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Abstract
Compared to other energy sources, nuclear reactors offer several advantages as a spacecraft power source, including compact 
size, high power density, and long operating life. These qualities make nuclear power an ideal energy source for future deep 
space exploration. A whole system model of the space nuclear reactor consisting of the reactor neutron kinetics, reactivity 
control, reactor heat transfer, heat exchanger, and thermoelectric converter was developed. In addition, an electrical power 
control system was designed based on the developed dynamic model. The GRS method was used to quantitatively calculate 
the uncertainty of coupling parameters of the neutronics, thermal-hydraulics, and control system for the space reactor. The 
Spearman correlation coefficient was applied in the sensitivity analysis of system input parameters to output parameters. 
The calculation results showed that the uncertainty of the output parameters caused by coupling parameters had the most 
considerable variation, with a relative standard deviation < 2.01%. Effective delayed neutron fraction was most sensitive to 
electrical power. To obtain optimal control performance, the non-dominated sorting genetic algorithm method was employed 
to optimize the controller parameters based on the uncertainty quantification calculation. Two typical transient simulations 
were conducted to test the adaptive ability of the optimized controller in the uncertainty dynamic system, including 100% 
full power (FP) to 90% FP step load reduction transient and 5% FP/min linear variable load transient. The results showed 
that, considering the influence of system uncertainty, the optimized controller could improve the response speed and load 
following accuracy of electrical power control, in which the effectiveness and superiority have been verified.
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1 Introduction

In deep space exploration missions, the provision of sta-
ble energy in complex and harsh environments, without 
human intervention, is crucial. The use of chemical energy 
on spacecraft requires a substantial amount of mass and 
space. Solar energy is highly influenced by the planetary 
environment and distance from the sun. In deep space, fac-
tors such as sand and dust can hinder the effectiveness of 
solar panels, limiting their potential for exploration in these 
conditions. Space nuclear reactors offer several advantages, 
including small size, high power density, independence from 
sunlight, and long operational life. Consequently, nuclear 
reactors are an ideal energy source for future space mis-
sions, such as deep space exploration and the development 
of star bases. Over the past 50 years, the USA has success-
fully launched 43 nuclear power electric systems on space 
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missions [1]. Additionally, the advancement of space nuclear 
power research played a key role in the launch of the stra-
tegic defense initiative (SDI) [2]. The lithium-cooled fast 
reactor (SP-100) was designed for various space thrusters, 
making nuclear power an important energy source for space-
craft [3]. The Kilowatt reactor using stirling technology 
(KRUST) project successfully demonstrated the first fully 
tested space nuclear fission reactor [4]. During the same 
period, Russia conducted extensive and in-depth research on 
space nuclear power and successfully launched the TOPAZ-I 
nuclear power supply with in-orbit applications. Building 
on this progress, the development of TOPAZ-II followed, 
and ground testing of a full-scale prototype was successfully 
completed [5]. Leveraging years of research and engineer-
ing experience, the Russian Federal Space Agency outlined 
a development plan for a megawatt-class space nuclear-
powered aircraft designed for interplanetary manned and 
unmanned missions. The latest European policy on the field 
of space nuclear power mainly focuses on the megawatt-class 
international space nuclear power Propulsion spacecraft for 
2030–2040, primarily supporting the development of three 
international cooperation projects (DiPoP, DEMOCRITOS, 
and MEGAHIT). In China, numerous researchers have con-
ducted neutronics and thermal-hydraulic numerical simula-
tions of space reactors. Different conceptual designs of space 
reactors, such as the space reactor with stirling engine [6, 7], 
heat pipe cooled space power system with thermal-electric 
conversion units [8], megawatt-class gas-cooled space reac-
tor [9, 10], and dual drum-controlled space molten salt reac-
tor [11], have been proposed. Due to rocket launch loading 
restrictions, achieving high power density and long operat-
ing life while simultaneously minimizing the volume and 
mass of both the reactor and its radiation shield is difficult. 
Another challenge is the unpredictable environmental dis-
ruptions and long-distance communication delays in space 
missions. Sudden faults cannot be solved through remote 
intervention, and the procedures to for resolving these issues 
via autonomous control are highly complex, requiring excep-
tional reliability.

To meet safety, reliability, survivability, and longev-
ity requirements of space missions, automatic control is a 
key technology in the design of space reactors. The main 
requirement for nuclear reactor operation is to maintain 
stable control performance under different operating con-
ditions. However, space missions face unpredictable envi-
ronmental disruptions and long-distance communication 
delays. Thus, automatic control process and decision-making 
need be implemented, through complex control systems, to 
reduce human intervention. Therefore, achieving an optimal 
design for the control system in the presence of environ-
mental uncertainties is important for space reactors with 
remote deployment capabilities. However, the transient 
characteristics and control mechanisms of space reactors 

differ substantially from traditional ground-based nuclear 
reactors, presenting new challenges in designing control 
systems that account for uncertainty quantification. On one 
hand, system model uncertainty arises from both theoreti-
cal simulation approximations and empirical correlation 
fitting during the experimental process. On the other hand, 
the components of the space reactor will undergo multi-
degree of freedom movements such as ups, downs, swings, 
and tilts, in the variable space environment. This leads to 
parameter uncertainty in the reactor neutronics and thermal-
hydraulics model. Simultaneously, the sensors and actuators 
in the control system can introduce additional uncertainties 
due to environmental disturbances, as shown in Fig. 1. The 
uncertainties in the dynamic model and control system of 
the space reactor can cause the original controllers to deviate 
from the optimal state, potentially leading to system instabil-
ity. At a minimum, this results in control performance reduc-
tion. In severe cases, if design flaws are present, dynamic 
system uncertainties could lead to loss of spacecraft power, 
resulting in catastrophic consequences. Therefore, conduct-
ing uncertainty coupling analysis of the dynamic model and 
control system for the space reactor is crucial.

Under the guidance of the U.S. Nuclear Regulatory 
Commission and OECD/NEA, various countries have pro-
posed and developed different uncertainty analysis tools for 
nuclear energy systems. The main methods for uncertainty 
analysis in nuclear energy systems are as follows: CASU 
(USA), KYADJ (China), AEAW (UK), ENUSA (Spain), 
IPSN (France), GRS (Germany), and UMAE (Italy) [12–15]. 
Among these methods, the GRS algorithm can be applied to 
any nuclear engineering calculation without additional code 
modification, rendering it suitable for uncertainty quantifi-
cation analysis of dynamic systems [16]. In addition, the 
number of samples required for the uncertainty calculation 
is solely determined by the set tolerance limit and confidence 
level. Thus, the cost of uncertainty quantification is rela-
tively low, making it widely used in practical nuclear engi-
neering applications. Current uncertainty studies in nuclear 
energy systems mainly focus on the uncertainties associ-
ated with reactor neutronics parameters such as the reaction 
cross-section, prompt fission spectrum, scattering angle dis-
tribution, and neutron kinetics parameters [17–20]. In con-
trast, some research focuses on the uncertainty analysis of 
thermal-hydraulics parameters, including thermal physical 
properties and heat transfer coefficients [21–24]. He et al. 
[25] proposed an uncertainty quantification methodology for 
model parameters in sub-channel codes using Markov Chain 
Monte Carlo (MCMC) sampling. Additionally, researchers 
conduct uncertainty analysis on the coupling parameters 
between reactor neutronics and thermal-hydraulics [26–28]. 
Several researchers have also conducted uncertainty analysis 
on non-nuclear-powered aerospace vehicles [29]. However, 
research on the uncertainty of coupling parameters between 
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the dynamic model and control system in nuclear energy 
systems is still lacking, as shown in Fig. 1. In particular, 
studies on uncertainty quantification analysis and controller 
optimization design based on uncertainty dynamic systems 
remain insufficient.

Currently, space reactor design does not adequately con-
sider the impact of system parameter uncertainty on control 
system performance. Existing research primarily focuses 
on controller design for deterministic dynamic systems. 
For example, Alvarez-Ramirez presented the PI control-
ler of the TOPAZ-II space reactor [30]. Shtessel designed 
a sliding mode controller for the TOPAZ-II space reactor, 
and simulation results showed an improvement in system 
control performance [31]. A model predictive controller for 
the SP-100 space reactor was designed to track the target 
power [32]. Zeng et al. [33] designed a fuzzy-PID control-
ler for reactor core power based on a nonlinear model of the 
space reactor. Ning et al. [34] proposed a control strategy 
for control rods and reflector blocks to realize reactivity 
insertion. Li et al. [35] evaluated the control characteris-
tics of a space reactor closed Brayton cycle system. Zhao 
et al. [36] proposed an axial power distribution control for 
a space reactor based on nonlinear model. Ma et al. [37, 
38] designed a cascade control system for the space ther-
mionic nuclear reactor based on the developed state-space 
model. However, traditional controllers struggle to adapt to 
power regulation in uncertainty systems and are unable to 
achieve optimal control performance. Therefore, consider-
ing the system uncertainty and time-varying characteristics 

of space reactors, multi-objective intelligent optimization 
methods can be applied to controller design of uncertainty 
systems to improve the adaptive control capabilities of the 
space reactor. Compared to controller optimization designs 
that rely on manual experience, the non-dominated sorting 
genetic algorithm (NSGA-II) method is highly effective for 
solving multi-objective optimization problems [39]. Owing 
to the advantage of low computational complexity and fast 
acquisition of global optimal solution, this method has been 
applied to the controller optimization design of small pres-
surized water reactors [40].

Therefore, in this study, we focused on the SP-100 space 
reactor system. A comprehensive dynamic model of the 
whole space reactor system was developed, including the 
reactor neutron kinetics model, reactivity control model, 
reactor heat transfer model, heat exchanger model, and 
thermoelectric conversion model. An electrical power con-
trol system was designed based on the developed dynamic 
model. The GRS method was used to quantitatively calculate 
the uncertainty of coupling parameters for the neutronics, 
thermal-hydraulics, and control system of the space reac-
tor. The Spearman correlation coefficient was applied for 
sensitivity analysis of system input parameters to output 
parameters. To analyze the impact of system uncertainty on 
the dynamic characteristics of the space reactor, two typical 
transient conditions were selected for simulation, including 
uncontrolled external load variation (UELV) and uncon-
trolled reactivity insertion (URI). The NSGA-II method was 
employed to optimize the controller parameters based on the 

Fig. 1  (Color online) Schematic 
diagram of space reactor uncer-
tainty of dynamic model and 
control system under motion 
conditions
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uncertainty system to obtain optimal control performance. 
Two typical transient simulations were used to evaluate the 
adaptive ability of the optimized controller to uncertain 
systems, including 100% FP to 90% FP step load reduction 
transient and 5% FP/min linear variable load transient.

2  Dynamic model of the whole space 
reactor system

The SP-100 space reactor was adopted as the research object 
to conduct uncertainty analysis [41]. This nuclear power 
plant is a lithium-cooled fast neutron reactor coupled with 
a Thermal-Electric (TE) conversion, which dissipates waste 
heat into space via a radiator, as shown in Fig. 2. The system 
parameter values of the reactor are presented in Table  1. 
High concentration uranium nitride was used as the nuclear 

Fig. 2  (Color online) Schematic diagram of space reactor: a Space nuclear power system schematic, b radial cross-section view of reactor core, 
and c axial cross-section view of reactor core

Table 1  System parameter values of the SP-100 reactor

Parameters Values

Height of reactor core active zone (m) 0.35
Fuel rod diameter (m) 7.62 × 10−3

Assembly central distance (m) 5.4 × 10−2

Total delayed neutron fraction (pcm) 727
Average neutron generation time (s) 1.55 × 10−7

Fuel Doppler feedback coefficient 2.4 × 10−7

Fuel temperature feedback coefficient ( K−1) −1.22 × 10−5

Cladding temperature feedback coefficient ( K−1) 1.2 × 10−7

Coolant temperature feedback coefficient ( K−1) −3.25 × 10−6

Reactor core coolant flow rate (kg/s) 14.1
Total radiator surface area ( m2) 98.5



Dynamic model uncertainty analysis and control system multi‑objective optimization of space… Page 5 of 22 124

fuel, enabling the reactor to achieve a long operating cycle. 
Lithium is employed as a heat carrier due to its excellent 
thermal conductivity and high boiling point. The nuclear 
power was regulated using a boron carbide control drum. 
The heat generated by the nuclear reactor was transferred 
through liquid lithium, pumped by an electromagnetic (EM) 
pump, while the main heat exchanger (HX) serves as the 
interface between the main heat transfer system and the 
energy conversion system [42]. The EM pump transports 
the main coolant from the reactor core to the tube bundle of 
the main HX. The high-temperature coolant is then distrib-
uted to each flow channel of the HX. Approximately 480 
thermoelectric conversion units are installed on the surface 
of each channel to transfer energy to the TE device. The sec-
ond coolant loop transfers waste heat from the TE device to 
a thermal radiator, effectively dissipating the heat into space.

A lumped parameter simulation model was developed 
based on the SP-100 system, including the reactor neutron 
kinetics model, reactivity control model, reactor core heat 
transfer model, heat exchanger model, and thermoelectric 
conversion model, as shown in Fig. 3. A system simulation 
platform was developed based on the dynamic model of the 
space reactor.

2.1  Reactor core model

2.1.1  Neutron kinetics model

The point reactor kinetics model, with six delayed neu-
tron groups, is used to illustrate the relationship between 
nuclear reactor power and reactivity variation. This is given 
by Eqs. (1)–(2).

where Pn is instantaneous nuclear power, �i is the delayed 
neutron fraction of group i, �tot is the total delayed neutron 
fraction, �i is the decay constant of the delayed neutron pre-
cursor of group i, Λ is average neutron generation time,and 
� denotes the total reactivity, which comprises external reac-
tivity �CD inserted by control drum and internal reactivity 
�feedback introduced with temperature and Doppler effect. � 
is described as Eq. (3) [41, 42].

(1)
dPn(t)

dt
=
�(t) − �tot

Λ
Pn(t) +

6∑

i=1

�iCi(t)

(2)
dCi(t)

dt
=
�i

Λ
Pn(t) − �iCi(t)

Fig. 3  Dynamic system model of space reactor
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where �D is Doppler feedback coefficient of nuclear fuel, 
�f , �clad , and �c are the temperature feedback coefficients 
of fuel, cladding, and coolant, respectively. Tf , Tclad and Tc 
denote the fuel temperature, cladding temperature, and core 
coolant temperature, respectively.

2.1.2  Reactivity control mechanism

The developed model incorporates an external reactiv-
ity control mechanism based on the stepper motor control 
drum system. This system allows for rotation (range: 0 to 
180 degrees) of the control drum shaft. The control voltage 
is converted into a set of 27 V rectangular impulses, with the 
frequency adjustable from 0 to 1.33 Hz. These impulses sub-
sequently translate into discrete movements of the control 
drum-connected shaft. During the reactor power control pro-
cess, all control drums work together to adjust the reactivity 
of the reactor core to ensure that the variations of reactor 
power are distributed symmetrically, potentially reducing 
distortion of the spatial distribution of reactor power [31, 
32]. The precise position of the stepper motor shaft is deter-
mined using Eq. (4).

where u is the control voltage and � is the shaft angle of the 
stepper motor. The external reactivity inserted by the control 
drum can be fitted as a function of the shaft angle of the 
stepper motor, and is given by Eq. (5).

2.1.3  Reactor heat transfer model

According to the principle of conservation of energy, a sim-
plified heat transfer model of reactor core was developed to 
calculate fuel, cladding, and coolant temperature. The model 
can be described by the following Eqs. (6)–(8) [42].

(3)

�(t) = �CD(t) + �feedback(t) = �CD(t) + �D ln
Tf

Tf,0

+ �f(Tf − Tf,0) + �clad(Tclad − Tclad,0) + �c(Tc − Tc,0)

(4)d2�

dt2
+ 1.01

d�

dt
= 0.525u

(5)

�CD = 6.98 × 10−13�5 − 2.33 × 10−10�4

+ 3.28 × 10−9�3 + 4.57 × 10−6�2 − 5.88 × 10−5�

(6)Cf

dTf

dt
=Pn − (Tf − Tclad)UAf

(7)Cclad

dTclad

dt
=(Tf − Tclad)UAf − (Tclad − Tc)UAclad

where Cf , Cclad and Cc are the heat capacity of the fuel, 
cladding, and core coolant temperatures, respectively. UAf 
denotes the heat transfer coefficient between the fuel and 
cladding, UAclad is the heat transfer coefficient between the 
cladding and coolant. Gc is the mass flow rate of the coolant 
in the reactor core.

2.2  Heat exchanger model

In the primary HX model, the primary fluid flows into the 
hot header and is distributed into individual flow channels 
of the HX. The thermal model of the primary HX is coupled 
with an energy conversion model of TE. The heat removed 
from the primary HX depends on the temperature of the 
hot shoe in the TE unit. The heat source of the TE model is 
determined by the fluid temperature of the HX primary loop. 
Approximately, 480 TE units were attached to the surface 
of each HX flow channel. The secondary HX coupled with 
the cold shoe of the TE unit is similar to the primary loop. 
The energy conservation equations of these two HX loops 
are given in Eqs. (9)–(10).

where TP , CPH , GP , TS , CSH , and GS are the fluid temperature, 
heat capacity, and mass flow rate of the primary HX and the 
secondary HX, respectively. THshoe and TCshoe denote the hot 
shoe and cold shoe temperatures of the corresponding TE 
units, respectively. NTE is the number of TE units in each 
HX, NHX is the number of the HXs. UAPTE is the heat transfer 
coefficient between the TE hot shoe and the primary fluid. 
UASTE is the heat transfer coefficient between the TE cold 
shoe and the secondary fluid.

2.3  Thermal electric model

In the space reactor design, each TE unit is composed of two 
semiconductors, one P-type semiconductor and one N-type 
semiconductor. If the physical properties are independent 
of temperature, Thomson’s effect could be disregarded. 
Assuming further that the P-type and N-type semiconduc-
tors possess identical physical properties, and that the tem-
peratures of TE hot shoe and cold shoe remain constant. The 

(8)Cc

dTc

dt
=(Tclad − Tc)UAclad − GcCc(Tc,out − Tc,in)

(9)
CPH

dTP,out

dt
=

GPCP(TP,in − TP,out)

NHX

− NTEUAPTE(TP,in − THshoe)

(10)
CSH

dTS,out

dt
= NTEUASTE(TCshoe − TS,in)

−
GSCS(TS,out − TS,in)

NHX
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temperature distributions obtained from the governing equa-
tion with the specified boundary conditions are expressed in 
Eqs. (11)–(13).

where KTE is the effective thermal conductance of a TE unit. 
�pn is the relative Seebeck coefficient. I is the electric cur-
rent. RP , RN and RL are the electric resistance of the internal 
P-type semiconductor, internal N-type semiconductor, and 
external shunt resistor, respectively.

The efficiency of thermoelectric conversion � could be 
described by the following Eq. (14).

where PE is the electrical power output, PTH denotes the 
nuclear thermal power.

2.4  Radiator model

A lumped parameter model is applied to describe heat 
removal by the radiator. The time-varying temperature of 
radiator TS,in could be described as the following Eq. (15).

where � is the emissivity, � is the Stephan Boltzman con-
stant, Frad is the ratio of the radiator surface area to the TE 
unit cross-section, and Ta is the ambient temperature in 
space.

3  Uncertainty quantification 
and multi‑objective optimization 
methods

The influence of system uncertainty on the dynamic char-
acteristics was analyzed by uncertainty quantification of the 
coupling parameters of the neutronics, thermal-hydraulics, 
and control system for the space power reactor. The GRS 
method was used for system uncertainty analysis, and the 

(11)
UAPTE(TP,in − THshoe) =KTE(THshoe − TCshoe)

+ �pnTHshoeI − 0.5I2(RP + RN)

(12)
UASTE(TCshoe − TS,in) =KTE(THshoe − TCshoe)

+ �pnTCshoeI + 0.5I2(RP + RN)

(13)I =
�pn(THshoe − TCshoe)

RP + RN + RL

(14)� =
PE

PTH

=
I2RL

UAPTE(TP,in − THshoe)

(15)
CS

dTS,in

dt
=
GSCS(TS,out − TS,in)

NHX

− ��FradATE(T
4
S,in

− T4
a
)

Spearman correlation coefficient was adopted for real-time 
sensitivity analysis. According to the uncertainty quantifica-
tion results, the controller parameters are optimized based on 
the NSGA-II method to ensure that the space reactor obtains 
optimal control performance and maintains stable and safe 
operation while accounting for system uncertainty.

3.1  GRS uncertainty quantification method

To assess the parameter uncertainty of the space reactor, 
the GRS method was employed for the quantification cal-
culation of system uncertainty [16]. The WILKS formula 
was used to evaluate the tolerance limit of the confidence 
interval. It utilizes probabilistic and statistical principles to 
determine the minimum amount of computation required to 
estimate the confidence interval tolerance limit at a specific 
confidence level. The upper or lower bound of the unilateral 
confidence tolerance limit could be obtained with a limited 
amount of computation, thus assessing the security domain 
of the analyzed object. This method offers several advan-
tages that make it widely applicable to uncertainty analysis 
of nuclear energy system. First, the amount of required com-
putation is determined solely by the set uncertainty toler-
ance limits and confidence levels, rather than the number 
of uncertainty parameters selected. This ensures reliable 
computational results while keeping the evaluation process 
within reasonable computational costs. Second, the values of 
the uncertainty parameters vary with each code calculation. 
By analyzing how changes in these parameters affect the 
output, their impact on these computational results could be 
accurately. This integrated approach to uncertainty analysis 
makes the evaluation more comprehensive and reliable. An 
additional advantage over traditional methods is that there 
is no need to rank the input parameters, simplifying the pro-
cess. Since the number of calculations is independent of the 
number of uncertain parameters, this approach can substan-
tially reduce computational costs and improve calculation 
efficiency.

In this study, the Wilks statistical method was used to 
determine the sample number. The law of multivariate dis-
tributions was adopted in the Wilks formula, and we con-
structed an arbitrary order two-sided confidence probabil-
ity density function by neglecting higher order infinitesimal 
terms, as given in Eq. (16).

where Γ(N + 1) = N! , r represents the order of the confi-
dence interval boundary estimate, N is the sample size, u 
and v are cumulative probability density functions, L and U 
denote the lower bound and upper bound of the confidence 

(16)

g(u, v) =
Γ(N + 1)

Γ(r)2Γ(N − 2r + 1)
ur−1vr−1(1 − u − v)N−2rdudv
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interval respectively, and then u and v could be given as 
Eqs. (17)–(18).

The probability density expansion is performed for a single 
side, the g(u, v) equation can be simplified in Eq. (19).

The confidence interval � is denoted for the cumulative prob-
ability, then the confidence level for the first-order unilateral 
estimate can be expressed in Eq. (20).

The practical importance of the G(u) formula can be under-
stood as: the probability that at least one of the results 
obtained from N calculations lies outside the � confidence 
interval, so that �c is the desired level of confidence, the 
minimum amount of computation is required to satisfy the 
following Eq. (21).

Based on the same theoretical reasoning, the relationship 
between the confidence level �c , the confidence interval � 

(17)u =∫
L

−∞

f (x)dx

(18)v =∫
+∞

U

f (x)dx

(19)g(u) =
Γ(N + 1)

Γ(r)Γ(N − r + 1)
ur−1(1 − u)N−rdu

(20)G(u) = ∫
1

�

g(u)du = ∫
1

�

Nur−1du = 1 − �N

(21)1 − �N ≥ �c

and the confidence level for the two-sided estimate can be 
expressed in Eq. (22).

In the process of statistical analysis, it is often necessary to 
determine the sample number, in order to obtain accurate 
results with a specified level of confidence �c at a specific 
probability. This process is independent of the number of 
input uncertainty parameters, but mainly depends on the 
desired percentile and confidence level. With a minimum 
number of simulation calculations, it ensures computation 
results fall within the �c confidence level.

In order to satisfy the "95/95 criterion", the GRS 
method requires 93 sets of samples in the two-sided toler-
ance interval. Through the uncertainty analysis of the best 
estimation procedure, not only is the number of calcula-
tions required by the procedure independent of the number 
of uncertainty parameters, but all uncertainty parameters 
can be sampled and calculated simultaneously. This sim-
plifies the process of quantitative uncertainty calculation. 
The uncertainty quantification calculation of the coupling 
parameters for the neutronics, thermal-hydraulics, and 
control systems of the space power reactor was conducted, 
as shown in Fig. 4. To ensure the quality of random sam-
ples, a correlation analysis between each sample was con-
ducted before the randomly generated samples were input 
into the uncertainty simulation platform. If the correlation 
between samples was high, random resampling was per-
formed again.

(22)G(u, v) = 1 − �N − N(1 − �)�N−1 ≥ �c

Fig. 4  (Color online) Calculation flowchart of uncertainty quantification and sensitivity analysis for coupling parameters of neutronics, thermal-
hydraulics, and control system
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3.2  Spearman sensitivity analysis method

The Spearman sensitivity value is a nonparametric ranking 
statistical coefficient that is independent of the data distribu-
tion. For two random variables X and Y, the rank correlation 
coefficient r(X, Y) is given as the Eq. (23).

where FX(X) and FY (Y) are the cumulative probability dis-
tribution functions of X and Y, respectively, S is the linear 
correlation coefficient. The cumulative probability distribu-
tion of the random variable X was FX(X) = P(X ≤ x) and the 
existence of the inverse cumulative probability distribution 
function leads to the Eq. (24).

The random variable FX(X) obeys a uniform distribution on 
the interval [0,1]. Therefore, the rank correlation coefficient 
was actually the linear correlation coefficient between the 
variables after converting the original variables into vari-
ables obeying a uniform distribution. The rank correlation 
coefficient was equal to the linear correlation coefficient 
when the random variables obey a uniform distribution. For 
N sets of samples (xi, yi) of random variables X and Y, the 
Spearman correlation coefficient r(X, Y) can be described 
in Eq. (25).

where R(xi) and R(yi) are the ranks of xi and yi in all samples, 
respectively, and R(x) and R(y) are the means of their cor-
responding ranks.

To calculate the sensitivity of the input parameters of the 
dynamic system to the output parameters, the Spearman cor-
relation coefficient was calculated at time intervals to obtain 
real-time sensitivity analysis results of the dynamic system, 
as shown in Fig. 4.

3.3  Multi‑objective optimization method

3.3.1  NSGA‑II algorithm

For the NSGA-II algorithm calculation, crowding distance 
and crowding selection maintained population diversity. The 
elite strategy rapidly increases population quality. Crowding 
distance was used to measure the clustering degree of indi-
viduals (solutions) within the same ranking hierarchy, as a 
criterion to maintain population diversity. It is represented 

(23)r(X, Y) = S(FX(X),FY (Y))

(24)P(FX(X) ≤ r) = P(X ≤ F−1
X
(r)) = FX(F

−1
X
(r)) = r

(25)

r(X, Y) =

∑N

i=1
[(R(xi) − R(x))(R(yi) − R(y))]

�∑N

i=1
(R(xi) − R(x))2

�∑N

i=1
(R(yi) − R(y))2

by calculating the absolute sum of the distance differences 
between an individual and an adjacent individual on each 
target. The crowding distance can quantify the degree of 
dispersion among individuals within the same ranking hier-
archy, avoiding excessive concentration of individuals in a 
certain area, thereby maintaining population diversity. The 
crowding distance of individual i on the k th target fk is 
|||f

i+1
k

− f i−1
k

||| ( k = 1, 2, 3, ...,m ), in which m is the number of 
targets, f i+1

k
 and f i−1

k
 are the target values of two adjacent 

individuals of individual i on the k th target, respectively. 
The crowding distance di of individual i can be described in 
Eq. (26).

To ensure the selection process converges toward the Pareto 
optimal solution and that the optimal solutions are evenly 
distributed, it is necessary to select individuals based on 
their non-dominated ranking hierarchical sequence num-
ber and crowding distance, to select the best N individuals. 
Assuming that the non-dominated sorting hierarchy number 
of individual i is irank , and the crowding distance is di . For 
any two individuals i and j, the selection depends on the 
following rules: (1) If irank < jrank , select individual i as the 
preferred individual. (2) If irank > jrank , select individual j as 
the preferred individual. (3) If irank = jrank , select individual 
with a large crowding distance.

For instance, such a selection strategy selects the best 
individuals to build the next generation population while 
maintaining individual diversity. The elite selection strat-
egy is adopted to retain the best individuals in the parent 
generation and directly enter the offspring. The population 
is sorted using non-dominated sorting, and the local crowd-
ing distance for each individual is calculated. Individuals 
are selected one at a time, until the number of individuals 
reaches N, forming a new parent population. Accordingly, 
a new round of selection, crossover, and mutation begins 
to form a new offspring population (a new generation of 
solutions).

3.3.2  Control system optimization by the NSGA‑II

The power control system can maintain or adjust the output 
electrical power of the space reactor to the required target 
value. Its control principle is shown in Fig. 5. The error 
between the set value and the actual value of the electrical 
power was transferred into the PID controller. The control 
signal generates the driving signal of the control drum, as 
presented in Fig. 5. The changing angle of the control drum 
was converted into the reactivity introduced into the reactor 
core, and the reactor power was adjusted, ensuring the output 

(26)di =

m∑

k=1

(|||f
i+1
k

− f i−1
k

|||
)
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electrical power reached the target value. In the process of 
designing the initial PID controller parameters, the following 
three steps were carried out. First, an open-loop response 
was obtained to determine what needs to be improved. Sec-
ond, a proportional control was added to improve the rise 
time. Third, a derivative control was added to reduce the 
overshoot, and then, an integral control was added to reduce 
the steady-state error. Finally, each of the gains (Kp,Ki,Kd) 
was adjusted until the desired overall response was obtained.

During the multi-objective optimization process, the 
integral time absolute error (ITAEp) and the control cost 
required of the power regulation (COSTc) served as two 
objective functions, PID controller parameters (Kp,Ki,Kd) 
are the optimization objects, as shown in Fig. 6. In each 
iterative process of the controller optimization, the objective 
function values caused by the coupling parameter uncer-
tainty of neutronics, thermal-hydraulics, and control system 
in the transient model were calculated. The maximum values 
of the objective functions of the uncertainty calculations 
were selected as the final objective function values. Opti-
mal control performance can be obtained considering system 
parameter uncertainty, as shown in Fig. 6.

4  Results and discussion

Based on the developed model, a dynamic simulation plat-
form of the space reactor was established, and the calcula-
tion values were compared with those of the design values 
in the literature to confirm accuracy of the program [42], as 
shown in Table  2. The results show that the simulation val-
ues agree with the design parameters. Thus, the established 
simulation model can be used for space reactor uncertainty 
analysis and control system optimization. In this study, the 
NSGA-II method was applied for the uncertainty-based con-
troller optimization in the simulation platform.

4.1  Uncertainty quantification and sensitivity 
analysis

Both the theoretical simulation approximation and empirical 
correlation fitting in the experimental process cause system 
model uncertainty. Furthermore, the device of the space 
reactor will be accompanied by multi-degree freedom move-
ments such as ups, downs, swings, and tilts in the changeable 
space environment, resulting in parameter uncertainty of the 
reactor neutronics and thermal-hydraulics model. Simulta-
neously, the sensors and actuators of the control system can 
introduce uncertainty due to environmental disturbances. 
To ensure safe and reliable operation, system uncertainty 
of space reactors must be quantified. Due to the limited 
computing resources, all uncertainty parameters could not 
be considered. Therefore, based on the insights from pre-
vious studies, the analysis primarily focuses on the most 
representative parameters. These parameters were selected 
for their influence on system performance, streamlining 
the uncertainty analysis while ensuring that key factors are 
adequately addressed.

The key uncertainty parameters selected in this study 
were divided into three categories: cross-section and kinet-
ics parameters of the neutronics, thermophysical property 
parameters and heat transfer coefficients of thermal-hydrau-
lics, and sensor measurement parameters of the control sys-
tem. The selected uncertain parameters are treated as inputs 
for the uncertainty quantification program, with the assump-
tion that they are uniformly distributed within their specified 
range. The distribution range of the input parameter uncer-
tainty is determined based on the relevant information from 
references and engineering experience [26, 43], as shown 
in Table  3. The uncertainty quantification results obtained 
using a uniform distribution are larger than those obtained 
with a normal distribution, which aligns with the conserva-
tive approach typically adopted in space reactor uncertainty 

Fig. 5  Schematic diagram of electrical power control system for space reactor
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Fig. 6  Flowchart of multi-objective optimization of control parameters under system uncertainty
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quantification. The number of samples required for the 
uncertainty calculation is determined solely by the set tol-
erance limit and confidence level. In theory, all uncertainty 
factors can be exhausted, and results that meet the specified 
requirements can be achieved at the minimum calculation 
cost. Given that the GRS method has a small computational 
burden, it is widely used for quantitative uncertainty analysis 
in nuclear engineering. Therefore, it is used to conducted 
uncertainty analysis of the coupling parameters in neu-
tronics, thermal-hydraulics, and the control system for the 
space reactor. In our analysis, seventeen uncertainty input 
parameters related to the transient process were selected as 
samples, as shown in Table  3. To achieve a 95% confidence 
level, 93 samples were randomly generated with a uniform 
distribution.

In this study, to analyze the impact of system uncertainty 
on the dynamic characteristics of the space reactor, two 

typical transient operating conditions, including UELV and 
URI, were selected. To analyze the uncertainty quantifica-
tion results, the mean, standard deviation, relative standard 
deviation (RSD), maximum and minimum values, and con-
fidence intervals were used for quantitative characterization. 
The mean value is given in Eq. (27).

where NS is the number of samples. The standard deviation 
is described as the Eq. (28). The relative standard deviation 
could be obtained in Eq. (29).

4.1.1  UELV transient uncertainty analysis

In the UELV transient, the external load resistance increases 
twice in the space reactor system. The uncertainty param-
eters of the neutronics and thermal-hydraulics models 
(N-TH uncertainty), control system uncertainty parameters 
(Control uncertainty), and coupling uncertainty parameters 
of the neutronics, thermal-hydraulics, and control system 

(27)� =
1

NS

NS∑

n=1

xn

(28)� =

����
∑NS

n=1
(xn − �)2

NS − 1

(29)RSD =

�∑NS

n=1
(xn − �)2∕(NS − 1)

�
× 100%

Table 2  Comparison between simulation results and design values

Parameters Design values Simulation values

Nuclear thermal power (kW) 2000 2000
Electrical power output (kW) 112 116
Conversion efficiency � (%) 5.6 5.8
Core inlet temperature (K) 1254 1250.2
Core outlet temperature (K) 1284 1283.7
Fuel average temperature (K) 1376 1375.8
Cladding temperature (K) 1288 1287.6
TE hot shoe temperature (K) 1237 1236.8
TE cold shoe temperature (K) 857 857.1

Table 3  Uncertainty parameters 
of the neutronics and thermal- 
hydraulics models and control 
system

Parameters Probability 
distribution

Uncertainty

Neutronics parameters Doppler reactivity coefficient Uniform ±3%

Fuel expansion reactivity coefficient Uniform ±3%

Cladding expansion reactivity coefficient Uniform ±3%

Coolant expansion reactivity coefficient Uniform ±3%

Effective delayed neutron fraction Uniform ±1.2%

Average neutron generation time Uniform ±1%

Thermal-hydraulics parameters Fuel heat capacity Uniform ±1.5%

Coolant heat capacity Uniform ±1.5%

Fuel-cladding heat transfer coefficient Uniform ±2%

Cladding-coolant heat transfer coefficient Uniform ±2%

Coolant-hot shoe heat transfer coefficient Uniform ±1%

Coolant-cold shoe heat transfer coefficient Uniform ±1%

Control parameters Coolant mass flow rate Uniform ±2%

Reactor core inlet temperature Uniform ±0.5K

Reactor core outlet temperature Uniform ±0.5K

HX secondary-side inlet temperature Uniform ±0.5K

HX secondary-side outlet temperature Uniform ±0.5K
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(Coupling uncertainty) were studied. The UELV transient 
simulations of these three cases were conducted as shown 
in Fig. 7. The corresponding samples were input into the 
simulation platform separately for each set of uncertainty 
parameters. The uncertainty quantification values of the out-
put parameters such as nuclear power, electric power, fuel 
temperature, and TE hot shoe temperature were calculated. 
In the UELV transient, when the external load resistance 
increases, the output current changes slightly, while the 
output electrical power increases sharply. The increase in 
external load resistance leads to an increase in the TE hot 
shoe temperature, which in turn causes the temperatures of 
the fuel and coolant to increase. Due to the inherent nega-
tive reactivity feedback of the fuel and coolant temperatures, 
the nuclear power initially decreases, which causes the fuel 
temperature to decrease. After a brief increase, the fuel 

temperature gradually decreases again, driven by the nega-
tive feedback effect of temperature. This results in a slight 
increase in nuclear power, finally reaching a new equilibrium 
state. The uncertainty variation amplitude of the response 
parameters caused by coupling parameters is the largest. For 
nuclear power, the uncertainty change amplitude caused by 
N-TH parameters is slightly lower than that caused by the 
control parameters. For electrical power, the uncertainty 
change amplitude caused by N-TH parameters is slightly 
higher than that caused by control parameters. However, for 
fuel temperature and TE hot shoe temperature, the uncer-
tainty change amplitude caused by N-TH parameters is sig-
nificantly higher than that of control parameters.

The quantitative uncertainty evaluation of the output 
parameters is shown in Table  4. The RSD values of nuclear 
power, electrical power, fuel temperature, and TE hot shoe 

Fig. 7  (Color online) UELV transient responses of system parameters under uncertainty conditions: a transient response of nuclear power, b 
transient response of electrical power, c transient response of fuel temperature, and d transient response of TE hot shoe temperature
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temperature are less than 2.01%. The uncertainty of nuclear 
power caused by coupling parameters shows the largest 
change. In contrast, the uncertainty of fuel temperature 
caused by control parameters shows the smallest change, 
with an RSD value of only 0.02%. Therefore, during the 
UELV transient process, nuclear power is the most sensitive 
of the four output parameters.

4.1.2  URI transient uncertainty analysis

In the URI transient, 70 pcm reactivity is introduced into the 
reactor core. As described above (‘UELV transient uncer-
tainty analysis’), the corresponding samples were input into 
the simulation platform, and the uncertainty quantification 
values of the output parameters of nuclear power, electri-
cal power, fuel temperature, and TE hot shoe temperature 
calculated under the URI transient. The simulation results 
are shown in Fig. 8. In the URI transient, with the introduc-
tion of 70pcm positive reactivity, the neutron flux density 
increased, the nuclear power first increased instantly, and the 
fuel and TE hot shoe temperatures increased. Due to nega-
tive reactivity feedback, the increase in fuel and coolant tem-
perature in the reactor core will introduce negative reactivity, 
and nuclear power will decrease, eventually reaching a new 
equilibrium point. Figure 8 shows that coupling parameters 
cause the largest uncertainty change in output parameters. 
For nuclear power and electrical power, the uncertainty 
change caused by N-TH parameters was slightly higher than 
that caused by control parameters. For fuel temperature and 
TE hot shoe temperature, the uncertainty change amplitude 
caused by N-TH parameters was significantly higher than 
that caused by control parameters.

The uncertainty evaluation results of the four output 
parameters are shown in Table   5. The RSD values of 
nuclear power, electrical power, fuel temperature, and TE 
hot shoe temperature were less than 1.76%. The change of 

nuclear power caused by coupling parameters was the larg-
est. The fuel temperature uncertainty change caused by con-
trol parameters was the smallest, with an RSD value of only 
0.02%. Therefore, during the URI transient process, nuclear 
power is still the most sensitive of the four output param-
eters, and fuel temperature is the least sensitive parameter.

4.1.3  Sensitivity analysis

The Spearman correlation coefficient was calculated for 
influence analysis of system input parameters on the output 
parameters. The Spearman method is a global sensitivity 
analysis method that simultaneously calculates the impact 
of multiple input parameters on multiple output parameters. 
The sensitivity calculation results of the 17 input param-
eters to four output parameters (nuclear power, electrical 
power, fuel temperature, and TE hot shoe temperature) are 
presented in Fig. 9. The sensitivity calculation results were 
normalized, as shown in Fig. 9, with the red color represent-
ing a positive correlation the blue a negative correlation. The 
presented sensitivity values are the final time results during 
the transient process. For the output parameter of nuclear 
power, the input parameter reactor core inlet temperature 
had the greatest impact. The cladding-coolant heat transfer 
coefficient was the least sensitive to nuclear power. Effective 
delayed neutron fraction has the greatest impact on electrical 
power, while fuel-cladding heat transfer coefficient has the 
least impact. Effective delayed neutron fraction was most 
sensitive to the output parameters of fuel temperature and 
TE hot shoe temperature.

To analyze the sensitivity of input parameters to the elec-
trical power (control target parameter) at different times 
during the transient process, the correlation coefficients of 
seventeen input parameters to the electrical power were cal-
culated at intervals of 100 s, as shown in Fig. 10. The results 
show that the correlation coefficient of the effective delayed 

Table 4  Final values of parameter uncertainty quantification for the UELV transient

Parameters � � RSD (%) Minimum Maximum Confidence interval

Nuclear power (kW) N-TH 1817.15 18.63 1.03 1777.01 1857.93 [1780.63, 1853.67]
Control 1816.19 30.62 1.69 1761.70 1877.99 [1756.17, 1876.21]
Coupling 1815.16 36.49 2.01 1738.89 1884.94 [1743.64, 1886.69]

Electrical power (kW) N-TH 105.58 1.01 0.96 103.21 108.09 [103.60, 107.56]
Control 105.77 0.94 0.89 103.53 107.64 [103.92, 107.62]
Coupling 105.82 1.29 1.22 102.20 108.50 [103.28, 108.36]

Fuel temperature (K) N-TH 1374.10 3.11 0.23 1368.02 1379.89 [1367.99, 1380.21]
Control 1373.69 0.34 0.02 1373.08 1374.38 [1373.02, 1374.36]
Coupling 1374.08 3.08 0.22 1367.64 1380.00 [1368.04, 1380.12]

TE hot temperature (K) N-TH 1247.79 2.80 0.22 1241.39 1253.39 [1242.29, 1253.29]
Control 1247.59 1.32 0.11 1245.15 1250.23 [1245.00, 1250.18]
Coupling 1247.83 3.33 0.27 1240.51 1254.81 [1241.30, 1254.37]
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Fig. 8  (Color online) URI transient responses of system parameters under uncertainty conditions: a transient response of nuclear power; b tran-
sient response of electrical power; c transient response of fuel temperature; and d transient response of TE hot shoe temperature

Table 5  Final values of parameter uncertainty quantification for the URI transient

Parameters � � RSD (%) Minimum Maximum Confidence interval

Nuclear power (kW) N-TH 2138.98 21.64 1.01 2092.68 2185.09 [2096.57, 2181.39]
Control 2137.96 30.05 1.41 2084.38 2198.95 [2079.06, 2196.85]
Coupling 2137.06 37.53 1.76 2057.25 2210.01 [2063.49, 2210.63]

Electrical power (kW) N-TH 130.29 1.24 0.95 127.04 133.36 [127.86, 132.71]
Control 130.46 1.04 0.80 127.96 132.56 [128.42, 132.51]
Coupling 130.55 1.55 1.18 125.94 133.71 [127.51, 133.58]

Fuel temperature (K) N-TH 1423.70 3.25 0.23 1416.67 1429.44 [1417.32, 1430.07]
Control 1423.16 0.34 0.02 1422.56 1423.84 [1422.50, 1423.81]
Coupling 1423.68 3.21 0.23 1416.05 1429.09 [1417.37, 1429.97]

TE hot temperature (K) N-TH 1275.03 2.90 0.23 1267.63 1280.64 [1269.35, 1280.72]
Control 1274.74 1.29 0.10 1272.39 1277.35 [1272.21, 1277.27]
Coupling 1275.06 3.42 0.27 1267.67 1281.58 [1268.35, 1281.77]
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neutron fraction is 0.2376 (strongest correlation), and the 
correlation coefficient of Doppler reactivity coefficient is 
0.01451 (weakest correlation) at 100 s. The correlation 
coefficient of effective delayed neutron fraction weakened 
to 0.1913 at 400 s but remained the most sensitive parameter 
to the output parameter of electrical power. Simultaneously, 

the correlation coefficient of the coolant mass flow rate was 
0.0085, which is the least sensitive. At 1000 s, the effective 
delayed neutron fraction was still the most sensitive param-
eter, but the least sensitive parameter at this time was the 
fuel-cladding heat transfer coefficient. Therefore, during the 
transient change process, the correlation coefficient values 

Fig. 9  (Color online) Sensitivity analysis of input parameters to output parameters: a nuclear power, b electrical power, c fuel temperature,and d 
TE hot shoe temperature

Fig. 10  (Color online) Real-time sensitivity analysis of input uncertainty parameters to the electrical power
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of the 17 input parameters to the electrical power change, 
but the main trend does not change markedly.

4.2  Uncertainty‑based control system optimization

4.2.1  NSGA‑II multi‑objective optimization

The goal of space reactor control was to minimize the cost 
of actuator control while ensuring efficient load follow capa-
bility, which can minimize the wear of the control drum 
mechanism and extend the life of the control system. The 
electrical power control system of the space reactor was 
designed based on the developed simulation model. Its 
control principle is shown in Fig. 5. The error e(t) between 
the set value and the actual value was provided to the PID 
controller as feedback information, and then, the value of 
the controller output u(t) is calculated, that is used as a vari-
able input to the control drum actuator to adjust the reactor 
core power. The electrical power was finally delivered to the 
desired value through the control system. To avoid the reac-
tor criticality accident, the adjustment angle of the control 
drum was limited to |u(t)| ≤ 1.4◦∕s . To obtain optimal con-
trol performance, the NSGA-II method was used to optimize 
the PID controller parameters. The schematic diagram of the 
PID optimization controller based on system uncertainty is 
shown in Fig. 6. The multi-objective optimization vector 
xp = [Kp,Ki,Kd] and objective function ���� for the electrical 
power control system could be described in Eq. (30).

where the integral time absolute error of the electrical power 
is expressed in Eq. (31).

where e(t) is the error between the measured electrical 
power PE(t) and its desired value PE,demand . The control cost 
required for the power regulation is given in Eq. (32).

In the iterative optimization process, the number of each 
generation population (np) is 100. The number of iterations 
was 200 generations. The crossover probability was 0.8, 
and the mutation probability was 0.05. The lower limit and 
upper limit of the �p = [Kp,Ki,Kd] were �p,min = [0, 0, 0] , 
�p,max = [100, 50, 150] respectively. When calculating the 
two objective function values ITAEp and COSTc for each 
individual, the objective function values caused by the cou-
pling uncertainty of neutronics, thermal-hydraulics, and 

(30)min ���� =

[
ITAEp(��)

COSTc(��)

]

(31)ITAEp = ∫
tmax

0

t|e(t)|dt

(32)COSTc = ∫
tmax

0

|u(t)|dt

control system were calculated. The number of sample (ns) 
for the uncertainty calculation was 93 to ensure a 95% con-
fidence level. Based on the uncertainty quantification results 
of all individuals in each iteration, the maximum values of 
the objective functions ( ITAEp,max and COSTc,max ) were 
selected as the final objective function values respectively, 
as shown in Fig. 6. Optimal control performance can be 
obtained considering system parameter uncertainty. This 
means that under a given uncertainty parameter range, at 
least 95% of the possible system transients have better per-
formance by the multi-objective optimization, with a confi-
dence level of 95%, the control system has a better perfor-
mance for the uncertainty system. The optimal controller 
parameter set based on uncertainty quantification is shown 
in Fig. 11. The Pareto front consists of a set of optimal solu-
tions that are not dominated by any other feasible solution, 
and it clearly demonstrates the conflict between the two 
objective functions ITAEp and COSTc . The optimal values 
of the Pareto front at five typical points (A, B, C, D, and E) 
are listed in Table  6 to study the relationship between ITAEp 
and COSTc.

Fig. 11  Pareto front of the uncertainty-based optimization for the 
electrical power control system

Table 6  Optimal parameters of the electrical power control system 
and values of  ITAEp and  COSTc at the points A, B, C, D and E on the 
Pareto front

A B C D E

Kp 96.9 48.5 30.9 18.9 18.8
Ki 3.9 1.5 0.7 0.5 0.1
Kd 149.5 148.9 136.9 147.7 148.1
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As presented in Table  6, the minimum ITAEp exists at 
point A where COSTc is maximum. At point E, ITAEp is 
the largest and COSTc is the smallest. Therefore, a bound-
ary between the two objectives is present, and it is clear 
from the Pareto front that no single solution is known that 
can minimize both objective functions simultaneously. The 
final optimal solution should selected via a decision-making 
process based on the importance of each goal. For the selec-
tion of optimal parameters, if control performance is more 
important, the point from A to C can be selected as the final 
optimal solution. Otherwise, points from C to E should be 
chosen as emphasis of the control cost.

In this study, five typical points from A to E were 
selected for comparative study of control system perfor-
mance. To evaluate the effectiveness of multi-objective 
optimization of space reactor control parameters, the simu-
lation results using the optimal controller parameters were 
compared with those of original design controller param-
eters under the load change transient (100% Full power 

(FP) to 90% FP step reduction), as shown in Fig. 12. To 
balance control performance and control cost, point C was 
selected as the final PID controller optimization parameter 
value. The control overshoot and control error of optimal 
point C were smaller than those of optimal points D and E, 
and the control cost was lower than that of optimal points 
A and B, and the changes in fuel temperature and TE hot 
shoe temperature were smoother. Based on the above com-
parative analysis results and comprehensive consideration 
of the control performance and control cost, the controller 
parameters at point C were selected as the final controller 
optimal parameters.

To test the self-adaptive ability of the optimal controller 
to the uncertainty dynamic system, two typical transient 
power changes were simulated and analyzed as follows:

Case 1 (Step power change): 100% FP to 90% FP step 
load reduction transient;

Case 2 (Linear power change): 5% FP/min linear vari-
able load transient.

Fig. 12  (Color online) Dynamic responses of the system parameters 
during the 100% FP to 90% FP step load decrease transient: a tran-
sient response of normalized electrical power; b transient response of 

control drum angle; c transient response of fuel temperature; and d 
transient response of TE hot shoe temperature



Dynamic model uncertainty analysis and control system multi‑objective optimization of space… Page 19 of 22 124

The mean square error (MSEp) and maximum percentage 
deviation (MPDp) were included as evaluation indicators of 
control system performance. MSEp and MPDp are defined 
in Eqs. (33)–(34).

4.2.2  Step power change

In case 1, coupling parameter uncertainty of neutronics, 
thermal-hydraulics, and control system were added into 
the simulation platform at 50 s, and then, the control target 
power steped from 100% FP to 90% FP at 100 s, as shown 
in Fig. 13. The response of the system was not represented 
by a fixed time curve, but by a region bounded by upper 
and lower uncertainty boundaries, which was used to evalu-
ate the adaptive ability of the optimized controller to the 
uncertain system. The simulation results revealed that the 
overall overshoot and control error of the optimized control 

(33)MSEp =
1

tmax
∫

tmax

0

e2(t)dt

(34)MPD =max
|||||

PE(t) − PE,demand

PE,demand

|||||
× 100%

system were lower than those of the control system before 
optimization, and the uncertainty change range of the opti-
mized system during the electrical power adjustment process 
was smaller than that before optimization. The simulation 
results indicate that the optimized electrical power control-
ler has better self-adaptability to adjust uncertainty dynamic 
system.

The average values of IATEp , MSEp and MPDp after 
optimization were all lower than those of values before 
optimization, as shown in Table  7. Notably, the optimized 
controller has lower overshoot, less oscillation, and shorter 
time to reach a new steady state when considering system 
uncertainty.

4.2.3  Linear power change

In case 2, the coupling parameter uncertainty of neutron-
ics, thermal-hydraulics, and control system was inserted 
into the simulation platform at 50 s, and the target power 
gradually decreased from 100% FP to 70% FP with 5% FP/
min decrease at 100 s, and then rebounded to 100% FP at 
800 s, as shown in Fig. 14. The simulation results revealed 
that the overshoot and control error of the optimal control-
ler were lower than those of values before optimization, 
and the uncertainty change range of the optimized control 
system during the electrical power adjustment process was 

Fig. 13  (Color online) Com-
parison results of the control 
performance under coupling 
uncertainty conditions for the 
100% FP to 90% FP step power 
decrease transient
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smaller than that before optimization. The average values 
of IATEp , MSEp , and MPDp after optimization were far 
lower than those of values before optimization, and the 
control cost was equivalent, as presented in Table 7. Under 
linear power change transient, the optimal controller had 
lower overshoot, less oscillation, and reached the target 
power value faster.

Therefore, the optimal controller has stronger adaptive 
capabilities for uncertain systems. By comparing the control 
simulation results of those two power change transients, the 
control system could improve response speed and control 
accuracy after optimization. The effectiveness and superior-
ity of the proposed NSGA-II optimization of the electrical 
power control system based on uncertainty quantification 
analysis has been verified.

5  Conclusion

In this study, we successfully developed a simulation 
model of the space reactor system, including the reactor 
neutron kinetics, reactivity control, reactor core heat trans-
fer, heat exchanger, and thermoelectric conversion mod-
els. Based on the developed transient model, an electrical 
power control system was designed. The GRS method was 
used to quantitatively calculate the uncertainty of coupling 
parameters of the neutronics, thermal-hydraulics, and con-
trol system for the space reactor. The Spearman correla-
tion coefficient was applied for the sensitivity analysis of 
system input parameters to output parameters. To obtain 
optimal control performance, the NSGA-II method was 

Table 7  Comparison results of 
the control performance under 
coupling uncertainty conditions

Case 1: step power change Case 2: linear power change

After optimization Before optimization After optimization Before optimization

IATEp 193.75 436.83 256.59 2302.15
MSEp 1.27 × 10−4 2.23 × 10−4 5.75 × 10−7 1.06 × 10−5

MPDp(%) 2.91 3.57 2.15 2.18
COSTc 25.36 16.91 19.86 18.92

Fig. 14  (Color online) Comparison results of the control performance under coupling uncertainty conditions for the 5%FP/min linear power 
change transient
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employed, to optimize the controller parameters based on 
the uncertainty system. 

(1) In the UELV transient, the RSD values of nuclear 
power, electrical power, fuel temperature, and TE hot 
shoe temperature were less than 2.01%. The uncertainty 
of nuclear power caused by coupling parameters has 
the largest change. The uncertainty of fuel temperature 
caused by control parameters has the smallest change, 
with an RSD value of only 0.02%.

(2) In the URI transient, the RSD values of nuclear power, 
electrical power, fuel temperature, and TE hot shoe 
temperature were less than 1.76%. The uncertainty var-
iation of nuclear power caused by coupling parameters 
was the largest, whereas fuel temperature uncertainty 
change caused by control parameters was the smallest.

(3) For the output parameter of nuclear power, the input 
parameter of reactor core inlet temperature had the 
greatest impact. The cladding-coolant heat transfer 
coefficient was the least sensitive to nuclear power. 
Effective delayed neutron fraction had the greatest 
impact on electrical power, while fuel-cladding heat 
transfer coefficient had the lowest impact. Simultane-
ously, effective delayed neutron fraction was most sen-
sitive to the output parameters of fuel temperature and 
TE hot shoe temperature.

(4) During the transient change process, the correlation 
coefficient values of the input parameters to the electri-
cal power will change at different moments, only with 
slight changes from main trend.

(5) For the two typical power control transients, the average 
values of IATEp , MSEp , and MPDp after optimization 
were lower than those of values before optimization, 
and the control cost was comparable. The simulation 
results also showed that the optimal controller has 
lower overshoot, less oscillation, and reaches the target 
power value faster, considering system uncertainty.
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