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Abstract
In this paper, we propose a numerical calculation model of the multigroup neutron diffusion equation in 3D hexagonal geom-
etry using the nodal Green’s function method and verified it. We obtained one-dimensional transverse integrated equations 
using the transverse integration procedure over 3D hexagonal geometry and denoted the solutions as a nodal Green’s functions 
under the Neumann boundary condition. By applying a quadratic polynomial expansion of the transverse-averaged quanti-
ties, we derived the net neutron current coupling equation, equation for the expansion coefficients of the transverse-averaged 
neutron flux, and formulas for the coefficient matrix of these equations. We formulated the closed system of equations in 
correspondence with the boundary conditions. The proposed model was tested by comparing it with the benchmark for the 
VVER-440 reactor, and the numerical results were in good agreement with the reference solutions.
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1  Introduction

Among the pressurized water reactors (PWRs) operating 
worldwide, Russian-type PWRs such as VVER-440 and 
VVER-1000 comprise hexagonal fuel assemblies. Liquid 
metal fast breeder reactors and very high-temperature reac-
tors under the Next-Generation Nuclear Plant project also use 
hexagonal assemblies. In addition, these reactors are employed 
for broader applications in the nuclear industry, such as plu-
tonium and hydrogen production; therefore, considerable 
improvements have been achieved in the underlying physics 
calculations of reactors with hexagonal geometry. In the early 
years, reactor physics calculations for a hexagonal geometry 
were performed using the finite difference method [1, 2]. In 
the 1990s, conformal mapping of a hexagon onto a rectangle 
was reported and codes based on conformal mapping, such as 
ANC-H [3] and PANTHER [4], were developed. Moreover, 
numerical methods based on the finite element method have 
been proposed to solve the neutron diffusion equation for hex-
agonal geometries  [5–8]. The nodal methods developed in 

the mid-1970s were introduced to neutron diffusion calcula-
tions in hexagonal geometry, and nodal method codes such 
as DIF3D [9] were developed and applied. Owing to the geo-
metrical complexity, it is difficult to solve nodal equations in 
hexagonal geometry using Cartesian coordinates; therefore, 
various approximation methods are applied. In the function 
expansion nodal method (FENM), the neutron flux within 
a node is expanded using polynomials or exponential func-
tions [10–12]. This method has been used to solve multigroup 
neutron space-dependent kinetics equations in some stud-
ies  [13–17]. In Cartesian geometry, nodal methods apply 
the transverse integration procedure (TIP) to the 3D neutron 
diffusion equation, resulting in three one-dimensional diffu-
sion equations called transverse integrated equations. When 
TIP is applied to a hexagonal geometry, singular (discontinu-
ous) terms arise in the transverse leakage terms. Wagner [18] 
ignored these discontinuous terms in their solution and used 
lower-order polynomials to approximate the average source 
of a transverse integrated equation. The use of the nodal 
Green’s function method (NGFM) allows for more accurate 
treatment of discontinuous terms that arise from the TIP. 
However, the accurate treatment of discontinuous terms was 
not implemented in earlier studies  [19, 20]. The method pre-
sented in [21] improved the accuracy and fidelity of the code 
by adding the effect of discontinuous terms to the transverse 
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integrated flux solution; however, the detailed description 
was limited to a two-dimensional geometry. In this paper, we 
propose a numerical model to solve the multigroup neutron 
diffusion equation in 3D hexagonal geometry using NGFM 
under the Neumann boundary condition. This model consid-
ers discontinuous terms in the solution of the 1D transverse 
integrated equation. By comparing this with the benchmark 
for the VVER-440 reactor, we demonstrate the accuracy of 
the proposed model.

2 � Description of the method

2.1 � The TIP for multigroup neutron diffusion 
equation in 3D hexagonal geometry

In 3D Cartesian coordinates (Fig. 1), the multigroup neutron 
diffusion equation within node k can be written as

where

Integrating Eq. (1) over the volume of node k leads to the 
following nodal balance equation:
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In Eq. (3),
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Fig. 1   Hexagonal coordinate system
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are the transverse integrated neutron flux, transverse inte-
grated neutron source, and transverse integrated neutron 
current, respectively. Lk

gx
 is the transverse leakage given by

Here, the following relationship between the transverse inte-
grated flux and transverse integrated current is used:

In Eq. (13)
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Similar to Eq. (9), the transverse integrated equation 
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We define the transverse-averaged neutron flux, transverse-
averaged neutron current, and transverse-averaged neutron 
source as follows:

Substituting Eqs. (23)–(27) into Eqs. (9) and (18), the fol-
lowing equations for the transverse-averaged neutron fluxes 
are obtained

where
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are the transverse-averaged leakages along the x(x = x, u, �) 
and z-directions, respectively, and

2.2 � Solution to the transverse integrated equation 
using Green’s function under the Neumann 
boundary condition

Equation (28) is written as follows (the index g and k and 
the—symbol are omitted for convenience):

The Green’s function is the solution of the following equa-
tion, which corresponds to Eq. (33)
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where LJ(x) = LJ,y(x) + LJ,z(x) denotes the practical leakage 
term in the y and z-directions.

Substituting Eqs. (38), (39) and (40) again into Eq. (41), 
the fourth, fifth, and sixth terms in right side of Eq. (41) 
become zero, and thus, the following equation for the trans-
verse-averaged flux is obtained:

2.3 � Constitution of the closed system of equations

The transverse-averaged flux, source, and leakage terms 
are expanded using orthogonal polynomials:

where
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where
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(x)G(x,±a)dx

=
1

�D sinh 2�a ∫
a

−a

�
n
(x) cosh �(a ± x)dx,

n = 0, 1, 2

(57)f k
+
�k(a) = f k+1

−
�k+1(−a)

the net neutron current coupling equation can be rewritten as

(58)Jk(−a) = Jk−1(a), Jk+1(−a) = Jk(a),

where f k
+
 and f k+1

−
 are the discontinuity factors on the right 

boundary of node k and left boundary of node k + 1 , respec-
tively. Moreover, Rk = Gk(a, a), Tk = Gk(a,−a) are called 
the reflective and transmission factors, respectively.

We substitute Eq. (43) into Eq. (42) and multiply both 

sides of Eq. (42) by �m(x) . Using 
2ys(x)

2
√
3a2

 as the weighting 

function and integrating over the interval [−a, a] , the follow-
ing equation for the expansion coefficients of the transverse-
averaged flux is obtained:

where [G] denotes a 3 × 3 matrix with the following 
elements:

The elements of the column vectors [G±] and [GIS±] are as 
follows:

(59)

[G±

I
]
n
= ∫

a

−a

�
n
(x)G(x,±a)dx

=
1

�D sinh 2�a ∫
a

−a

�
n
(x) cosh �(a ± x)dx,

n = 0, 1, 2

(60)

� =[G](Q − L) + [G+]J(a) + [G−]J(−a)

+
D

2a
(�3 +�6 −�1 −�2)[GIS+]

+
D

2a
(�3 +�6 −�4 −�5)[GIS−]

(61)

[G]mn =
1

2
√
3a2

∫
a

−a

2ys(x)�m(x)dx∫
a

−a

�n(x0)G(x, x0)dx0

=
1

3a2 ∫
a

−a

(2a − �x�)�m(x)dx
�
∫

x

−a

�n(x0)
cosh �(a − x) cosh �(a + x0)

�D sinh 2�a
dx0

+ ∫
a

x

�n(x0)
cosh �(a + x) cosh �(a − x0)

�D sinh 2�a
dx0

�
,m, n = 0, 1, 2
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By contrast, the corner point flux values of a hexagonal node 
are included in Eqs. (55) and (60), which are also unknown 
quantities. For the interior nodes away from the reactor core 
boundaries, we approximate the corner point flux in terms of 
the node-averaged fluxes, surface-averaged fluxes, and dif-
fusion coefficients in three adjacent nodes, as follows [21]:

(62)

[G±]n =
1

2
√
3a2

∫
a

−a

2ys(x)�n(x)G(x,±a)dx

=
1

3a2�D sinh 2�a ∫
a

−a

(2a − �x�)�n(x) cosh �(a ± x)dx, n = 0, 1, 2

(63)

[GIS+]n =
1

2
√
3a2 ∫

a

−a

2ys(x)�n(x)∫
a

0

G(x, x0)

2a − x0
dx0

=
1

3a2�D sinh 2�a ∫
a

0

1

2a − x0
dx0

�
cosh �(a − x0)∫

0

−a

(2a + x)�n(x) cosh �(a + x)dx

+ cosh �(a − x0)∫
x0

0

(2a − x)�n(x) cosh �(a + x)dx

+ cosh �(a + x0)∫
a

x0

(2a − x)�n(x) cosh �(a − x)dx
�
, n = 0, 1, 2

(64)

[GIS−]n =
1

2
√
3a2 ∫

a

−a

2ys(x)�n(x)∫
0

−a

G(x, x0)

2a + x0
dx0

=
1

3a2�D sinh 2�a ∫
0

−a

1

2a + x0
dx0

�
cosh �(a − x0)∫

x0

−a

(2a + x)�n(x) cosh �(a + x)dx

+ cosh �(a + x0)∫
0

x0

(2a + x)�n(x) cosh �(a − x)dx

+ cosh �(a + x0)∫
a

0

(2a − x)�n(x) cosh �(a − x)dx
�
, n = 0, 1, 2

(65)

�0 =

[
2(D1 + D2)�1� + 2(D2 + D3)�2� + 2(D3 + D1)�3�

−

3∑
i=1

Di�i

]/
3(D1 + D2 + D3)

where �i and �i� (i = 1, 2, 3) are the node- and surface-aver-
aged fluxes, respectively.

Note that the corner point numbers in Eqs. (55) and 
(60) correspond to the calculation along the x-direction. 
The corner point numbers in the u- and �-directions are 

smaller than one and two, respectively, compared to those 
in the x-direction, that is,

u − axis direction;

�1 → �6,�2 → �1,�3 → �2,�4 → �3,�5 → �4,�6 → �5

� − axis direction;

�1 → �5,�2 → �6,�3 → �1,�4 → �2,�5 → �3,�6 → �4

Fig. 2   Material layout of the twelfth core in the VVER-440 problem Fig. 3   Material layout on the vertical section of the core
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Next, we consider the equation for the transverse-averaged 
flux in the z-direction

In this case, there are no discontinuous terms in the trans-
verse leakage; therefore, the procedure is similar to that for 
a square node [22–24]. In addition, Legendre polynomials 
are used instead of Eq. (44). Then, the zeroth-order moment 
of the transverse leakage term becomes

The first- and second-order moments of the transverse leak-
age term are the same as those of the square node. The 
net neutron current coupling equation, equation for the 

(66)−D
d2

dz2
�(z) + �r�(z) = Q(z) − L(z)

(67)
Lz0 =

1

az ∫
az

−az

L(z)dz =
1

3a

∑
s=x,u,�

1

2az ∫
az

−az

{[
1

2ys(x) ∫
ys(x)

−ys(x)

(
− D

�

�x
�(x, y, z)

)
dy
]
x=a

dz

−

[
1

2ys(x) ∫
ys(x)

−ys(x)

(
− D

�

�x
�(x, y, z)

)
dy
]
x=−a

dz
}
=

1

3a

∑
s=x,u,�

[Js(a) − Js(−a)] = Lz

Fig. 4   Assembly-wise normalized power distribution of the twelfth core in the VVER-440 problem

Table 1   Group constants of 
the materials in the VVER-440 
problem

Material D1 (cm) D2 (cm) �
r1 (cm

−1) �
a2 (cm

−1) ��
f1 (cm

−1) ��
f2 (cm

−1) �1→2 (cm
−1)

1 1.34660 0.37169 0.025255 0.064277 0.0044488 0.073753 0.016893
2 1.33770 0.36918 0.024709 0.079361 0.0055337 0.105810 0.015912
3 1.33220 0.36502 0.024350 0.10010 0.0070391 0.149640 0.014888
4 1.19530 0.19313 0.035636 0.13498 0.0 0.0 0.022264
5 1.44850 0.25176 0.033184 0.032839 0.0 0.0 0.032262
6 1.34130 0.24871 0.029301 0.064655 0.0 0.0 0.027148

Table 2   Numerical results of the VVER-440 problem

Method Δkeff (%) ΔPmax (%) ΔPavg (%)

NGFM 0.029 2.51 0.63
FENM 0.026 2.35 0.58
AFEN 0.030 3.20 0.73
ANC-H 0.025 1.28 –
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expansion coefficients of the transverse-averaged flux, and 
matrix elements included in these equations also have the 
same forms as those in a square node.

The nodal balance equation, net neutron current cou-
pling equation in each coordinate direction, its boundary 
conditions, and equation for the expansion coefficients of 
the transverse-averaged flux constitute a closed system of 
equations.

3 � Numerical results

The three-dimensional VVER-440 benchmark [3] was used 
to test the proposed numerical method. The material layout 
of the core of the problem is shown in Figs.  2 and 3. The 
group constants of these materials are listed in Table 1. The 
numerical results of this problem are summarized in Table 2, 
where Δkeff is the error of the effective multiplication factor 
and ΔPmax and ΔPavg are the maximum and average errors of 
the nodal power, respectively. For comparison, the numerical 
results of the other methods are also presented in this table. 
NGFM is the code based on the numerical method proposed 
in this study, and FENM, AFEN, and ANC-H are the codes 
based on the flux expansion nodal method, analytic function 
expansion nodal method, and conformal mapping, respec-
tively, [12]. The accuracy of our numerical results was simi-
lar to that of other numerical methods. The effective multi-
plication factor obtained from our calculation was 1.01161, 
and the difference from the reference value (1.01132) was 
0.029%. The maximum and average percentage errors of 
the nodal power were 2.51% and 0.63%, respectively. In the 
calculations, the axial mesh spacing was set to 25 cm. The 
reference solution was obtained from DIF3D-FD [25] runs 
with 216 and 294 triangle/hexagon subdivisions and a 2.5-
cm axial mesh spacing. Figure 4 shows the assembly-wise 
normalized power distribution. The maximum error in the 
assembly-wise normalized power was 0.89%. These results 
show that the proposed numerical method is accurate for 
solving neutron diffusion equations in hexagonal-z geometry.

4 � Conclusion

A numerical model was proposed to solve the neutron diffu-
sion equation in hexagonal-z geometry, and the discontinu-
ous terms in the transverse leakage were explicitly consid-
ered in this model. The solution of 1D transverse integrated 
equation was expressed using the nodal Green’s function 
under the Neumann boundary condition. Using the quadratic 
polynomial expansion of the transverse-averaged quantities, 
the net neutron current coupling equation and equation for 
the expansion coefficients of the transverse-averaged neutron 

flux were obtained. We constructed a closed system of 
equations by deriving the equations corresponding to the 
boundary conditions. The numerical model proposed in this 
study was tested by comparison with the benchmark for the 
VVER-440 reactor, and the numerical results were in good 
agreement with the reference solutions.
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