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Abstract
Nuclear mass is an important property in both nuclear and astrophysics. In this study, we explore an improved mass model that 
incorporates a higher-order term of symmetry energy using algorithms. The sequential least squares programming (SLSQP) 
algorithm augments the precision of this multinomial mass model by reducing the error from 1.863 MeV to 1.631 MeV. These 
algorithms were further examined using 200 sample mass formulae derived from the �E term of the Eisospin mass model. The 
SLSQP method exhibited superior performance compared to the other algorithms in terms of errors and convergence speed. 
This algorithm is advantageous for handling large-scale multiparameter optimization tasks in nuclear physics.
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1 Introduction

An atomic nucleus, which contains valuable information 
regarding atomic structure, is a fundamental physical prop-
erty [1]. Changes in atomic mass directly affect the nuclear 
stability and energy release during nuclear reactions [2]. 
The mass of a neutron-rich nucleus plays a crucial role in 
fast neutron capture (the r-process) during stellar nucleosyn-
thesis. Thus, studying mass is essential to comprehensively 
understand the formation and evolution of elements in the 
universe [3–5]. Recently, the development of radioactive 
ion beam facilities has led to experimental measurements 
of more than 3000 ground state atomic masses [6, 7], with 
studies continuously expanding to both sides of the � stabil-
ity line. In astrophysics, large amounts of data concerning 

the masses of neutron-rich or neutron-poor nuclei in regions 
far from the stability line are required. This is difficult to 
measure directly using the current technology. Therefore, 
several mass models have been proposed.

In 1935, Bethe and Weizsacker proposed the semiem-
pirical BW mass formula [8–10] that predicts mass with 
an accuracy of approximately 3 MeV. In Ref. [11], nuclear 
binding energy is divided into two parts: a large and smooth 
component and a small and fluctuating component. The clas-
sical droplet model only accounts for a smooth trend and 
fails to consider the rapid fluctuation of the binding energy 
around the shell gap with a number of protons and neutrons. 
This suggests that important physical effects are absent in 
the classical mass model [12, 13]. To solve this problem, 
physicists have developed macroscopic–microscopic mass 
models. These models introduce shell correction terms 
such as the finite force range droplet model (FRDM) [14], 
Koura–Tachibana–Uno–Yamada (KTUY) [15] and Lub-
lin–Strasbourg drop (LSD) [16], and micromass models 
such as the Hartree–Fock–Bogoliubov (HFB) approach [17, 
18] and relativistic mean-field (RMF) theory [19]. The cited 
research is primarily based on the density functional theory 
(DFT) [20]. Although DFT is more complex, it exhibits 
superior extrapolation capabilities.

Kirson et al. added six physical terms as constraints to 
the mass model [21–27]. The obtained BW2 mass model 
was improved to some extent by addressing the problems of 
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missing physics and overfitting that existed in early semiem-
pirical mass formulations, thereby reducing the root-mean-
square error (RMSD) [28] to 1.92 MeV. Machine learning 
has important applications in nuclear physics because of 
its ability to handle complex problems, such as predicting 
half-life, charge radius and charge density [29–32]. By con-
sidering the �-decay energy and Garvey–Kelson relations 
(GKs) and applying the multiobjective optimization (MOO) 
method [13, 33, 34], Qian et al. significantly improved the 
theoretical accuracy of the BW2 model. Considering the 
isospin dependence, Bhagwat improved the liquid drop 
model to a model related to isospin and added fluctuation 
terms [35], which explained the binding energy of nucleons 
very well. Sequential least squares programming (SLSQP) 
[36] is a suitable algorithm for solving nonlinear optimiza-
tion problems with constraints, because it can handle multi-
ple constraints and nonlinear objective functions.

In this work, we studied an improved BW2 mass model 
with a higher-order term of symmetry energy [37] by 
employing certain algorithms, such as SLSQP. The mass 
models and algorithms are presented in Sect. 2. In Sect. 3, 
we test the generality of the SLSQP method using 200 sam-
ple mass formulae derived from randomly selected param-
eters of the Eisospin mass model. Finally, the conclusions are 
presented in Sect. 4.

2  Semiempirical Mass Formula

2.1  BW3 Mass model

The BW3 mass model is derived from the droplet model 
and improves the semiempirical mass formula [8–10] by 
incorporating additional physical constraints [37]:

Equation (1) involves 12 parameters, and the �(N, Z) is 
defined as

where 1 denotes even-even nuclei, −1 denotes odd-odd 
nuclei, and 0 denotes odd-A nuclei. P can be expressed as 
follows:
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(2)�(N, Z) = [(−1)N + (−1)Z]∕2,

where vp ( vn ) represents the difference between Z(N) and the 
nearby magic number.

Equation (4) and its physical terms are derived from the 
application of the Fermi gas model to account for the 
nucleon binding energies. Following Pauli’s exclusion 
principle, the nucleons (protons, neutrons and nuclei) are 
assumed to move freely within the nuclear volume. The 
potential experienced by each nucleon is a superposition 
of the potentials created by other nucleons. The Fermi gas 
model provides the total kinetic energy of the nucleons as 
follows:

Assuming that the radii of the proton and neutron potential 
wells are identical, a binomial expansion near N = Z yields 
the following expression:

The first term contributes to the volume in the mass formula, 
whereas the second corrects for N ≠ Z . The third term rep-
resents a higher-order addition to the symmetry energy used 
to enhance the mass model.

2.2  Eisospin Mass model

The Eisospin mass formula can be expressed using Strutin-
sky’s theorem [35]:

Here, ELDM represents the macroscopic (M) section, which 
contains nine free parameters, hereafter referred to as 
M-parameters. The �E term corresponds to the fluctuation 
(F) of the binding energy and can generate more than 100 
parameters, which are hereafter referred to as F-parameters. 
These F-parameters can be set as the parameter pool to 
form sample mass formulae to test the generality of these 
algorithms.
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The macroscopic section includes the volume term 
related to the isotopic spin, the Coulomb term, the sur-
face term, the Coulomb energy correction term related to 
surface diffusion and the pairing term.

where aV , kV , aS , kS , aC and r0 denote the volume energy, 
isospin dependence of the volume energy, surface energy, 
isospin dependence of the surface energy, Coulomb energy 
and Coulomb radius, respectively. TZ is the third component 
of the isospin, and e is the electron charge.

For the correction, the smooth pairing energy [38] is 
given by

where �n , �p and �np are free parameters. The smooth pairing 
energy of even-even nuclei is zero because both protons and 
neutrons pair well in even-even nuclei.

�E can be expressed as

where k⃗ ≡ (k1, k2, k3, k4) ( 0 ≤ ki ≤ M for i = 1, 2, 3, 4. ), and 
x⃗ ≡ (x1, x2, x3, x4):

In this formula, N0(Z0) is the nearby magic number, and �1 , 
�2 , �3 and �4 are the free parameters. The �1 and �2 describe 
the closeness to a shell closure given the proton and neu-
tron conditions, respectively, and �3 and �4 are proportional 
to the Fermi momentum. The number of such parameters 
becomes quite large, (2M4 + 4) , and not all the terms need 
to be expanded to M. Therefore, it can be simplified as
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This reduces the number of parameters to 1
12
(M + 4)!∕M! + 4 

because the mean of �E is approximately 0. Therefore, the 
free parameter can be further reduced to 1

12
(M + 4)!∕M! + 2.

2.3  Algorithm principles

Several algorithms were investigated in this study: ordi-
nary least squares (OLS) [39], SLSQP [36], Constrained 
Optimization by Linear Approximation (COBYLA) [40], 
Broyden–Fletcher–Goldfarb–Shanno (BFGS) [41] and 
conjugate gradient (CG) [42]. SLSQP, COBYLA and Trust-
Constr [43] were found to be more effective algorithms for 
solving constrained optimization problems (COPs). To solve 
the COP in Eq. (9), SLSQP was used because it is the only 
algorithm that utilizes the information in the gradient and 
the Hessian matrix [44] to the fullest extent, resulting in 
faster convergence to the optimal solution.

In this formula, x⃗ is the solution vector, X is the vector space 
of solution vectors, l⃗(u⃗ ) is the upper (lower) bounds of the 
solution vector space, g(x⃗) is the equality constraint, h(x⃗) is 
the inequality constraint, and f (x⃗) is the objective optimiza-
tion function [45].

The SLSQP algorithm iteratively minimizes the objec-
tive function under constraints using linear approximation. 
This transforms the constrained nonlinear problem into an 
unconstrained least squares problem. In each iteration, the 
gradient and Hessian matrix [44] were calculated to update 
the solution using Lagrange multipliers for the constraints.

The superscript T denotes the transpose of the vector, and 𝜆 
and 𝜇 represent the penalty terms associated with the equal-
ity and inequality conditions, respectively [46].

An update rule is obtained for each iteration by solving 
an unconstrained least squares problem. This rule satisfies 
not only the equality and inequality constraints but also the 
first-order necessary conditions:
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where x⃗ = (x1, x2, x3,… , xk−2, xk−1, xk) ∈ X

X = x⃗|⃗l ≤ x⃗ ≤ u⃗

l⃗ = (l1, l2, l3,… , li−2, li−1, li)

u⃗ = (u1, u2, u3,… , uj−2, uj−1, uj).
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Jg and Jh are the Jacobian matrices of the equality and ine-
quality constraints, respectively [47].

According to the above update rule, the initial value x⃗1 is 
chosen, and the stopping criterion � is set. The gradient vec-
tor ∇fk(x⃗k) is computed at each iteration, k. If ||∇fk(x⃗k)|| < 𝜀 , 
the algorithm is terminated and an approximate solution x⃗∗ is 
obtained. This process constructs a sequential programming 
model as follows:

In this formula, Bk is a positive definite symmetric matrix 
used to approximate the inverse of the Hessian matrix and 
Aeq is the Jacobian matrix of the equality constraints.

This model is solved to obtain the modified direction Δx⃗ 
by computing the step size � such that the objective function 
decreases sufficiently along the search direction:

where s and t are positive scale factors. Finally, the esti-
mated points are updated as follows: x⃗k+1 = x⃗k + 𝛼Δx⃗ . By 
solving the system of equations above following this itera-
tive process, the objective function is gradually enhanced to 
determine the optimal solution that satisfies the constraints. 
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3  Discussion

The coefficients of the BW3 model are improved with 
less error between the calculated values and experimental 
data using the SLSQP algorithm [36]. Subsequently, the 
following constraints were incorporated to guarantee the 
physical viability of the program calculations: 

1. The nuclide numbers should satisfy N ≥ 8 and Z ≥ 8.
2. After satisfying Condition 1, the specific binding energy 

of the remaining nuclides, BTh

N+Z
 , is distributed in the 

range of 5 − 9MeV.

The performance metrics of the model were evaluated 
using RMSD [28], which is defined as follows:

where n represents the total number of nuclides involved in 
the calculation and BExi

 and BThi
 are the current experimental 

and theoretical nuclide binding energies, respectively.

The modified coefficients corresponding to several algo-
rithms are listed in Table  1. Different algorithms can lead 
to alterations in the weights of the terms within the model, 
as listed in table. The weights signify the degree to which 
each term affects the model and the symbols denote posi-
tive or negative corrections. The volume, surface, sym-
metry, Wigner, surface symmetry, pairing, higher-order 
correction and curvature terms have high weights because 
of their significant influence on the mass model, whereas 
the Coulomb, Coulomb exchange, and shell effect terms 
[21–27] have low weights because of their relatively minor 
influence. In the plot, the horizontal coordinate represents 
the number of neutrons N, and the vertical coordinate 

(18)RMSD =

�∑n

i=1
(BExi

− BThi
)2

n
,

Table 1  Coefficients of the 
BW3 mass model under each 
algorithm for binding energy 
(in MeV)

OLS SLSQP BFGS Trust-Constr L-BFGS-B CG

�V 16.58 16.05 16.05 16.03 15.19 16.20
�S −26.95 −23.10 −23.10 −22.96 −16.47 −23.33

�C −0.774 −0.74 −0.74 −0.74 −0.71 −0.74

�
t

−31.51 −31.62 −31.62 −31.53 −25.83 −31.50

�
xC

2.22 1.59 1.59 1.59 1.42 1.39
�W −43.40 −72.96 −72.97 −72.14 5.39 −57.06

�st 55.62 64.10 64.10 63.59 23.84 54.80
�p 9.87 10.56 10.56 10.56 12.36 10.63
�R 14.77 9.89 9.89 9.64 −4.19 9.87
�m −1.90 −1.88 −1.88 −1.88 −1.82 −1.89

�m 0.14 0.14 0.14 0.14 0.14 0.14
�pm −1.30 −11.36 −11.36 −11.31 −1.13 0.14
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represents the percentage of the relative error [12], which 
is defined as

The errors exhibit different trends for different nuclide 
regions under different algorithms. Figure 1a, 1b and 1c 
shows a reduction in the overall error and a narrowing of the 
fluctuation range of the light and medium nuclide regions. 
In Fig. 1e and  1f, the fluctuation amplitude of the heavy 
nuclide regions increases, which leads to an increase in 
the fluctuation amplitude of the light nuclide regions, such 
that the total RMSD does not decrease or even deteriorate. 
SLSQP [36] exhibits greater

advantages in reducing model errors when comparing 
performance metrics, such as �B

B
(%) [12] and RMSD [28] of 

the mass model obtained using different algorithms. This is 
attributed to the reduced weights of the surface and curva-
ture terms by SLSQP and the increased weights of Wigner, 
surface symmetry, pairing and higher-order correction 
terms. The results also show that in Atomic Mass Evaluation 
(AME2020), the influence of the surface and curvature terms 
on the binding energy decreases, whereas that of the Wigner, 
surface symmetry, pairing and higher-order correction terms 
on the overall effect increases. This also indicates that the 

(19)
�B

B
(%) =

BEx − BTh

BEx

× 100%.

mass model under SLSQP not only reduces the impact of 
the surface and curvature terms on the binding energy but 
also enhances the impact of the Wigner term on the overall 
effect, thereby improving its extrapolation ability [17, 18] 
and more accurately reflecting the contributions of different 
physical terms to the binding energy.

Figure 2 shows the relative error between the theoretical 
and experimental values of the BW3 mass model obtained 
by employing the SLSQP and OLS algorithms, where the 
x-axis represents the neutron number, the y-axis represents 
the atomic number, and the z-axis corresponds to the rela-
tive error percentage �B

B
(%) . In the figure, the fluctuations in 

the differences are more pronounced for the magic nuclei, 
particularly those nuclei in the vicinity of the doubly magic 
nuclei, which imply distinct interactions between the magic 
and nonmagic nuclei. The SLSQP improves the error near 
the doubly magic nuclei, captures the special interaction 
effects around the magic nuclei more accurately and thus 
enhances the accuracy of the theoretical model.

Figure 3 shows the performance of the SLSQP algo-
rithm with regard to even-even, odd-odd and odd-A nuclei. 
The optimization effect of the SLSQP algorithm on dif-
ferent types of nuclei exhibits significant differences. The 
improvement is most pronounced for even-even nuclei, 
whereas certain optimization results can also be attained 
for odd-A and odd-odd nuclei. Figure 3a shows that for 
even-even nuclei [48] (both Z and N are even), the SLSQP 
algorithm provides a significant reduction in RMSD [28] 
by 0.29 MeV, with a performance improvement of approxi-
mately 15.18%, achieving a more substantial optimization in 
the entire nuclei region compared with the theoretical value 
of the BW3 model with OLS coefficients. In Fig. 3b, for 
odd-Z and even-N nuclei, after the SLSQP optimization, the 
model RMSD is reduced by 0.19 MeV, with a performance 
improvement of approximately 9.79%. Similarly, in Fig. 3c, 

Fig. 1  (Color online) BW3 mass model relative error comparison 
using different algorithms, and its RMSD is shown in parentheses

Fig. 2  (Color online) BW3 mass model relative error comparison 
with SLSQP/OLS coefficients
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for even-Z and odd-N nuclei, the model RMSD is reduced 
by 0.23 MeV, with a performance improvement of approxi-
mately 12.23%. Notably, in the medium-nuclei region, the 
optimization results are closer to the experimental values. 
For odd-odd nuclei (both Z and N are odd), Fig. 3d shows 
that after SLSQP optimization, the model RMSD is reduced 
by 0.22 MeV and the performance is improved by approxi-
mately 12.02%. In particular, in the heavy-nuclei region, the 
optimization results are closer to the experimental values. 
These results further validate the effectiveness of the SLSQP 
algorithm for mass model optimization.

To test the generality of the SLSQP method, we devised 
200 sample mass formulae by randomly selecting param-
eters from the F-parameters in the �E term of the Eisospin 
mass model. As mentioned previously, the Eisospin mass 
model consists of two parts: the ELDM term, which contains 
nine M-parameters derived from the liquid drop model, and 
the �E term, which encompasses more than 100 F-param-
eters. If we set M = 4 in the Eisospin mass model, then 144 
F-parameters are obtained. Subsequently, we compared the 
results with the nuclear mass dataset AME2020 and found 
that the RMSD was 1.268 MeV in this situation. Next, we 
tested the contributions of these F-parameters individu-
ally and identified 53 parameters that had obvious effects 
on the binding energy. Subsequently, we randomly selected 
10 F-parameters from the 53 F-parameters and combined 
them with nine M-parameters to form a sample mass for-
mula. Thus, we devised 200 sample mass formulas to test 
the proposed algorithms presented in this work. The SLSQP 

method outperformed the other algorithms in terms of both 
error and convergence speed.

As shown in Fig. 4, the SLSQP algorithm performs sig-
nificantly better than the BFGS and L-BFGS-B algorithms. 
For example, at the 48th sample point, the △RMSD of the 
SLSQP algorithm was 4 MeV, whereas those of BFGS and 
L-BFGS-B were 23.9 MeV and 23.0 MeV, respectively. At 
the 67th sample point, the △RMSD of the SLSQP algo-
rithm was 2.7 MeV, whereas those of BFGS and L-BFGS-B 

Fig. 3  (Color online) BW3 
mass model performance on 
total nuclei with SLSQP/OLS 
coefficients

Fig. 4  (Color online) Finding 62 important parameters from the �E 
term of the Eisospin mass model, randomly selecting 10 items as a 
sample formula with ELDM , and obtaining 200 samples of mass for-
mulas. The △RMSD is defined as (RMSD − RMSDmin) × 100 , where 
RMSDmin is the minimum root-mean-square deviation optimized by 
the algorithm for 200 samples
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were 22.7 MeV and 21.8 MeV, respectively. However, the 
Trust-Constr algorithm exhibits a large error amplitude, 
which results in poor stability during parameter optimi-
zation. In terms of computational efficiency, compared 
with the SLSQP algorithm as a reference, the BFGS takes 
approximately 2.44 times longer, L-BFGS-B takes around 
2.78 times longer, and the Trust-Constr takes a staggering 
8.44 times longer. The SLSQP algorithm not only has good 
stability with small root-mean-square errors, but also high 
computational efficiency.

To verify the effectiveness of the SLSQP algorithm, 
the experimental and theoretical values were compared, 
as illustrated in Fig. 5. The experimental binding energy 
values were obtained from AME2020, whereas the theo-
retical values were obtained by optimizing the BW3 mass 
model using the SLSQP method. Among the experimental 
values, the maximum binding energy for the O isotopes is 
currently measured at 24O16 , with a binding energy value 
of 168.95 MeV. Beyond this isotope, the binding energy 
decreases as N increases. The SLSQP-optimized theoreti-
cal model predicts the maximum point to be at 26O18 with a 
binding energy value of 168.95 MeV, followed by a similar 
decline in the binding energy with an increase in N. For 
the other isotope chains, the experimental binding energy 
values exhibit an overall increasing trend without reaching 
a maximum. By optimizing the BW3 nuclear mass model 
using the SLSQP method, the following maximum bind-
ing energy points are predicted for these isotope chains: 
64Ca = 464.33MeV ,  88Ni = 656.72MeV ,  123Nb = 950.29MeV , 
141Rh = 1035.66MeV , 100Ge = 745.77MeV , 156Sn = 1148.31MeV , 
184Ce = 1311.84MeV , 206Dy = 1463.63MeV , 230W = 1613.36MeV , 
252Pb = 1761.89MeV.

4  Conclusion

In this study, we investigated an improved mass model with 
a higher-order symmetry energy term by employing several 
algorithms. The SLSQP algorithm demonstrated the best 
performance in terms of both root-mean-square errors and 
computational efficiency. This algorithm reduced the global 
RMSD from 1.863 MeV to 1.631 MeV (12.45% reduction). 
The odd (even) numbers of protons and neutrons are dis-
cussed, and the SLSQP algorithm reduced the local RMSD 
from 1.91 MeV to 1.62 MeV (15.18% optimization) when 
the nuclei have even numbers of both protons and neutrons. 
The local RMSD is reduced from 1.83 MeV to 1.61 MeV 
when the nuclei have odd numbers of protons and neutrons. 
With an odd (even) number of protons (neutrons), the local 
RMSD decreases from 1.94 MeV to 1.75 MeV (9.79% opti-
mization). The local RMSD is reduced from 1.88 MeV to 
1.65 MeV (12.23% optimization) when the number of pro-
tons is even and the number of neutron is odd. We tested 
these algorithms using 200 sample mass formulas derived 
from the Eisospin mass model. Each sample mass formula 
includes 19 free parameters, of which nine are M-parameters 
derived from the liquid drop model and 10 are F-parameters 
from the �E term of the Eisospin mass model. The SLSQP 
method provides better performance than the other algo-
rithms in terms of errors and convergence speed. According 
to this study, the SLSQP algorithm is suitable for handling 
large-scale multiparameter optimization tasks in nuclear 
physics.
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