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Abstract
This study explores the phenomenon of shape coexistence in nuclei around 172Hg, with a focus on the isotopes 170Pt, 172Hg, 
and 174Pb, as well as the 170 Pt to 180 Pt isotopic chain. Utilizing a macro-microscopic approach that incorporates the Lublin–
Strasbourg Drop model combined with a Yukawa-Folded potential and pairing corrections, we analyze the potential energy 
surfaces (PESs) to understand the impact of pairing interaction. For 170Pt, the PES exhibited a prolate ground state, with 
additional triaxial and oblate-shaped isomers. In 172Hg, the ground-state deformation transitions from triaxial to oblate with 
increasing pairing interaction, demonstrating its nearly �-unstable nature. Three shape isomers (prolate, triaxial, and oblate) 
were observed, with increased pairing strength leading to the disappearance of the triaxial isomer. 174 Pb exhibited a prolate 
ground state that became increasingly spherical with stronger pairing. While shape isomers were present at lower pairing 
strengths, robust shape coexistence was not observed. For realistic pairing interaction, the ground-state shapes transitioned 
from prolate in 170 Pt to a coexistence of �-unstable and oblate shapes in 172Hg, ultimately approaching spherical symmetry 
in 174Pb. A comparison between Exact and Bardeen–Cooper–Schrieffer (BCS) pairing demonstrated that BCS pairing tends 
to smooth out shape coexistence and reduce the depth of the shape isomer, leading to less pronounced deformation features. 
The PESs for even–even 170−180 Pt isotopes revealed significant shape evolution. 170 Pt showed a prolate ground state, whereas 
172 Pt exhibited both triaxial and prolate shape coexistence. In 174Pt, the ground state was triaxial, coexisted with a prolate 
minimum. For 176Pt, a �-unstable ground state coexists with a prolate minimum. By 178 Pt and 180Pt, a dominant prolate 
minimum emerged. These results highlight the role of shape coexistence and �-instability in the evolution of nuclear structure, 
especially in the mid-shell region. These findings highlight the importance of pairing interactions in nuclear deformation 
and shape coexistence, providing insights into the structural evolution of mid-shell nuclei.
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1 Introduction

Shape coexistence in atomic nuclei has garnered significant 
attention in the field of nuclear physics and has become a 
prominent topic in contemporary research. This phenom-
enon refers to the presence of multiple distinct shapes within 
a single nucleus, where states with similar energies exhibit 
different deformations [1]. Understanding nuclear shapes is 
crucial for revealing the internal structure and properties of 
nuclei, providing tools for predicting and explaining nuclear 
behaviors, and advancing nuclear physics [2–6].

The study of nuclear shapes has a long history, with sev-
eral foundational studies laying the groundwork for our cur-
rent understanding. Early theoretical developments included 
Rainwater’s 1950 paper [7], which first proposed the idea of 
nuclear deformation, and Bohr and Mottelson’s collective 
model [8, 9], which provided a framework for describing 
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rotational spectra in deformed nuclei. Arima and Horie’s 1954 
study [10] explored the role of configuration mixing in nuclear 
structure, while Nilsson’s work [11] introduced a shell-model 
approach incorporating deformation effects. Around the same 
time, Morinaga’s 1956 paper [12] specifically addressed the 
structure of 16 O and explained the properties of its first excited 
state and ground state. He introduced the concept of multi-
nucleon cross-shell excitation to describe the deformation 
characteristics, offering a new perspective on how nuclear 
shapes evolve. Further developments include Elliott’s work 
in 1958 [13], which further developed the concept of SU(3) 
symmetry in nuclear deformation and highlighted the inter-
play between single particle and collective motion. Over the 
past five decades, shape coexistence has evolved from a rare 
phenomenon to a common feature observed in many nuclei, 
highlighting its significance in nuclear structure research [14]. 
Recent experimental studies have revealed significant evi-
dence of shape coexistence phenomena in neutron-deficient 
isotopes of lead and mercury. For instance, one study [15] 
specifically focuses on the 188 Hg isotope, where theoretical 
predictions suggest the presence of shape coexistence.

These findings have led to increased theoretical 
investigations into nuclear shape coexistence, utilizing 
advanced experimental techniques such as tagging 
techniques at the University of Jyväskylä, Coulomb-
excitation experiments at CERN, and relativistic energy-
fragmentation experiments at GSI [16]. These experiments 
underscore the importance of understanding the mechanisms 
governing the evolution of nuclear shape. Building upon 
these experimental insights, theoretical investigations 
have played a pivotal role in elucidating the complexities 
of shape coexistence [17–19]. Previous studies have 
employed various theoretical frameworks, including macro-
microscopic approaches and self-consistent models, to 
perform comprehensive calculations of nuclear ground-state 
masses and deformations across a wide range of nuclei [14]. 
Ref. [20] highlighted the presence of two distinct coexisting 
configurations, in platinum isotopes 176−186Pt, oblate and 
prolate, revealing the intricate shape evolution in this mass 
region. Therefore, shape coexistence in even–even 172−200 Hg 
isotopes was comprehensively studied using the interacting 
boson model with configuration mixing [21]. Recently, using 
the Lublin–Strasbourg Drop (LSD) with Yukawa-Folded 
single-particle potential and the BCS pairing correction 
in a macro-microscopic model, Pomorski et al. provided 
the deformation PESs of nuclei near Z = 82 . Their study 
investigated the shape coexistence phenomenon in even–even 
isotopes of Pt, Hg, and Pb [22]. These studies revealed that 
nuclei in the vicinity of Hg exhibit a rich variety of shape 
coexistence phenomena, characterized by the interplay of 
spherical, oblate, and prolate configurations. Although 
significant progress has been made in understanding these 

features of heavier isotopes, lighter isotopes of Hg, Pt, 
and Pb have been relatively underexplored owing to the 
scarcity of experimental data [23]. To address this gap, 
further theoretical investigations are crucial, as they can 
illuminate the evolution of shape coexistence in these lighter 
isotopes. Such efforts would not only enhance our theoretical 
understanding but also provide valuable guidance for future 
experimental measurements, enabling better interpretation 
of the limited or ambiguous data that are currently available.

Despite its success, the BCS method [24], as well as the 
more refined Hartree–Fock–Bogolyubov (HFB) approach, 
faces limitations due to the small number of valence nucle-
ons under the pairing correlation’s influence [25–31]. These 
methods often fail to conserve particle numbers, leading to 
inaccuracies in describing higher-lying excited states [32]. 
Alternatives such as the shell model provide successful 
descriptions but are limited by the combinatorial growth 
of model space sizes, necessitating truncation schemes for 
heavy nuclei and often being constrained by computational 
resources [33]. Recent advancements in shell-model trunca-
tion techniques, such as the Monte Carlo shell model [34] 
and angular momentum-projected number-conserved BCS 
approach [35], have made significant progress in describing 
deformed nuclei in heavy mass regions, offering improved 
computational feasibility while maintaining accuracy.

The Exact solution to the standard pairing problem, first 
obtained by Richardson and now referred to as the Rich-
ardson–Gaudin method, offers a promising approach for 
the microscopic treatment of clustering in heavy nuclei 
[36–43]. This method is particularly suitable for handling 
the large model spaces and the pairing and shell effects nec-
essary for accurately describing heavy nuclei [44–48]. In 
our previous work, the deformed mean-field plus pairing 
model within the Richardson–Gaudin method was used to 
explore the quantum phase transition around neutron num-
ber N ≈ 90 in the A ≈ 150 mass region [49]. The analysis 
demonstrated the critical behavior of the shape phase transi-
tion driven by competition between deformation and pairing 
interactions. More recently, a new iterative algorithm was 
developed to find the Exact solution to the standard pairing 
problem within the Richardson–Gaudin method [50], which 
has shown excellent agreement with experimental data when 
applied to actinide fission nuclei isotopes [51–53].

The aim of the current study is to extend this line of 
inquiry by presenting a systematic study of PESs for 
even–even Pt, Hg, and Pb isotopes near Z = 82 . Our investi-
gation leverages recent advancements in shape parametriza-
tion and adopted a macro-microscopic approach, integrating 
the LSD model with a Yukawa-Folded single-particle poten-
tial. The analysis focuses on the impact of pairing interac-
tions on the shape coexistence of  170Pt, 172Hg, 174 Pb nuclei, 
as well as 170−180 Pt even–even isotopes.
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2  Theoretical framework and numerical 
details

2.1  Deformed mean‑field plus standard pairing 
model

The Hamiltonian of the deformed mean-field plus standard 
pairing model for either the proton or the neutron sector is 
given by

where the sums run over all given i-double degeneracy levels 
of total number n, G > 0 is the overall pairing interaction 
strength, {�i} are the single-particle energies obtained 
from mean-field, such as Hartree–Fock, Woods–Saxon 
potential, Yukawa-Folded single-particle potential, or 
Nilsson model. ni = a

†

i↑
ai↑ + a

†

i↓
ai↓ is the fermion number 

operator for the i-th double degeneracy level, and 
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= a

†
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i
)
†

= ai↓ai↑] is the pair creation 
(annihilation) operator, The up and down arrows in these 
expressions refer to time-reversed states.

According to the Richardson–Gaudin method [36–43], 
the Exact k-pair eigenstates of (1) with �i� = 0 for even 
systems or �i� = 1 for odd systems, in which i′ is the label of 
the double degeneracy level that is occupied by an unpaired 
single particle can be written as

where ��i′⟩ is the pairing vacuum state with the seniority 
�i′ that satisfies S−

i
��i�⟩ = 0 , and n̂i�𝜈i�⟩ = 𝛿ii�𝜈i�𝜈i�⟩ for all i. 

Here, � is an additional quantum number for distinguishing 
different eigenvectors with the same quantum number k and

in which the spectral parameters x(�)�  ( � = 1, 2,… , k ) satisfy 
the following set of Bethe ansatz equations (BAEs):

where the first sum runs over all i levels and Ωi = 1 − �ii��i� . 
For each solution, the corresponding eigenenergy is given by
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In general, according to the polynomial approach in Refs. 
[45–48], one can find solutions of Eq. (4) by solving the 
second-order Fuchsian equation [44] as

where A(x) =
∏n

i=1
(x

(�)

� − 2�i) is an n-degree polynomial,

V(x) are called Van Vleck polynomials [44] of degree n − 1 , 
which are determined according to Eq. (6). They are defined 
as

The polynomials P(x) with zeros corresponding to the 
solutions of Eq. (4) is defined as

where k is the number of pairs. bi and ai are the expansion 
coefficients to be determined instead of the Richardson 
variables xi . Furthermore, if we set ak = 1 in P(x), the 
coefficient ak−1 then equals the negative sum of the P(x) 
zeros, ak−1 = −

∑k
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x
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k
.

If the value of x approaches twice the single-particle 
energy of a given level � , i.e., x = 2�

�
 , one can rewrite 

Eq. (6) in doubly degenerate systems with Ωi = 1 as [45, 
46, 48]

In Ref. [50], a new iterative algorithm is established for the 
exact solution of the standard pairing problem within the 
Richardson–Gaudin method using the polynomial approach 
in Eq. (10). It provides efficient and robust solutions for 
both spherical and deformed systems at a large scale. The 
key to its success is determining the initial guesses for the 
large-set nonlinear equations involved in a controllable and 
physically motivated manner. Moreover, one reduces the 
large-dimensional problem to a one-dimensional Monte 
Carlo sampling procedure, which improves the algorithm’s 
efficiency and avoids the nonsolutions and numerical 
instabilities that persist in most existing approaches. Based 
on the new iterative algorithm, we applied the model to study 
the actinide nuclei isotopes, where an excellent agreement 
with experimental data was obtained [50–53].
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2.2  The Fourier shape parametrization

Recent studies demonstrated that the developed Fourier 
parametrization of deformed nuclear shapes was highly 
effective in capturing the essential features of nuclear 
shapes, particularly up to the scission configuration [22, 54]. 
Current research indicated that combining this innovative 
Fourier shape parametrization with the LSD + Yukawa-
Folded macro-microscopic potential energy framework was 
exceptionally efficient [52, 53, 55, 56]. This work primarily 
adopted the macro-microscopic framework outlined in Refs. 
[52, 53], where the single-particle energies {�i} in the model 
Hamiltonian (1) were derived from the Yukawa-Folded 
potential.

The nuclear surface is expanded in terms of a Fourier 
series of dimensionless coordinates as follows:

where �s(z) is the distance from a surface point to the 
symmetry z-axis, and R0 = 1.2A1∕3 fm is the radius of a 
corresponding spherical shape with the same volume. 
The shape’s extension along the symmetry axis is 2z0 , 
with the left and right ends located at zmin = zsh − z0 and 
zmax = zsh + z0 , respectively. The parameter z0 represents 
half the shape’s extension along the symmetry axis and is 
determined by volume conservation, while zsh is set such 
that the center of mass of the nuclear shape is at the origin of 
the coordinate system. Based on the convergence properties 
discussed in Ref. [22], the first five terms a2,… , a6 are 
retained as a starting point, and the parameters an are 
transformed into deformation parameters qn as follows:

where a(0)
n

 are the Fourier coefficients for the spherical shape. 
Higher-order coordinates q5 and q6 are generally set to zero 
within the accuracy of the current approach. The set of qi 
parameters has explicit physical significance in describing 
the shape of the fissioning nucleus: q2 denotes the elonga-
tion, q4 represents the neck parameter, and q3 indicates the 
left-right asymmetry.

Additionally, the non-axial deformation of nuclear shapes 
is described as follows, assuming that the surface cross 
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section at a given z-coordinate is elliptical with semi-axes 
a(z) and b(z):

where � =
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 characterizes the non-axial deformation. 

Volume conservation requires that �2
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(z) ensuring volume conservation for 

non-axial deformations. The semi-axes are then given by:

This description of non-axial shapes using the parameters 
q2 and � is more general than the commonly used Bohr 
parametrization (�, �) . For spheroidal shapes, both 
descriptions are equivalent. However, as shown in 
Fig.  1, where the two parametrizations are compared, 
the periodicity of nuclear shapes by a 60◦ rotation angle 
is similar in both (q2, �) and (�, �) planes. It is important 
to note that this regularity is disrupted when higher 
multipolarity deformations qn (n > 2) are considered, 
making the (�, q2, q3, q4, q6) shape parametrization 
substantially more general than the three-dimensional 
(�2, �4(�), �) parametrization used in Ref. [59, 60]. The 
two parametrizations coincide only in the special case of 
spheroidal shapes.

It is essential to stress that different points in the (�, �) , 
and (q2, �) planes can correspond to identical shapes when 
higher qn (n > 2) degrees of freedom are neglected, dif-
fering only in the interchange of coordinate system axes. 
For example, the point (� = 0.4, � = 0) corresponds to 
(q2 = 0.42, � = 0) in the new parametrization, representing 
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Fig. 1  (Color online) Relationship between the elongation parameter 
q2 and the nonaxiality parameter � [22, 54], and the traditional Bohr 
deformation parameters � and � is taken from [57, 58]
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the same shape as (� = 0.4, � = 120◦) , which corresponds to 
(q2 = −0.21, � = 0.16) in the new parametrization.

When analyzing potential energy landscapes that include 
triaxial degrees of freedom, it is crucial to avoid treating as 
distinct configurations points in the (q2, �) deformation plane 
that are merely rotational images of each other at � = 60◦.

In this study, the dynamic process of nuclear fission will 
be described in the three-dimensional deformation space 
(�, q2, q4) using the Fourier shape parametrization.

2.3  The potential energy

This study calculated the PESs for the isotopes 170Pt, 172Hg, 
and 174 Pb in a three-dimensional deformation space (�, q2, q4
) and analyzed the impact of pairing interactions on the 
shape coexistence of these isotopes. The results were 
obtained over the following grid points in the deformation 
parameter space:

As indicated in the literature [22], the q3 degree of freedom 
has no significant impact on the description of shape coexist-
ence for the isotopes discussed in this paper. Therefore, in 
this study, q3 was set to 0, and for each point on the PES, q4 
was minimized to find the energy extremum. The potential 
energy of the system was calculated within the macro-micro-
scopic approach in this work. The total energy Etotal(N, Z, qn) 
of a nucleus with a given deformation is calculated as

where ELD(N, Z, qn) was the macroscopic term obtained by 
the LSD model with proton number Z and neutron number 
N [61]. In the current calculation for the potential energy 
surface, we just considered the energy EB(N, Z, qn) related 
to the shape parameter {q2, q4}.

The microscopic term consisted of the shell correction 
energy E�(�)

shell
(N, Z, {�i}, q2, q4) proposed by Strutinsky [62, 

63], and the pairing interaction energy E�(�)

pair
(N, Z, {�i}, q2, q4) 

calculated from Eq. (1). Here, � ( � ) was the label of the 
neutron (proton) sector. In the current study, we considered 
18 deformed harmonic-oscillator shells in Yukawa-Folded 
single-particle potential to obtain single-particle levels for 
the microscopic calculations. For the pairing interaction 
energy, we performed 29 single-particle levels around the 
neutron Fermi level and 22 single-particle levels around the 
proton Fermi level.

(15)

� ∈ [0.00, 0.20] Δ� = 0.02

q2 ∈ [−0.60, 0.85] Δq2 = 0.05

q4 ∈ [−0.30, 0.30] Δq4 = 0.03.

(16)Etotal(N, Z, qn) = ELD(N, Z, qn) + EB(N, Z, qn),

(17)EB(N, Z, qn) = Eshell(N, Z, qn) + Epair(N, Z, qn).

To validate our results and further explored the efficacy 
of the exactly solvable pairing model, we also calculated the 
PESs for the isotopes considered under the BCS approxima-
tion. The pairing interaction was determined as the differ-
ence between the BCS energy [24] and the single-particle 
energy sum and the average pairing energy [64].

In the BCS approximation the ground-state energy of a 
system with an even number of particles and a monopole 
pairing force was given by

where the sums run over the pairs of single-particle states 
contained in the pairing window defined below. The 
coefficients vi and ui =

√
1 − v2

i
 were the BCS occupation 

amplitudes.
The average projected pairing energy, for a pairing 

window of width 2Ω , which is symmetric in energy with 
respect to the Fermi energy, is equal to

Here g̃ was the average single-particle level density and Δ̃ 
the average paring gap corresponding to a pairing strength G

2.4  Influence of pairing interactions on the shape 
coexistence of 170Pt, 172 Hg and 174 Pb isotopes

Figure  2 shows the PESs of 170 Pt projected onto 
the  (q2, �)  plane for different pairing interaction 
strengths G� (MeV), while the proton pairing interaction 
strength is fixed at G�

= 0.100 MeV. G� and G� represent 
the neutron and proton pairing interaction strengths (MeV), 
respectively. The energy is minimized in the q4 direction, and 
q3 is set to 0 and normalized to zero energy at the ground-
state value. The choice of G� varying from 0.03 to 0.145 
MeV, and G�

= 0.100 MeV, were based on the fact that our 
calculations in the next section, when employing G�

= 0.145 
MeV, and G�

= 0.100 MeV, closely matched the experimen-
tal odd–even mass differences for the 171 Pt to 180 Pt isotopes. 
Therefore, this range was selected to study the effects of 

(18)E
pair

= E
BCS

−

k∑

i=1

�i − Ẽ
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pairing strength variations on the shape coexistence. The red 
lines represent the corresponding (�, �) coordinates, with �  
coordinates distributed within 0 ≤ � ≤ 180◦ . The � coordi-
nate values are taken as 0.1, 0.2, 0.3… , etc.

In Fig. 2a–d, the PESs of 170 Pt are shown for different 
values of the neutron pairing interaction strength G� , while 
the proton pairing interaction strength is fixed at G�

= 0.100 
MeV. The values of G� are: 0.030, 0.070, 0.105, and 0.145 
MeV. It can be seen that the ground state of the 170 Pt isotope 
is located at (q2 ≈ 0.150, � = 0) , indicating a prolate shape 
for different pairing strengths. The other minimum at 
(q2 ≈ −0.150, � = 0.04, � = 120◦) illustrated in Fig.  2 is 
simply a reflection of the ground-state minimum.

It is noteworthy to highlight the existence of two 
distinct shape isomers in 170 Pt with different pairing 
strengths. The first is an oblate shape isomer located at 
(q2 = −0.400, � = 0) , with an energy approximately 3.900 
MeV above the ground state. The second is a triaxial shape 
isomer at (q2 ≈ 0.600, � ≈ 0.060 (� ≈ 10◦)) , positioned 
around 4.0 MeV above the ground state. These isomers 
represent the local minima on the potential energy surface 
that are separated from the ground state by energy barri-
ers, highlighting the complex deformation characteristics 
of the nucleus. With an increase in pairing strength, both 
shape isomers become shallower. When the pairing strength 

G� reaches 0.145 MeV, the oblate isomer disappears (see 
Fig. 2d).

As shown in Fig. 3a–d, the PESs for different pairing 
interaction strengths demonstrates the evolution of the tri-
axial minimum at (q2 = 0.150, � = 0.020) to the oblate mini-
mum at (q2 = 0.100, � = 0.040) as the pairing interaction 
strength increases. The nucleus of 172 Hg is nearly �-unstable, 
with the energy difference between different points in the 
ground-state valley not exceeding approximately 0.4 MeV. 
Additionally, three shape isomers are visible in the (a)-(d) 
maps: a prolate isomer at (q2 ≈ 0.600, � = 0) , E ≈ 5.0 MeV; 
a triaxial isomer at (q2 ≈ 0.400, � = 0.100) , E ≈ 4.0 MeV; 
and oblate one at (q2 ≈ −0.45, � = 0) , E ≈ 4.0  MeV. 
These local minima are separated by energy barriers of 
approximately 1 MeV in height. As the pairing strength 
increases, all shape isomers gradually become shallower. By 
G�

= 0.145 MeV and G�
= 0.100 MeV (Fig. 3d), the triaxial 

isomer at (q2 ≈ 0.400, � = 0.100) disappeared.
The PESs of 174Pb, as presented in Fig.  4a–d, reveal 

that a prolate ground state (q2 ≈ 0.150, � = 0)  (in 
Fig.  4a)  tends to become spherical   (in Fig. 4d) as the 
pairing interaction strength increases. The shape isomers 
observed here are particularly interesting: a prolate shape 
at (q2 = 0.600, � = 0), E ≈ 5.0 MeV and a slightly triaxial 
oblate shape at (q2 = 0.450, � = 0.020), E ≈ 3.9  MeV in 
Fig. 4a, b, respectively. As the pairing strength increased, 

Fig. 2  (Color online) Potential energy surface of 170 Pt pro-
jected onto the  (q2, �)  plane under different pairing interaction 
strengths G�  (MeV), while the proton pairing interaction strength is 
fixed at G�

= 0.100 MeV. The energy is minimized in the q4 direc-

tion, and q3 is set to 0 and normalized to zero energy at the ground-
state value. The ground-state deformation is represented by a red dot



On shape coexistence and possible shape isomers of nuclei around 172Hg  Page 7 of 13 128

both shape isomers gradually became shallower. When 
G�

= 0.145  MeV, and G�
= 0.100  MeV (Fig.  4d), they 

almost disappeared. Overall, regardless of pairing strength, 

there was no indication of robust shape coexistence in this 
nucleus.

Fig. 3  (Color online) Same as Fig. 2, but for 172Hg

Fig. 4  (Color online) Same as Figs. 2 and 3, but for 174Pb
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Figure 5 illustrates the PESs projections of 170Pt, 172Hg, 
and 174 Pb under realistic pairing interaction strengths, with 
G�

= 0.145 MeV, and G�
= 0.100 MeV under both Exact 

and BCS pairing schemes.
As shown in Fig. 5, the ground state of 170 Pt is prolate, 

located at (q2 = 0.15, � = 0) under both the Exact and 
BCS pairing schemes. However, BCS pairing exhibited 
a shallower depth for the prolate minimum compared 
with Exact pairing, indicating a less pronounced prolate 
ground state. Furthermore, a triaxial isomer appeared at 
(q2 ≈ 0.600, � ≈ 0.060 (� ≈ 10◦)) under Exact pairing, 
whereas it was less distinguishable in the BCS case.

The ground state of 172 Hg (Fig.  5) is found at 
(q2 = 0.10, � ≈ 0.04) as an oblate minimum, with another 
minimum at (q2 ≈ −0.100, � ≈ 0.02) , which exhibits �
-unstable deformation. The PES of 172 Hg provides an 
excellent example of an almost �-unstable nucleus. 
Under Exact pairing, this �-unstable minimum is more 
symmetric, with clear reflections around � = 150◦ , � = 30◦ , 
and � = 90◦ . Under BCS pairing, the �-unstable features 
are less prominent, and the oblate minimum becomes 
more dominant. Additionally, two shape isomers are 
visible under Exact pairing model: a prolate isomer at 
(q2 ≈ 0.600, � = 0) , E ≈ 4.6  MeV, and an oblate one at 

(q2 ≈ −0.45, � = 0) , E ≈ 4.6 MeV. However, these changes 
were not distinguishable in the BCS case.

As shown in Fig. 5c, the ground-state shape of 174 Pb 
tended to be spherical. The PES under Exact pairing 
revealed a nearly spherical configuration with minor 
prolate and oblate shape isomers. In contrast, BCS pairing 
resulted in a more pronounced spherical minimum and 
diminishes the depth of shape isomers.

In summary, as the number of protons increases, the 
ground-state transitions from prolate for 170 Pt to the coex-
istence of �-unstable and oblate for 172Hg, eventually 
approached a nearly spherical configuration for 174Pb. The 
comparison between Exact and BCS pairing demonstrates 
that BCS pairing tends to smooth out shape coexistence 
and reduce the depth of shape isomer, leading to less pro-
nounced deformation features. The differences in results 
between Exact and BCS pairing may be attributed to the 
mean-field approximation in the BCS approach, which 
likely simplifies the treatment of pairing interactions. 
This approximation is thought to smooth out shape coex-
istence phenomena by suppressing pairing fluctuations, 
energy gaps, and shell effects, potentially leading to less 
pronounced deformation features.

Fig. 5  (Color online) Poten-
tial energy surfaces of 170
Pt, 172 Hg and 174 Pb projected 
on the (q2, �)  plane under 
both Exact and BCS pair-
ing schemes, with the energy 
minimized in the q4 direction, q3 
set to 0 and normalized to zero 
energy at the ground-state value. 
The realistic pairing interaction 
strengths G�

= 0.145 MeV, and 
G�

= 0.100 MeV are adopted. 
The ground-state deformation is 
represented by a red dot, while 
the coexistence minimum is 
indicated by a red cross
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2.5  Shape coexistence analysis in the Pt isotope 
chain

In this paper, we investigate the PESs of the even–even 170−180 Pt 
isotopes using the exactly solvable deformed mean-field 
plus pairing model. Our analysis provides a comprehensive 
examination of the shape coexistence phenomena across these 
isotopes.

The pairing interaction strength, denoted as G, serves as 
the sole adjustable parameter within our model. It is typically 
determined either through empirical formulas or by fitting to 
experimental odd–even mass differences [65, 66]. In this study, 
we determined G� by fitting the experimental odd–even mass 
differences for the 171−180 Pt isotope chain and  G� by fitting the 
experimental odd–even mass differences for the 174 Pt to 178 Pb 
isotonic chain. The odd–even mass differences are computed 
using the following expression:

This quantity is highly sensitive to variations in the pairing 
interaction strength G [67], due to the pairing interaction 
between nucleons. As shown in Fig.  6, by employing 
G�

= 0.145 MeV and G�
= 0.100 MeV, our calculations 

closely reproduced the experimental odd–even mass 
differences for the 171−180 Pt isotopes, yielding a root mean 
square deviation of � = 0.465  MeV. Additionally, as 
displayed in Fig. 7 for the 174 Pt to 178 Pb isotonic chain, the 
calculations closely matched the experimental odd–even 
mass differences, with a root mean square deviation of 
� = 1.192 MeV.

P(A) =E
total

(N + 1, Z) + E
total

(N − 1, Z)

− 2E
total

(N, Z).

here, PTheor.
�

 and PExpt.
�  represent the theoretical and experi-

mental values of the odd–even mass differences, respec-
tively, and N  denotes the total number of data points.

Next, we examine the PES of the 170−180 Pt even–even 
isotopes under the determined pairing interaction strengths 
G�

= 0.145 MeV and G�
= 0.100 MeV. Figure  8 shows the 

PES projected onto the  (q2, �)  plane. For 170Pt, the ground 
state exhibited a prolate deformation at ( q2 = 0.15, � = 0 ). 
In contrast, for 172Pt, a more deformed minimum emerged, 
leading to the coexistence of a triaxial shape ( � ≈ 30◦ ) 
and a nearly prolate-deformed minimum at ( � ≈ 120◦ ), 
indicative of �-instability due to the presence of multiple 
low-energy configurations at different � values. The 
triaxial shape is even more pronounced in 174Pt, where 
the ground state is triaxial with deformation parameters 
( q2 = 0.020, � = 0.10, � ≈ 0.2, � ≈ 90◦ ) and a coexisting 
prolate minimum at ( q2 = 0.15, � = 0 ). In 176 Pt a � -unstable 
ground state and a prolate minimum coexisted, but by 
178 Pt and 180Pt, a well-deformed prolate minimum quickly 
developed, becoming the most pronounced prolate ground 
state at the mid-shell.

The findings of this study are broadly consistent with 
the results of Ref. [20], which studied the 172−194 Pt isotopic 
chain in the framework of the interacting boson model 
and self-consistent HFB calculation using the Gogny-D1S 
interaction. Both studies identified shape coexistence in the 
172−176 Pt region, with �-unstable minima and triaxial shapes 
in 174Pt. Additionally, both studies showed the dominance 
of prolate deformation in 178Pt, and 180Pt, with the prolate 
minimum becoming the most pronounced ground state at 
the mid-shell.

(22)� =

√√√√
N∑

�=1

(
PTheor.
�

− P
Expt.
�

)2
/

N,

P
(M

ev
)

Expt.

Theor.

Z=78

Pt

Fig. 6  Odd–even mass differences (in MeV) for Pt isotopes. "Expt." 
represents experimental values, and "Theor." represents theoretical 
values. Experimental data are from [67]

P
(M

ev
)

78
174Pt

80
176Hg

82
178Pb

N=96

79
175Au

81
177Tl

Expt.

Theor.

Fig. 7  Odd–even mass differences (in MeV) for the 174 Pt to 178 Pb iso-
tonic chain. "Expt." represents experimental values, and "Theor." rep-
resents theoretical values. Experimental data are from [67]
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It is noteworthy that a triaxial shape isomer exists for 
170−174Pt, characterized by (q2 ≈ 0.600, � ≈ 0.060 (� ≈ 10◦)) , 
and positioned approximately 5.0 MeV above the ground 
state. However, this triaxial shape isomer vanishes for 176−180
Pt.

3  Conclusion

In this study, we systematically investigated the shape 
coexistence phenomenon in isotopes near the magic proton 
number of Z = 82 , focusing specifically on the nuclei 170 Pt, 
172 Hg, and 174Pb, as well as the Pt isotopic chain from 170 Pt 
to 180 Pt. Our analysis, using a macro-microscopic approach 
that combines the LSD model with a Yukawa-Folded 

potential and pairing corrections, revealed significant 
insights into the impact of pairing interactions on nuclear 
shape evolution.

The PES of 170 Pt revealed a prolate ground state with 
additional triaxial and oblate shape isomers. Both shape 
isomers become progressively shallower with increasing 
neutron pairing strength G� , and the oblate isomer 
vanishes at G�

= 0.145  MeV, indicating a significant 
dependence of shape isomers on pairing strength. The 
ground-state deformation of 172 Hg transitions from 
triaxial to oblate with increasing G� , reflecting its nearly 
�-unstable nature. Three shape isomers (prolate, triaxial, 
and oblate) were observed, with energy barriers separating 
these configurations. As G� increased, the triaxial isomer 
disappeared at G�

= 0.145 MeV, demonstrating the impact 

Exact pairing

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

q2

180Pt

172Pt

0.00

0.06

0.12

0.18

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

q2

178Pt

176Pt

0.00

0.06

0.12

0.18
174Pt

0.00

0.06

0.12

0.18
170Pt

Fig. 8  (Color online) Potential energy surfaces of the 170−180 Pt even–
even isotopes chain, projected on the  (q2, �)  plane using the Exact 
pairing model, where the energy is minimized in the q4 direction with 
q3 set to 0, with neutron and proton pairing interaction strengths of 

G�
= 0.145 MeV, G�

= 0.100 MeV. The ground-state deformation is 
represented by a red dot, while the coexistence minimum is indicated 
by a red cross
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of pairing interactions on shape stability. 174 Pb exhibited 
a prolate ground state that became increasingly spherical 
with stronger pairing interactions. While shape isomers 
are present at weaker pairing strengths, their prominence 
diminishes significantly, and robust shape coexistence was 
not observed in this nucleus.

For realistic pairing interaction, the ground-state 
shapes transition from prolate in 170 Pt to a coexistence 
of �-unstable and oblate shapes in 172Hg, ultimately 
approaching spherical symmetry in 174Pb. This progression 
highlights the interplay between proton number and 
pairing interactions in shaping nuclear deformation. The 
comparison between Exact and BCS pairing for realistic 
170Pt, 172Hg, and 174 Pb demonstrated that BCS pairing tends 
to smooth out shape coexistence and reduce the depth of 
shape isomers, leading to less pronounced deformation 
features.

These findings emphasize the critical role of pairing 
interactions in shaping nuclear deformation landscapes 
and shape coexistence, offering deeper insights into the 
structural evolution of nuclei near the mid-shell region. 
This study contributes valuable theoretical perspectives 
to the understanding of nuclear shape phenomena and the 
influence of pairing interactions on nuclear dynamics.

Based on the analysis of the PESs for the even–even 
170−180 Pt isotopes, the results show significant shape 
evolution across the isotopic chain. For 170Pt, the ground 
state exhibited prolate deformation, with deformation 
parameters. However, for 172Pt, a more deformed minimum 
appears, leading to the coexistence of a triaxial shape and 
a nearly prolate-deformed minimum. The triaxial shape 
becomes even more pronounced in 174Pt, where the ground 
state is triaxial with deformation parameters, coexisting 
with a prolate minimum. For 176Pt, a �-unstable ground 
state coexists with a prolate minimum. By 178Pt, and 180
Pt, a well-deformed prolate minimum develops rapidly, 
becoming the most pronounced prolate ground state in 
the mid-shell.

These results highlight the complex shape evolution in 
the Pt isotopes, with shape coexistence and �-instability 
playing significant roles in the nuclear structure evolution, 
particularly around the mid-shell region where prolate 
deformation dominates.
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