CME observable of O; as the double
ratio between Au+Au and isobar collisions to reduce the
effect of the background.

{Ay(W)}au
()} an X {chh/dn}Au

iAW) e ’
(V20 Hsobar X {chh/d”}lsobar

A7)

where y is ypp or wgp, and dN, /dn denotes the number of
charged particles. E, represents experimental results. wi rep-
resents the error in the calculation results of O;, and i denotes
in the 20-50% centrality bin. Figure 18 shows the results
of the two-dimensional normalized chi-square distribution
with respect to the different CME signal strengths in Au+Au
collisions and the different CME signal strengths in isobar
collisions. For the PP plane cases shown in panels (a) and
(c), the AMPT simulation results align most closely with
the experimental data when the CME strengths for Au+Au,
Ru+Ru, and Zr+Zr collisions are all close to 2%. This indi-
cates that, for the PP plane, the experimental results tend
to exhibit small CME signals for all three collision systems
because the CME signal in the PP plane is relatively insensi-
tive to the SP plane. However, for the SP plane cases shown
in panels (b) and (d), the AMPT simulation results align
most closely with the experimental data when the CME
strength in Au+Au collisions is 7.5% and that in Ru+Ru
collisions is 5%, or when the CME strength in Au+Au col-
lisions is 10% and that in Zr+Zr collisions is 7.5%. This
indicates that the experimental results for the SP plane tend
to exhibit larger CME signals than those for the PP plane for
all three collision systems, with stronger signals observed
in Au+Au collisions than in isobar collisions because the
CME signal exhibits greater sensitivity to the SP plane than
to the PP plane.

4 Summary

Using a multiphase transport model with varying CME
strengths, we extended our two-plane method analysis from
isobar to Au+Au collisions, both at , /sNN =200 GeV. Our

previous isobar collision studies revealed a significant differ-
ence (b/la = 0.65 + 0.18 ) in the CME signal-to-background
ratio between the two planes, complicating CME signal extrac-
tion in isobar collisions [64]. However, the current Au+Au
analysis demonstrated a reduced difference (b/a = 0.88 + 0.08)
in the CME signal-to-background ratio between the two
planes, which enhanced the experimental reliability of the two-
plane method for the measurement of Au+Au collisions.
Through comprehensive chi-square analysis across the three
collision systems, we established that Au+Au collisions
exhibit stronger CME signatures compared with isobar
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Fig. 18 (Color online) Two-dimensional normalized chi-square distri-
bution with respect to the different CME signal strengths in Au+Au
collisions and the different CME signal strengths in isobar collisions.
The chi-square (y?) value represents the goodness of how well our
model describes the experimental data for the CME observable of
Ay /v,dN,, /dn. The panels a and b show the results between Au+Au

systems, which is consistent with a simple picture: Au+Au
collisions should have a larger magnetic field because there are
more protons [11, 43, 62], particularly when analyzed with
respect to the SP. These findings not only validate the improved
applicability of the two-plane method in Au+Au collisions but
also provide critical insights into the system size dependence
of the CME observable, advancing our future experimental
measurements of the CME.
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