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Abstract

In this paper, we propose a numerical calculation model of the multigroup neutron diffusion equation in 3D hexagonal geom-
etry using the nodal Green’s function method and verified it. We obtained one-dimensional transverse integrated equations
using the transverse integration procedure over 3D hexagonal geometry and denoted the solutions as a nodal Green’s functions
under the Neumann boundary condition. By applying a quadratic polynomial expansion of the transverse-averaged quanti-
ties, we derived the net neutron current coupling equation, equation for the expansion coefficients of the transverse-averaged
neutron flux, and formulas for the coefficient matrix of these equations. We formulated the closed system of equations in
correspondence with the boundary conditions. The proposed model was tested by comparing it with the benchmark for the
VVER-440 reactor, and the numerical results were in good agreement with the reference solutions.

Keywords NGFM - Hexagonal geometry - Multigroup neutron diffusion equation

1 Introduction

Among the pressurized water reactors (PWRs) operating
worldwide, Russian-type PWRs such as VVER-440 and
VVER-1000 comprise hexagonal fuel assemblies. Liquid
metal fast breeder reactors and very high-temperature reac-
tors under the Next-Generation Nuclear Plant project also use
hexagonal assemblies. In addition, these reactors are employed
for broader applications in the nuclear industry, such as plu-
tonium and hydrogen production; therefore, considerable
improvements have been achieved in the underlying physics
calculations of reactors with hexagonal geometry. In the early
years, reactor physics calculations for a hexagonal geometry
were performed using the finite difference method [1, 2]. In
the 1990s, conformal mapping of a hexagon onto a rectangle
was reported and codes based on conformal mapping, such as
ANC-H [3] and PANTHER [4], were developed. Moreover,
numerical methods based on the finite element method have
been proposed to solve the neutron diffusion equation for hex-
agonal geometries [5—-8]. The nodal methods developed in
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the mid-1970s were introduced to neutron diffusion calcula-
tions in hexagonal geometry, and nodal method codes such
as DIF3D [9] were developed and applied. Owing to the geo-
metrical complexity, it is difficult to solve nodal equations in
hexagonal geometry using Cartesian coordinates; therefore,
various approximation methods are applied. In the function
expansion nodal method (FENM), the neutron flux within
a node is expanded using polynomials or exponential func-
tions [10—12]. This method has been used to solve multigroup
neutron space-dependent kinetics equations in some stud-
ies [13-17]. In Cartesian geometry, nodal methods apply
the transverse integration procedure (TIP) to the 3D neutron
diffusion equation, resulting in three one-dimensional diffu-
sion equations called transverse integrated equations. When
TIP is applied to a hexagonal geometry, singular (discontinu-
ous) terms arise in the transverse leakage terms. Wagner [18]
ignored these discontinuous terms in their solution and used
lower-order polynomials to approximate the average source
of a transverse integrated equation. The use of the nodal
Green’s function method (NGFM) allows for more accurate
treatment of discontinuous terms that arise from the TIP.
However, the accurate treatment of discontinuous terms was
not implemented in earlier studies [19, 20]. The method pre-
sented in [21] improved the accuracy and fidelity of the code
by adding the effect of discontinuous terms to the transverse
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integrated flux solution; however, the detailed description
was limited to a two-dimensional geometry. In this paper, we
propose a numerical model to solve the multigroup neutron
diffusion equation in 3D hexagonal geometry using NGFM
under the Neumann boundary condition. This model consid-
ers discontinuous terms in the solution of the 1D transverse
integrated equation. By comparing this with the benchmark
for the VVER-440 reactor, we demonstrate the accuracy of
the proposed model.

2 Description of the method

2.1 TheTIP for multigroup neutron diffusion
equation in 3D hexagonal geometry

In 3D Cartesian coordinates (Fig. 1), the multigroup neutron
diffusion equation within node k can be written as

2 2 2
_D1;<5_ + 9 ‘3_><pk(x v.2)+ =X & (x,y,2)

0x2 0y 072 rgT 8 (1)
= 0lx.y.2)
where
G
Qi(x,y,2) = lz oog T szk ]‘Plg‘,(x,y,z) 2)
g'#g ffg'=1

Integrating Eq. (1) over the volume of node k leads to the
following nodal balance equation:

1 " X |y ko k
20 2 V@ - Jp-al+ 2l = =)
X=X,U,V (3)
P = Ek
+ r8 8 8

where

Fig. 1 Hexagonal coordinate system
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—x ys(x)
>, =— dz / dx @ (x,y, 2)dy )
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—a; —yA(X)
— ys(®)
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—y5(x)
¥s(x) ©)
V., = / dz/ dx/ dy=4\/§a2alf
o) :
1
y(x) = %(Za = |xD) (6)

where V/ is the volume of node k; 5]; and @: are the neutron

flux and neutron source averaged over V,, respectively; a

is the lattice half pitch; and a’z‘ is the haft height of node k.
In Eq. (3),

/ * dz
(X) )
<1>"(x Y, z)>dy]

o (a) =

2y5 @) Jy, (x)

and

k ky
J* (xd) =

a Yo%)
Ngaz [l [7 (-ngowna)]_,
®

are the net neutron currents averaged at both surfaces in the
x(x = x, u, v) and z-directions, respectively.

The transverse integration procedure for Eq. (1) leads to the
following equation:

&
—D’;@d)" (@) + 2 @8 () = 08 () - LE, (0 ©

,X(x = x,u,v)

where

. uff ys(x) v

o= [ & [ @y (10)
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at Vs (x)

0 () = / dz Q,(x.y.2)dy (1n
—a; —yA(X)

and

ask(x y,2)|d (12)
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are the transverse integrated neutron flux, transverse inte-

grated neutron source, and transverse integrated neutron

current, respectively. L* is the transverse leakage given by
8Xx

40 == [, (3, ) = 24, =3, 00

V3

) = Ty (v~

(S§n(x) d.

g \/g dx
25

_ pk26®) [¢§(x, Y,() + P, —ys(x))]

V3
(13)

Here, the following relationship between the transverse inte-
grated flux and transverse integrated current is used:

|05 3,(0) + =y, (0)|

k e d g
JE @) = = D=k ()

(14)
+ Dy )| @A, 3,) + D, =y, ()
In Eq. (13)
ak
(Df,(x’ iys(x)) = [ ; ¢§(X7 Yy, Z)ly:iyx()c)dZ (15)
k k »e 0 ok
ng(x’ iaz) B /—y.(x) [ - D 80z 22 (x Y Z)] iaﬁdy (10
at
JE (x, y,(x) = / - Di— cb"(x ¥, z)] dz a7
&n —ak §on y=£y,(x)

1 2
and y'(x) = ———=sgn(x), ¥’ (x) = ——=46(x).
N ‘\/5 N \/5

Similar to Eq. (9), the transverse integrated equation
along the z-direction is given by

. d?
£ = =P @+ D=0 - L (18)
where
a Ys(xX)
Dy (2) = / de [ @(x,y,9)dy (19)
—a =y, ()
. a V(%) .
0i.(2) = / dx Q% (x,y,2)dy (20)
—a =y, (%)

Li(2) = Z (ng(a, 2) = Ty (~a, Z)) 1)
y (x)
Jo(a,2) = [ /_ " cb"(x Y, Z))dY] .. @

We define the transverse-averaged neutron flux, transverse-
averaged neutron current, and transverse-averaged neutron
source as follows:

—k Yy () L 1 B}
D (%) D% (x,y,7)dy = D" (x
=« (x)ak/ / o TN = o P
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25)
() / @ / oty oty = ——at
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Substituting Egs. (23)—(27) into Eqgs. (9) and (18), the fol-
lowing equations for the transverse-averaged neutron fluxes
are obtained

-DF— d? q) >k @ 0 Zk
(13 Pa + 2, @, (1) = 0,() ~ L, () 08)

,x(x = x,u,v)

& a> @)+ ® (=0.0-L.() (29)
gd 2 r.g 82 82 82
where

k
gx
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\f s [ : ]
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24/3y,(0)
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@ Springer



159 Page4of10

|-M. Ho et al.

Lo=3 % [lu@-7 a2 (31)

X=X,U,V

are the transverse-averaged leakages along the x(x = x, u, v)
and z-directions, respectively, and

B, (v 2,(x) = Ziazcbg(x, 5,0,

—k
7, (5 3,00) = Ziazlf;,, (x, £3,00),

— (32)
7 db) = =L I (x, ),

) T

—k 1 Yy(x) a

7 (+a. =[ (—D"—cb",, )d]
R e ) (an D)

2.2 Solution to the transverse integrated equation
using Green'’s function under the Neumann
boundary condition

Equation (28) is written as follows (the index g and k and
the—symbol are omitted for convenience):

_Di_zrb(x) + Z,0() = 0(0) — L), x = x,u, v 33)

The Green’s function is the solution of the following equa-
tion, which corresponds to Eq. (33)

d2
—D@G(x, xp) + 2,G(x, x) = 6(x — xp) (34)
, . dG(x, x))
Using Neumann boundary conditions, [—] and
Xo==%a

Eqgs.(14),(23), and (24), the following equation for the trans-
verse-averaged flux is obtained

D(x) = / (Q(xp) — L(xp)G(x, xp)dxg — J (@)G(x, a)
+J, (—a)G(x,—a) — 2%[4>1 + @, — 20 (a)]G(x,a)

+ 2%@4 + @5 — 20, (-a)|G(x, —a)
(35)

where

451 = (D(Cl, ys(a))’ ¢2 = ¢(a’ ys(a))7 and

(D3 = ¢(O’ _ys(o))9 ¢4 = (D(_a9 _ys(a))s

&5 = D(—a,y,(a)), Pg = P(0,y,(0))

are the corner point flux values of the hexagonal node.

We denote the transverse leakage by the sum of the
individual terms as follows:

L(x) =L, (x) + L, (x) + Ly, (x) + Ls(x) (36)
where
Ly, () = —— 1,06, 9,(9) — (6, =3, )],

3y,(x)

Ly (0= %Uz(x, a,) - J.(x,—a,)],

sgn(x) d
Loy = D=8 41\ (1)) + Blx, —y,() — 4O,
* 21/3y,(0) &
Ly = ~D—25— [@(x, y,(0)) + D(x, —y,(x)) — 20()],

3ys(0)

37
where L, (x) and Ly, are the singular (discontinuous) terms
that appear in the hexagonal geometry.

Using the following linear approximations for

D(x), D(x, y,(x)), P(x, —y,(x))
D(x, y,(x)) + P(x, =y, (x))

D(x) = 3 (38)
D, — D
X+dg x>0
Oy, =1 o, L, (39)
X+ 4)6 x < 0
a
b, -
2 Sx+ D5, x>0
Py, =1 ¢, Lo, (40)
—x+P;, x<0
a

in Eq.(35), the integral for the discontinuous terms leads to
the following equation

d(x) = / (O(xp) = L;(xg))G(x, x9)dxg — J (@)G(x, a) + J . (—a)G(x, —a)

- 2[(Dl + @, - 2@, (0)]G(x,a) + 2[454 + &5 — 20, (—-a)|G(x, —a)
2a 2a

D D “
+ Z[¢3 + @ — 2@ (0)]G(x, 0) + 5@3 + @ — D, — ¢2)/0 (

% G(x,x,)

D
+ — (D, + D, — D, — D —_—
2a( 3 6 4 ) —_a Qa+xy) 0

G(x, xg) “D

2a — xy)
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where L,;(x) = L, (x) + L, .(x) denotes the practical leakage
term in the y and z-directions.

Substituting Egs. (38), (39) and (40) again into Eq. (41),
the fourth, fifth, and sixth terms in right side of Eq. (41)
become zero, and thus, the following equation for the trans-
verse-averaged flux is obtained:

d(x) = / (O(xg) — L;(xp))G(x, x0)dxy — J (a)G(x, a) + J (—a)G(x, —a)

L= /zys(x)L(x)wn(x)dx A7)

24/3a2 J-a

where Q,, is related to @, via Eq. (2).
The zeroth-order moment of the transverse-averaged
flux equals the node-averaged flux, that is,

(42)
+ L@+ 0-0 _@)/“—G(x,xo)dx L s o—0,-0y [ SO
2a° ° 6 ! 2 o (a-—xy) 07 23 6 4 5 —a Qa+xy) 0
2.3 Constitution of the closed system of equations 1 a
D)= 5 / 2y ()P (x)w(x)dx
The transverse-averaged flux, source, and leakage terms 2V3a _Z (48)
are expanded using orthogonal polynomials: = 1 / 2y ()@ (x)dx = @
2y/3a2 J-a

n=2
D)= ) B,0,()
n=0

n=2

o) =)’ 0,0,(x) (43)
n=0

n=2
L) =) Lo,
n=0

where
2 20 (92 5
o) = L) =3y 2. =\ [ 225 -3
(44)
are orthogonal [18]:
1 a
/ 2y,(N@,, ()@, (x)dx = 6, (45)
24/3a% J-a

where [ dx [” 0 gy = 14 2y (0)dx = 24/3a? denotes the

=)
area of a hexagon with lattice pitch 2a.
From Eq. (45), the expansion coefficients in Eq. (43)
are given by

®» =1 / 2y, (OPHw, (X)dx
24/3a% J-a

Q,=

/ 2y,(0) 0w, (x)dx (46)

a

1
2\/§a2

By contrast, the zeroth-order moments of the leakage terms
in the y and z coordinate directions are given by

a

1
Ly, = —/ 2y, (0L, (x)dx
21\/3612 ) _ (49)
=52 L@ Lal=L,
1 a
L, =——— / 2y,(0)L,; ,(x)dx
23 S (50)

= 31_a Z [/ (a) — J (-a)] = ZJ’Z

S=u,v

The first- and second-order moments can be obtained using
an extrapolation procedure for two adjacent nodes, as in a
square node.

The transverse-averaged flux at the boundary x = +a is as
follows:

D(+a) = / (O(xg) — Lj(x0)G(xy, £a)dx,

- J (a)G(a,+a) + J (—a)G(—a, +a)
G(xy, xa) (51)

D a
+—(D;+ D, -, - D dx,
Za( 3+ P — Dy 2)/0 2a—xg 0
0
D G(xy, +a)
+ —(D;+ P —-D, - D _—
2a( 3 6 4 5)[(1 2a + x,

Inserting Eq. (43) for Q(x,) and L,(x,) into Eq. (51) leads to
the following equation

D(a) = [Gj+] = J (a)G(a,a) + ] (—a)G(—a,a) + [G¢+]
(52)
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(D(—a) = [GI_] — Jx(a)G(a, _a) + JX(—a)G(_a, _a) (53) Jk(—a) - Jk_l(a), Jk+] (—Cl) - Jk(a), (58)
+ [Gs—1
s the net neutron current coupling equation can be rewritten as
where
2
= >0, - L)IG}), (54)
n=0
D “G,xa) D ’ G, a)
Gyt = = (D3 + Dy — D, — P x4 (P 4+ Py — D, — D Lo
[Cst] = 5, (@3 + Ps = Py 2)/0 (2a — x) 20 D3 Po = Pa= ) —a Qa+x) (55)
1 4 coshk(a + x) D % cosh k(a + x)
=—|(D;+ O, — D, - D _ —(D;+ O, —D, - D —dx]
2ak sinh 2ka [( 3+ Ps ! 2 0 2a—x) 2a( 3+ Ps 4 5) /_a 2a+x
+ _ a
(G, = /_ ) ®,(0)G(x, xa)dx (G, = / ®,(X)G(x, +a)dx
3 1 “ (56) - a
~ kDsinh2ka /_ a @, (¥) cosh k(@ + x)dx, = ; / ®,(x) cosh x(a + x)dx, (59)
kDsinh2ka J_,
n=0,1,2 n=0,12
where k = Er where f¥ and f**! are the discontinuity factors on the right

Using the continuity conditions of the transverse-aver-
aged flux and the neutron current at the interfaces between
adjacent nodes,

frdk @) = 1 o (—a) (57)

[G]

1
mn — 2\/5@2

1 a
=L /_ (@~ |x|)wm(x)dx[ /_

,(xy)

boundary of node k and left boundary of node k + 1, respec-
tively. Moreover, R* = G*(a, a), T* = G*(a, —a) are called
the reflective and transmission factors, respectively.

We substitute Eq. (43) into Eq. (42) and multiply both

. . 2y L
sides of Eq. (42) by w,,(x). Using ——— as the weighting
24/3a?
function and integrating over the interval [—a, a], the follow-

ing equation for the expansion coefficients of the transverse-
averaged flux is obtained:

@ =[Gl(Q — L) + [G+]J(a) + [G=1J(—a)

D
+ 5 (@3 + Dy =~ By~ D)[GygH] 60)

D

where [G] denotes a 3 X 3 matrix with the following
elements:

/ 2y, (x)w,,(x)dx / @, (x5)G(x, xy)dx

cosh k(a — x) cosh k(a + xo)dxo (61)

kD sinh 2xa

N “ ( )cosh k(a + x) cosh k(a — xp)
. @0 kD sinh 2ka

dxo],m,n=0,1,2
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(G+] = L / ‘ 2. (90, (0 GCr, ) where @; and @, (i = 1, 2, 3) are the node- and surface-aver-
B2 S T - aged fluxes, respectively.
- 1 /a(2a— Do, (x) cosh k(@ & v)dx, n = 0, 1,2 Note that the corner point numbers in Egs. (55) and
3a*xkDsinh2xa /g 2 (60) correspond to the calculation along the x-direction.
(62) The corner point numbers in the u- and v-directions are
1 ¢ * G(x, xp)
[Gist], = 2y, (0w, (x) [ Z——dx,
21/3a? /- 0 24X
= 1 /a ! dx, [cosh kK(a —x )/O(Za + x)w, (x) cosh x(a + x)dx
302KD sinh 2xa 0 2a — X0 0 0 —a " (63)
X0
+ coshx(a — x,) (2a — x)w,(x) cosh k(a + x)dx
0 0 n
+ cosh k(a + x,) (2a — x)w,(x) coshx(a — x)dx|,n=0,1,2
0 n
o0
1 ‘ ? G(x, xp)
[Grs—1, = 2y,(x)@,,(x) dxo
2 3a2 —a —a 2a+x0
1 o &
= 37 Do /_ T dx, [cosh x(a — xy) /_ (2a + x)w, (x) cosh k(a + x)dx (64)

0
+ cosh k(a + x;) / (2a + x)w,(x) cosh k(a — x)dx
o

+ coshx(a + xo)/ (2a — x)w,(x) cosh x(a — x)d.x] ,n=0,1,2
0

By contrast, the corner point flux values of a hexagonal node  smaller than one and two, respectively, compared to those
are included in Eqgs. (55) and (60), which are also unknown  in the x-direction, that is,

quantities. For the interior nodes away from the reactor core
boundaries, we approximate the corner point flux in terms of
the node-averaged fluxes, surface-averaged fluxes, and dif-
fusion coefficients in three adjacent nodes, as follows [21]: v — axis direction;

D > D5, Dy 5> Dy, Dy > D, Dy > Dy, D5 > Dy, Dy > D

u — axis direction;
D > Dy, Dy > D, D3 > Dy, Dy > Dy, D5 —> Dy, Dy — Dy

@, = [2(D1 + D), + 2D, + Dy)®,, +2(Dy + D,)d,,

3
= Y\ D,,| /3D, + Dy +Dy) zlem .
& A
i=1 (65) 300F = 1
275 T T

150 |®

Fig.2 Material layout of the twelfth core in the VVER-440 problem Fig.3 Material layout on the vertical section of the core
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Fig.4 Assembly-wise normalized power distribution of the twelfth core in the VVER-440 problem

Table 1 Group constants of

the materials in the VVER-440 Material -~ Dy(em)  Dy(em) X, (em™) X, (em™) v (em™) v (em™) X, (em™)
problem 1 1.34660  0.37169  0.025255 0.064277 0.0044488 0.073753 0.016893
2 1.33770  0.36918  0.024709 0.079361 0.0055337 0.105810 0.015912
3 1.33220  0.36502  0.024350 0.10010 0.0070391 0.149640 0.014888
4 1.19530 0.19313  0.035636 0.13498 0.0 0.0 0.022264
5 1.44850 0.25176  0.033184 0.032839 0.0 0.0 0.032262
6 1.34130  0.24871  0.029301 0.064655 0.0 0.0 0.027148
Next, we consider the equation for the transverse-averaged
Table 2 Numerical results of the VVER-440 problem flux in the z-direction
Method Aker () AP () APus () —qi@@+z¢@ 0() - LR (66)
NGFM 0.029 2.51 0.63
FENM 0.026 2.35 0.58 In this case, there are no discontinuous terms in the trans-
AFEN 0.030 3.20 0.73 verse leakage; therefore, the procedure is similar to that for
ANC-H 0.025 1.28 - a square node [22-24]. In addition, Legendre polynomials
are used instead of Eq. (44). Then, the zeroth-order moment
of the transverse leakage term becomes
yS(X)
== / L(z)dz = — Z o / D cb(x v, z))dy] dz
s—x u,v a 2ys(x) Vs (X) =a

V50 9
(—D—¢mxmﬁﬂ
0x xX=—

1
[ 2y s €3 —y(x)

(67)

dz} - % S;’V[Js(a) —J(~a)] =L,
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The first- and second-order moments of the transverse leak-
age term are the same as those of the square node. The
net neutron current coupling equation, equation for the
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expansion coefficients of the transverse-averaged flux, and
matrix elements included in these equations also have the
same forms as those in a square node.

The nodal balance equation, net neutron current cou-
pling equation in each coordinate direction, its boundary
conditions, and equation for the expansion coefficients of
the transverse-averaged flux constitute a closed system of
equations.

3 Numerical results

The three-dimensional VVER-440 benchmark [3] was used
to test the proposed numerical method. The material layout
of the core of the problem is shown in Figs. 2 and 3. The
group constants of these materials are listed in Table 1. The
numerical results of this problem are summarized in Table 2,
where Ak is the error of the effective multiplication factor
and AP, and AP, are the maximum and average errors of
the nodal power, respectively. For comparison, the numerical
results of the other methods are also presented in this table.
NGFM is the code based on the numerical method proposed
in this study, and FENM, AFEN, and ANC-H are the codes
based on the flux expansion nodal method, analytic function
expansion nodal method, and conformal mapping, respec-
tively, [12]. The accuracy of our numerical results was simi-
lar to that of other numerical methods. The effective multi-
plication factor obtained from our calculation was 1.01161,
and the difference from the reference value (1.01132) was
0.029%. The maximum and average percentage errors of
the nodal power were 2.51% and 0.63%, respectively. In the
calculations, the axial mesh spacing was set to 25 cm. The
reference solution was obtained from DIF3D-FD [25] runs
with 216 and 294 triangle/hexagon subdivisions and a 2.5-
cm axial mesh spacing. Figure 4 shows the assembly-wise
normalized power distribution. The maximum error in the
assembly-wise normalized power was 0.89%. These results
show that the proposed numerical method is accurate for
solving neutron diffusion equations in hexagonal-z geometry.

4 Conclusion

A numerical model was proposed to solve the neutron diffu-
sion equation in hexagonal-z geometry, and the discontinu-
ous terms in the transverse leakage were explicitly consid-
ered in this model. The solution of 1D transverse integrated
equation was expressed using the nodal Green’s function
under the Neumann boundary condition. Using the quadratic
polynomial expansion of the transverse-averaged quantities,
the net neutron current coupling equation and equation for
the expansion coefficients of the transverse-averaged neutron

flux were obtained. We constructed a closed system of
equations by deriving the equations corresponding to the
boundary conditions. The numerical model proposed in this
study was tested by comparison with the benchmark for the
VVER-440 reactor, and the numerical results were in good
agreement with the reference solutions.
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