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Abstract
The multiple nuclides identification algorithm with low consumption and strong robustness is crucial for rapid radioactive 
source searching. This study investigates the design of a low-consumption multiple nuclides identification algorithm for port-
able gamma spectrometers. First, the gamma spectra of 12 target nuclides (including the background case) were measured 
to create training datasets. The characteristic energies, obtained through energy calibration and full-energy peak addresses, 
are utilized as input features for a neural network. A large number of single- and multiple-nuclide training datasets are 
generated using random combinations and small-range drifting. Subsequently, a multi-label classification neural network 
based on a binary cross-entropy loss function is applied to export the existence probability of certain nuclides. The designed 
algorithm effectively reduces the computation time and storage space required by the neural network and has been success-
fully implemented in a portable gamma spectrometer with a running time of t

r
< 2 s . Results show that, in both validation 

and actual tests, the identification accuracy of the designed algorithm reaches 94.8%, for gamma spectra with a dose rate of 
d ≈ 0.5 μSv∕h and a measurement time t

m
= 60 s . This improves the ability to perform rapid on-site nuclide identification 

at important sites.
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1 Introduction

Nowadays, radionuclides have been widely used in medical, 
industrial, agricultural, and scientific research fields [1, 2]. 
Accidental leakage or incidents involving radionuclides may 
cause serious harm to people and the surrounding environ-
ment [3, 4]. A low-cost and effective nuclide identification 
algorithm suitable for portable gamma spectrometers can 
quickly determine potential or unexpected radionuclide 
types, enabling follow-up emergency treatment to minimize 
harm to public health and the environment [5–7].

Traditional nuclide identification methods use the most 
prominent features in the gamma spectra—the address and 
area information of the full-energy peak—to search for and 
identify nuclides. These methods typically involve obtaining 
raw gamma spectrum data using digital multichannel analyz-
ers, followed by smoothing, digital filtering [8], background 
subtraction [9], peak searching [10], and energy calibration 
[11–13]. This process ultimately establishes a functional 
relationship between full-energy peak addresses and ener-
gies for nuclide identification. These methods, which have 
strong interpretability and mature peak search algorithms, 
have been widely used in various nuclide identification sys-
tems [14, 15]. However, for nuclides with multiple char-
acteristic energies such as 

(
226Ra,152 Eu,232 Th, etc.

)
 , and 

others, or for spectra composed of multiple nuclides, the 
algorithm logic becomes complex and redundant. This ren-
ders traditional nuclide identification methods not suitable 
for portable gamma spectrometers. Sequential Bayesian 
algorithms for nuclide identification are statistical learn-
ing methods [16]. These methods, based on extracting 
energy and time information emitted by the nuclide source, 
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construct a screening process for energy and time to pre-
dict the existence of nuclides. For a single nuclide with low 
noise interference, the method performs well [17]. However, 
sequential Bayesian methods can be easily affected by high 
background count levels. Additionally, the large number of 
calculations required for multiple nuclides makes it impos-
sible to deploy sequential Bayesian methods in portable 
gamma spectrometers [18, 19].

With the rapid development of artificial intelligence, 
neural networks have been widely used to solve identifica-
tion problems owing to their powerful nonlinear mapping 
capabilities. The application of neural networks to identifi-
cation problems primarily involves extracting feature vec-
tors, defining network structures, adjusting parameters, and 
calculating prediction results. In the field of nuclide identi-
fication, the application of neural networks aims to improve 
identification efficiency and lower the technical requirements 
for operators [20, 21].

Neural network algorithms for nuclide identification 
directly accept the gamma spectra measured by digital mul-
tichannel analyzers as input and obtain nuclide identification 
results through nonlinear operations [22, 23]. Recently, the 
widespread application of machine learning to classification 
problems has promoted the development of nuclide identi-
fication based on neural networks. Various algorithms and 
principles have been applied to nuclide identification. A 
scintillation detector nuclide identification algorithm based 
on a deep neural network with multiple hidden layers was 
implemented at a low-energy resolution [24]. Considering 
that an energy spectrum with 1024 or more channels is not 
suitable for direct utilization as a network input, multiple-
nuclide identification methods in low-count cases can be 
realized by combining feature enhancement technology and 
a one-dimensional neural network to improve identification 
accuracy and applicability [25]. For convolutional neural 
networks (CNNs), a novel nuclide identification method 
based on the Hilbert–Huang transform and a CNN was con-
structed, achieving high-precision identification by process-
ing gamma pulse signals [26]. Using mixed nuclide gamma 
spectra simulated by Geant4, a trained convolutional neu-
ral network nuclide identification model demonstrated an 
accuracy of approximately 90% [27]. Additionally, the back-
ground contrast nuclide identification method can achieve 
high accuracy and rapid identification by comparing back-
ground signals with sample signals [28].

However, the aforementioned methods do not retain good 
interpretability of the extracted feature information. Moreo-
ver, the dimensionality of the feature information is high, 
resulting in significant computation and resource consump-
tion by the neural network, making it difficult to deploy in 
portable equipment. Second, for multiple-nuclide identifi-
cation, the features of multiple-nuclide spectra are usually 
treated as features of a new single-nuclide spectrum, which 

significantly increases the sparsity of the multi-classification 
neural network [29]. Additionally, the training datasets in the 
above studies were typically simulated using Monte Carlo 
method or collected under laboratory conditions, and all 
types of neural networks were trained on this basis [30, 31]. 
In the application scenario of a portable gamma spectrom-
eter, the spectral features may change significantly under the 
influence of temperature and region, reducing the stability 
of these methods.

Therefore, in this study, we designed a nuclide identifica-
tion method with low consumption and strong robustness 
suitable for portable gamma spectrometers. A peak-seeking 
algorithm was developed to obtain the full-energy peaks of 
the gamma spectra, and the exported characteristic energies 
were considered its features. Subsequently, a multi-label 
classification neural network with a low number of nodes 
was built, trained, and evaluated. Finally, low energy con-
sumption and good identification accuracy were achieved 
after the implement in the spectrometer.

2  Methods and experiments

Classification problems are among the most important 
research topics in the field of machine learning and can be 
divided into two categories: single-label classification and 
multi-label classification.

Single-label classification is primarily used to solve prob-
lems where a sample belongs to only one category. Each 
output node in the network represents a category. In the case 
of multiple nuclides, the single-label classification neural 
network for nuclide identification needs to enumerate all 
the considered nuclide combinations, which is redundant 
and not applicable [32]. However, in multi-label classifica-
tion, a sample is considered to belong to multiple categories 
simultaneously, making it suitable for multiple-nuclide iden-
tification. For this reason, a multi-label classification neural 
network was designed to fit the single- and multiple-nuclide 
cases simultaneously. The training and prediction processes 
are shown in Fig. 1. In the training process, the measured 
spectra were converted into training datasets through feature 
extraction, drifting, and combination. For the prediction pro-
cess, the trained model is deployed in the portable gamma 
spectrometer to predict the nuclides of the measured spectra.

2.1  Multi‑label classification

As shown in Fig. 2, the classification neural network for 
single-label and multi-label can have the same network 
topology construction. � = {o1,o2 ⋯ ,o5} is the output vec-
tor of the classification neural network. In single-label clas-
sification, the output vector satisfies 

∑
� = 1 ; assuming o3 is 

the maximum value, its prediction vector � = {y1,y2 ⋯ ,y5} 
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yields {0, 0, 1, 0, 0} , which indicates that the input feature 
vector only belongs to the third label. In the multi-label clas-
sification case, its output vector satisfies 

∑
� ≠ 1 ; assuming 

that all of the õ1, õ3, õ5 are higher than a given threshold, 
the prediction vector � = {y1,y2 ⋯ ,y5} yields {1, 0, 1, 0, 1} , 
indicating that the input feature vector belongs to the first, 
the third, and the fifth labels at the same time, which meets 
the requirement of multiple nuclides identification.

Although single-label and multi-label classification neu-
ral networks can have the same network topology, there are 
differences in the activation and loss functions. To avoid 
the logical redundancy of the traditional nuclide match-
ing method and the high resource consumption of existing 

neural network algorithms, a loss function optimization 
method was designed to handle the multi-label output and 
optimize the loss function.

The designed neural network had an input layer, two hid-
den layers, and an output layer. All the layers were fully 
connected. The computational formula between two layers 
can be defined as

where o, l,W, b denote the data vector of the current layer, 
data vector of the previous layer, weight matrix, and bias 
vector, respectively. When the network is trained to con-
verge, the weight matrix of each layer will be fixed. f (⋅) 
is the activation function, which introduces nonlinear fac-
tors so that the network can learn and represent complex 
nonlinear relationships. The data in the input layer are a 
feature vector consisting of the characteristic energies of 
the measured spectrum, and its dimension is discussed in 
the following subsection. For the output layer, the output 
data are a 12-dimensional prediction vector indicating the 
existence probability of the 12 types of target nuclides (the 
background spectra are also regarded as nuclide spectra). 
The sigmoid activation function was selected as the activa-
tion function for the output layer, differing from the softmax 
function in single-label classification. It can be defined as,

(1)o = f (lW + b)

(2)�(x) =
ex

1 + ex
,

Fig. 1  Training and prediction processes

Fig. 2  Classification neural network
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and its derivative ��(x) = �(x)(1 − �(x)) . The sigmoid func-
tion effectively maps the network output data to a range 
between 0 and 1 and is particularly suitable for models 
where the output needs to be interpreted as a probability.

The loss function in the neural network quantifies the 
difference between the predicted and true values, which is 
considered as the difference between the real probability 
distribution and the predicted probability distribution for 
this network design. The output of the k-th node Ok can be 
regarded as the predicted presence probability of the k-th tar-
get nuclide and obeys the Bernoulli distribution. The prob-
ability density function can then be defined as

In a sample set Y containing N samples, the occurrence fre-
quency of an event Yk can be determined; however, its true 
probability Õk remains unknown. To estimate Õk , the maxi-
mum likelihood estimation method is applied. The likeli-
hood function is

By taking the derivative of (4) and setting it equal to zero, 
the estimated Ōk , representing the maximum point of (4), 
can be calculated. During one training epoch of the neural 
network, all N samples are utilized; thus, the loss function 
for the k-th node can be defined as

where Yk represents the true k-th label of the input sample. 
By continuously minimizing the optimized loss function, 
the predicted existence probability and the true existence 
probability are realized.

For the undefined network hyperparameters, a hyper-
parameter optimization process was implemented. In this 

(3)P(Yk) = Ok
Yk (1 − Ok)

1−Yk .

(4)

logP(Y) = log

N∏
i=1

P(Yi
k
) =

N∑
i=1

logP(Yi
k
)

=

N∑
i=1

(Yi
k
logOk + (1 − Yi

k
) log(1 − Ok)).

(5)Lossk = −

N∑
i=1

(Yi
k
logOk + (1 − Yi

k
) log(1 − Ok)),

process, random search is commonly employed to select 
hyperparameters and evaluate model performance. This 
approach identifies optimal hyperparameters over a wide 
range and provides an initial training set. By analyzing train-
ing results, the hyperparameter region converges more eas-
ily. The Keras-Tuner toolkit was utilized for hyperparameter 
searching, with the node numbers of the first and second 
hidden layers set to 30 and 26, respectively. The dropout 
rate for hidden layer neurons was 0.5, and the learning rate 
was set to 0.001.

The designed multi-label classification neural network 
was built, trained, and tested using the Keras library in 
Python 3.9. The backpropagation algorithm employed the 
Adam optimizer to adjust network parameters and minimize 
the loss function [33]. The number of training epochs was 
set to 20,000.

2.2  Features extraction

In this section, a portable gamma spectrometer was used 
to measure the spectra of 12 target nuclides (including the 
background case) with a dose rate of d ≈ 0.5 μSv∕h and a 
measurement time of tm = 60 s . The self-developed portable 
gamma spectrometer is shown in Fig. 3. It comprises a 0.5 × 
1 × 2-inch CsI scintillator detector and a signal processing 
circuit. Signals from the scintillator detector were amplified, 
shaped, counted, and analyzed using a signal processing cir-
cuit equipped with a low-power ARM chip operating at 200 
MHz. Unlike existing portable gamma spectrometers [34], 
energy calibration was performed using LuO powder sur-
rounding the scintillator crystal. By analyzing fluctuations 
in the decay characteristic energies of 176 Lu in LuO, energy-
scale coefficients were adjusted to achieve energy calibra-
tion. The measured nuclides included the industrial nuclides (
241Am,133 Ba,60 Co,137 Cs,152 Eu,22 Na,54 Mn

)
 , the natural 

nuclides 
(
40K

)
 , and the medical nuclides 

(
131I,177 Lu,99m Tc

)
 . 

The measured gamma spectra were used as original samples, 
and features were extracted to construct the training datasets.

The characteristic energies of the spectra were used as 
elements in the feature vectors, enhancing the robustness 
of the algorithm, generalizability, and interpretability 

Fig. 3  (Color online) Portable 
gamma spectrometer for spectra 
measurements
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under higher dose rates or longer measurement times. 
Portable gamma spectrometers with scintillator detectors 
typically exhibit low energy resolution and can identify 
only a limited number of nuclides. To achieve multiple-
nuclide identification within three types of nuclides, the 
feature vector size was set to eight elements. (Empty ele-
ments were filled with zeros.) This significantly reduced 
the number of input nodes and the computational burden 
of the neural network [22]. The following peak-searching 
algorithm was designed for feature extraction.

Considering the computing power of the gamma spec-
trometer and the reliability of the spectral data after 
smoothing, the smoothing algorithm employs the seven-
point barycenter method, which is expressed as

where si represents the number of the i-th channel in the 
spectrum. The symmetry method was used to handle the 
boundaries of the spectra. The smoothing weight factors are 
positive, and the smoothed spectrum data exhibit good per-
formance, particularly for spectra with a high background 
count.

In the spectra measured by the spectrometer, the back-
ground primarily originates from uranium, thorium, potas-
sium, and their decay offspring in the environment. In 
addition, the shielding of materials can further complicate 
the spectra owing to significant scattering in the spectra. 
This places higher demands on the spectral feature extrac-
tion method. A symmetric zero area peak-searching algo-
rithm was implemented to suppress high background levels 
and resolve overlapping peaks. The symmetric zero area 
method uses a symmetric window function with zero area 
to convolve with the obtained spectra and applies specific 
criteria to filter valid peaks in the transformed spectra. Its 
expression is defined as

where 
t∑

j=−t

Gj = 0 . The first derivative of the Gaussian func-

tion was utilized as the window function:

where  j ∈ {−t,−t + 1⋯ , 0⋯ t − 1, t} and � is the variance 
of the Gaussian function. In the transformed spectrum, the 
zero point is an alternative point to the peak position. To 
minimize the influence of miscellaneous peaks and bound-
ary noise during peak searching, two criteria are applied: 

(6)
si =

1

64
(20si + 15si−1 + 15si+1

+ 6si−2 + 6si+2 + si−3 + si+3),

(7)s̃i =

t∑
j=−t

Gjsi+j,

(8)Gj =
j

�2
e−j

2∕2�2

,

the area ratio between two adjacent zero points f1 and the 
distance between two adjacent zero points f2 are taken as the 
discrimination standard. Hence,

where zi denotes the i-th zero point of the transformed 
spectrum. To ensure that the sensitivity of peak searching 
remains unaffected by statistical fluctuations in the spec-
trum, the standard deviation of the transformed spectrum 
is used. Specifically, when the positive extreme value of 
the transformed spectra divided by the standard deviation 
exceeds the set threshold f, the point is identified as the peak 
position.

Figure 4 illustrates the peak-searching process for the back-
ground, single-, and multiple-nuclide spectra. The charac-
teristic decay energies of 176 Lu (201.8 keV and 306.8 keV) 
were used for energy calibration, as shown in Fig. 4c. The 
two full-energy peaks, marked by blue circles, are derived 
from the characteristic gamma photons emitted by 176Lu. For 
the portable gamma spectrometer, energy calibration was 
performed periodically during the background measurement 
but not during the identification process. To ensure the sta-
bility of energy calibration and minimize interference from 
176 Lu in nuclide identification, different values for f1,  f2 , and 
f were selected, as shown in Fig. 4c and i.

In Fig. 4a, d, and g, the smoothing algorithm demon-
strates good performance, ensuring the non-negativity of 
the spectra around peak regions. The transformation pro-
cess also effectively removes the background, as shown in 
Fig. 4b, e, and h. The peaks marked with blue circles in 
Fig. 4f and i represent the full-energy peaks of the single (
137Cs

)
 and multiple nuclides 

(
241Am −137 Cs −60 Co

)
 cases, 

respectively, indicating the effectiveness of the designed 
peak-searching algorithm.

2.3  Datasets construction

Using the designed feature extraction algorithm, the full-
energy peaks of 12 nuclides were obtained from 1200 
measured spectra (100 spectra for each nuclide). The char-
acteristic energies were calculated based on the energy-
scale coefficients of the spectrometer. Table  1 lists the 
characteristic energies of the measured nuclides obtained 

(9)
min

����
∑zi

j=zi−1
s̃j
���,
���
∑zi+1

j=zi
s̃j
���
�

max
����

∑zi
j=zi−1

s̃j
���,
���
∑zi+1

j=zi
s̃j
���
� < f1,

(10)s̃j − s̃j−1 > f2, s̃j+1 − s̃j > f2,

(11)
s̃i

Δs̃i
=

∑t

j=−t
Gjsi+j�∑t

j=−t
G2

j
si+j

> f .
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using the peak-searching algorithm and energy calibration. 
The designed peak-searching algorithm proves effective 
for gamma rays with high branching ratios emitted by the 
nuclides.

The data listed in Table 1 demonstrate a noticeable error 
between the obtained energies and the standard characteristic 
energy. Simultaneously, considering the drift problem of the 
detector under varying working environment temperatures, the 
extracted datasets for a single nuclide were expanded within 
a range of ±2% . Consequently, the training dataset size for a 
single nuclide increased from 100 to 500. Then, the different 
expanded single-nuclide characteristic energies were com-
bined to create multiple-nuclide characteristic energy vectors, 

with the number of nonzero elements kept at eight or fewer. 
The multiple-nuclide labels were formed by linearly superpos-
ing single-nuclide labels. This process generated datasets con-
taining 18,500 input feature vectors. All input feature vectors 
were normalized and randomized to reduce positional sensitiv-
ity and enhance the generalizability of the model.

Fig. 4  (Color online) Peak-searching processes for the background, 
single nuclide 

(
137Cs

)
 , and multiple nuclides 

(
241Am −60 Co −137 Cs

)
 . 

a, d, and g are the smoothing processes for background, single 

nuclide, and multiple nuclides cases, respectively. b, e, and h are the 
convolution processes. c, f, and i show the peak search results
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3  Results

3.1   Identification accuracy indicators

Hamming Loss is a common evaluation metric in machine 
learning and classification problems, particularly for multi-
label classification tasks where each sample can have mul-
tiple labels. It measures the dissimilarity between predicted 
and actual labels using the Hamming distance, which quanti-
fies the number of differing bits between two binary strings. 
Specifically, Hamming Loss is calculated as the average 
number of misclassified labels across an entire test data-
set. Hamming Loss evaluates not only individual label pre-
dictions but also overall sample predictions. In addition, it 
is easy to understand and calculate, providing an intuitive 
measure of classifier performance on test datasets. A lower 
Hamming Loss indicates higher model accuracy. The calcu-
lation formula is as follows:

where m is the number of tested samples, q is the label 
dimension, yi

j
 is the j-th element of the real label for the i-th 

sample, and ỹi
j
 is the j-th element of the prediction for the 

i-th sample.
However, Hamming Loss has certain limitations. It pri-

marily focuses on overall similarity and can fail to capture 
local characteristics. To address this issue, this study intro-
duces a stricter evaluation method called the exact match 
ratio (EMR). This method considers only cases where the 
prediction matches the true label exactly as effective results. 
EMR is defined as

(12)HL =
1

mq

m∑
i=1

q∑
j=1

I(yi
j
≠ ỹi

j
),

where m is the number of tested samples, yi is the real label 
for the i-th sample, ỹi is the prediction for the i-th sample, 
and I(⋅) is the indicator function.

The EMR method is stricter than Hamming Loss because 
partially correct predictions are not considered effective. 
Nonetheless, for both metrics, a smaller value always indi-
cates better network model performance.

3.2   Identification test

In this study, 14800 gamma spectra were used as training and 
validation datasets, while 3700 gamma spectra were used as 
test datasets. The training accuracy iteration processes for 
both the training and validation datasets were recorded over 
20000 epochs, as shown in Fig. 5. The validation accuracy 
converged to 0.967. Two types of identification tests were 
performed: a validation test using 3700 validation spectra 
and an actual test using 900 spectra measured under both 
unshielded and shielded conditions.

Using the trained network, validation datasets includ-
ing single, double, and triple nuclides were tested. Table 2 
lists the average neural network output for each node under 
a single-nuclide case, where the background case is also 
considered as a type of single-nuclide case. The 12 values 
in each row of Table 2 represent the average output of the 
12 network output nodes for a specific nuclide case. Fig-
ure 6 illustrates the distribution of the network output for 
the corresponding nodes under a single-nuclide case. The 
bold numbers in Table 2 and the red lines in Fig. 6 indicate 
the average output of the corresponding nodes.

Tables 3 and 4 list the average neural network output for 
each node under dual- and triple-nuclide cases, where the 

(13)EMR =
1

m

m∑
i=1

I(yi = ỹi),

Table 1  Comparison of measured and standard energies

Nuclides Measured energies of the 
full-energy peaks (keV)

Standard decay energies (keV)

241Am 63.2 59.6
133Ba 365.6,302.9 356.0,307.84

168.0,92.7 165.76,80.0
60Co 1158.3,1308.2 1173.2,1332.5
137Cs 659.5 661.7
152Eu 136.1,359.6,783.4 121.78,344.28,778.9

1100.2,1387.3 1173.2,1408.0
131I 378.4, 632.5 364.5,637.0
40K 1423.6 1460.9
177Lu 210.4 208.4
54Mn 835.2 834.8
22Na 1216.8 1274.5
99mTc 150.6 140.5

Fig. 5  (Color online) Iteration processes of the training and validation 
datasets
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background case is not considered. This is because the dual- 
and triple-nuclide cases with the background included can 
be reduced to single- and dual-nuclide cases, respectively. 
The 12 values in each row of Tables 3 and 4 represent the 
average output of the 12 network output nodes for a spe-
cific multiple-nuclide case. Based on possible combinations 
of target nuclides in industrial and medical processes, 16 
dual-nuclide cases and 12 triple-nuclide cases were tested. 
Figures 7 and  8 illustrate the distribution of the network 
output for the corresponding nodes under dual- and triple-
nuclide cases. The bold numbers in Tables 3 and 4 and the 
red lines in Figs. 7 and  8 demonstrate the observations listed 
in Table 2 and shown in Fig. 6.

After the identification test using validation datasets, an 
actual test of the identification method was conducted under 
unshielded and shielded conditions (using a 10-mm lead 
brick). To verify the validity and feasibility of the algorithm 

in scenarios with energy resolution challenges and complex 
background interference, several types of single, double, and 
triple nuclides were randomly selected for 100 repeated iden-
tification tests under both conditions. All the shielded spec-
tra were excluded from the training datasets, but the nuclides 
were included in the output layer. Figure 9 illustrates the 
peak-searching results for unshielded and shielded multiple-
nuclide cases. Figure 9a shows peak-searching results for the 
unshielded 133Ba −60 Co −137 Cs case, and Fig. 9b shows the 
results for the shielded case.

Fig. 6  Network output of the 
corresponding nodes under the 
single-nuclide case

Table 2  Neural network average output under single-nuclide case

Single nuclide Background 241Am 133Ba 60Co 137Cs 152Eu 131I 40K 177Lu 54Mn 22Na 99mTc

Background 0.998 0.014 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002
241Am 0.000 0.981 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010
133Ba 0.000 0.110 0.982 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
60Co 0.000 0.061 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
137Cs 0.000 0.093 0.003 0.000 0.985 0.000 0.000 0.000 0.000 0.000 0.000 0.000
152Eu 0.000 0.029 0.000 0.000 0.000 0.998 0.000 0.000 0.000 0.001 0.000 0.000
131I 0.000 0.049 0.190 0.000 0.045 0.000 0.944 0.000 0.000 0.000 0.000 0.000
40K 0.000 0.000 0.000 0.000 0.003 0.000 0.000 1.000 0.000 0.000 0.000 0.000
177mLu 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.993 0.000 0.000 0.027
54Mn 0.000 0.000 0.000 0.000 0.034 0.000 0.000 0.000 0.000 0.999 0.000 0.000
22Na 0.000 0.363 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000
99mTc 0.000 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.0123 0.000 0.000 0.972
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Fig. 7  Network output of the corresponding nodes under dual-nuclide case

Table 3  Neural network average output under the dual-nuclide case

Dual nuclides Background 241Am 133Ba 60Co 137Cs 152Eu 131I 40K 177Lu 54Mn 22Na 99mTc

241Am −133 Ba 0.000 0.894 0.999 0.000 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.008
241Am −60 Co 0.000 0.855 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
241Am −137 Cs 0.000 0.806 0.002 0.000 0.987 0.000 0.010 0.000 0.000 0.000 0.000 0.000
241Am −22 Na 0.000 0.632 0.023 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000
133Ba −60 Co 0.000 0.221 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.003 0.002 0.000
133Ba −137 Cs 0.000 0.286 0.693 0.000  0.788 0.000 0.084 0.000 0.004 0.000 0.000 0.020
133Ba −54 Mn 0.000 0.000 0.718 0.000 0.352 0.000 0.000 0.000 0.000 0.999 0.000 0.000
133Ba −22 Na 0.000 0.089 0.905 0.000 0.043 0.000 0.000 0.000 0.000 0.012 1.000 0.000
60Co −137 Cs 0.000 0.248 0.026 1.000 0.990 0.000 0.000 0.000 0.000 0.000 0.001 0.000
60Co −54 Mn 0.000 0.013 0.047 1.000 0.008 0.000 0.000 0.000 0.000 0.958 0.001 0.000
60Co −22 Na 0.000 0.000 0.101 1.000 0.034 0.000 0.000 0.000 0.000 0.229 0.911 0.000
137Cs −54 Mn 0.000 0.000 0.391 0.000 0.796 0.000 0.000 0.000 0.001 1.000 0.000 0.000
137Cs −22 Na 0.000 0.014 0.000 0.000 0.821 0.000 0.000 0.000 0.000 0.004 1.000 0.000
131I −177 Lu 0.000 0.119 0.217 0.000 0.216 0.000 0.707 0.000 0.699 0.000 0.000 0.337
177Lu −99m Tc 0.000 0.002 0.012 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.945
54Mn −22 Na 0.000 0.023 0.000 0.000 0.012 0.000 0.000 0.000 0.000 0.988 1.000 0.000

Fig. 8  Network output of the corresponding nodes under the triple-nuclide case
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4  Discussion

4.1  Identification accuracy

As shown in Fig. 6, for single nuclides with similar decay 
energies, the average output of the corresponding nodes is 
relatively lower than that for other nuclides. For example, the 
decay characteristic energies of 364.5 keV and 637.0 keV for 
131I are close to the 356.0 keV of 133Ba and the 661.7 keV 
of 137Cs , indicating that there are small differences between 
their input vectors after normalization. A similar situation 
occurs between 241Am , 177Lu , and 99mTc . These small dif-
ferences are likely to be treated as noise signals, causing a 
drop in the output of the corresponding nodes. The results 
in Table 2 show that the outputs of the corresponding nodes 
are significantly different from those of other nodes.

For the dual-nuclide case results in Fig. 7 and Table 3, 
and the triple-nuclide case results in Fig. 8 and Table 4, the 
decline in the output of the corresponding nodes is caused 
not only by similar decay characteristic energies but also 
by mutual interference within the dual- and triple-nuclide 
training datasets. For example, in the 241Am −133 Ba −60 Co 
case, the weight of 241Am (normalized characteristic energy 
value of 241Am ) in its input vector is close to zero after nor-
malization because since the normalization process is per-
formed by dividing all the feature input vectors by the largest 
characteristic energy value in the datasets. The characteristic 
energy of 241Am and the largest characteristic energy were 
63.2 and 1452.1 keV, respectively. This causes a decline and 
an increase in the 241Am node in the 241Am −133 Ba −60 Co 
and 133Ba −60 Co cases. Nevertheless, the 12 values of each 
row in Tables 3 and 4 also show a relatively significant dif-
ference between the correct and other nodes, and by choos-
ing an appropriate threshold, a high identification accuracy 
can be obtained.

Based on the analysis in the table above, the threshold 
for determining the presence or absence of nuclides was set 
at 0.4. If the output of a node exceeds 0.4, then it is consid-
ered to indicate the presence of the corresponding nuclide, 
and vice versa. Using this threshold, the Hamming Loss and 
EMR were calculated as 0.013 and 0.052, respectively. The 
accuracy of complete identification was 1 − EMR = 94.8% . 
Compared to the full-spectrum identification method with an 
accuracy of 90.0% (considering only six kinds of nuclides) 
[22], the proposed algorithm demonstrates higher accuracy 
and a superior ability to identify multiple nuclides. Moreo-
ver, as shown in Fig. 9, the full-energy peak positions can 
be accurately determined in both unshielded and shielded 
multiple-nuclide cases 

(
133Ba −60 Co −137 Cs

)
 , highlighting 

the effectiveness of the peak-searching method. After 100 
repetitions for each case, the Hamming Loss, EMR, and the 
accuracy of complete identification for each case with the 
chosen threshold are listed in Table 5. The total Hamming 
Loss and EMR were 0.007 and 0.016, respectively, with an 
overall accuracy of 1 − EMR = 98.4% for the actual test. As 
shown in Fig. 9b, the energy resolution and complex back-
ground interference caused by the shielding can change the 
shape and characteristics of the peaks, which leads to biased 
network input. Nevertheless, good identification results were 
achieved for both unshielded and shielded cases, demonstrat-
ing the effectiveness and robustness of the algorithm.

This algorithm could be further developed to include 
additional standard nuclides. Incorporating new standard 
nuclides typically reduces identification accuracy. This 
study considered eleven common nuclides and their combi-
nations. To include new sources, their gamma spectra must 
be measured, or their full-energy peak data directly. These 
characteristic energies can then be combined with those of 
existing nuclides to update the training datasets. The directly 
used full-energy peak data should account for uncertainties 

Table 4  Neural network average output under triple-nuclide case

Tripe nuclides Background 241Am 133Ba 60Co 137Cs 152Eu 131I 40K 177Lu 54Mn 22Na 99mTc

241Am −133 Ba −60 Co 0.000 0.648 0.942 1.000 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.000
241Am −133 Ba −137 Cs 0.000 0.515 0.535 0.000 0.534 0.000 0.167 0.000 0.262 0.000 0.000 0.094
241Am −60 Co −637 Cs 0.000 0.681 0.000  1.000 0.989 0.000 0.000 0.000 0.000 0.002 0.000 0.000
241Am −54 Mn −22 Na 0.000 0.900 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.998 1.000 0.000
133Ba −60 Co −137 Cs 0.000 0.000 0.913 1.000 0.554 0.000 0.000 0.000 0.000 0.304 0.008 0.000
133Ba −60 Co −54 Mn 0.000 0.000 0.566 1.000 0.392 0.000 0.000 0.000 0.000 0.969 0.008 0.000
133Ba −60 Co −22 Na 0.000 0.000 0.852 0.972 0.022 0.000 0.000 0.000 0.000 0.033 0.985 0.000
133Ba −137 Cs −54 Mn 0.000 0.000 0.979 0.000 0.994 0.000 0.004 0.000 0.009 1.000 0.002 0.000
133Ba −54 Mn −22 Na 0.000 0.018 1.000 0.010 0.000 0.000 0.000 0.000 0.000 0.989 1.000 0.000
60Co −137 Cs −54 Mn 0.000 0.000 0.095 1.000 0.512 0.000 0.000 0.000 0.000 0.979 0.023 0.000
60Co −137 Cs −22 Na 0.000 0.000 0.015 0.993 0.944 0.000 0.000 0.000 0.000 0.001 0.988 0.000
131I −177 Lu −99m Tc 0.000 0.002 0.003 0.000 0.033 0.000 0.965 0.000 1.000 0.033 0.000 0.782
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based on detector performance (e.g., peak drifting or resolu-
tion changes). The output layer should also be expanded to 
include all considered nuclides. Expanding the number of 
output nodes slightly increases resource consumption and 
reduces the identification accuracy of the chip. However, 
previous neural network identification methods require 
expanding the output layer to include not only the considered 
nuclides but also their combinations, leading to significant 
chip resource consumption. The decrease in identification 
accuracy primarily depends on the proximity of characteris-
tic energies of the new nuclides to those of existing nuclides; 
greater differences result in smaller effects.

4.2  Complexity analysis

Time and space complexities are fundamental concepts in 
algorithm analysis and are used to describe the time and 
space resources required by an algorithm during execution.

Time complexity refers to the computational work needed 
to execute an algorithm and reflects the growth in execu-
tion time as input size increases. Specifically, the time com-
plexity is expressed as a function that relates the number 
of basic operations (e.g., addition, comparison, and assign-
ment) performed by an algorithm to the input size, typically 
described using the notation O(⋅) . Space complexity refers 
to the amount of memory required to execute an algorithm 
and reflects the growth in required storage space as the input 
size increases. Similar to time complexity, space complexity 
is described using O(⋅).

In this study and other related studies, the time and space 
complexities of algorithms primarily stem from the forward 
computation of neural networks and convolutional computa-
tions. Since neural network training is typically performed 
on high-performance computers, only the time and space 
complexities during the prediction process were considered. 
The time and space complexities of the designed algorithm 
are given by

where m is the size of the data, k is the length of the convolu-
tion kernel, D is the network depth, and Cl−1 and Cl represent 
the numbers of input and output nodes, respectively, in the 
l-th layer. The network depth D is typically set to three or 
four. In this study, a low-consumption design was imple-
mented with parameters set as C0 = 8 and CD = 12 , cor-
responding to the number of target nuclides. The time and 

(14)Time ∼ O

(
mk +

D∑
l=1

Cl−1Cl

)
,

(15)Space ∼ O

(
k +

D∑
l=1

Cl−1Cl

)
,

Fig. 9  Peak-searching results of the unshielded and shielded triple 
nuclides 

(
133Ba −60 Co −137 Cs

)
 case. a Unshielded triple-nuclide 

case; b Shielded triple-nuclide case

Table 5  Hamming Loss and EMR for each case in actual test

Single nuclide Hamming loss EMR

241Am 0.000 0.000
133Ba 0.000 0.000
133Ba(shielded) 0.020 0.020
133Ba −60 Co 0.000 0.000
133Ba −60 Co (shielded) 0.015 0.030
60Co −137 Cs 0.000 0.000
60Co −137 Cs (shielded) 0.000 0.000
133Ba −60 Co −137 Cs 0.007 0.020
133Ba −60 Co −137 Cs (shielded) 0.027 0.080
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space complexities of traditional artificial neural network 
(ANN) algorithms [22, 35] are given by

Equations (16) and (17) are structurally similar to Equa-
tions (14) and (15). However, the input dimension C̄0 and 
the output dimension C̄D̄ are usually taken as the dimen-
sion of the spectra and the combination of the target 
nuclides, which yields C̄0 ≥ 1024 and C̄D̄ =

∑S

l=1
Cl
o
 , where 

Cl
o
= o!∕(l)!(o − l)! and S are the number of identifiable 

nuclides under the multiple-nuclide case. The time and space 
complexities of the CNN are given by

where Ml and Kl denote the side lengths of the feature map 
and kernel, respectively. CNNs usually consist of multiple 
convolutional, pooling, and fully connected layers with high 
dimensions, which significantly increase their time and 
space complexities [36, 37]. Comparing the above formulas 
reveals that the algorithm designed in this study achieves 
shorter running times and lower resource consumption. 
Practical testing shows that it can be executed within 2 s on 
an ARM chip.

5  Conclusion

In this study, the gamma spectra of 12 common nuclides 
were measured using a portable gamma spectrometer. Fea-
tures from these spectra were extracted and combined to 
generate feature vectors of multiple nuclides. Consider-
ing the influence of spectrum drift, the extracted spectral 
datasets were expanded within a range of ±2% . Finally, a 
low-consumption, robust nuclide identification method 
capable of execution within 2 s on an ARM chip was devel-
oped. According to experimental results, for a dose rate of 
d ≈ 0.5 μSv∕h and a measurement time of tm = 60 s , the 
identification accuracy of the proposed model reached at 

(16)Time ∼ O

⎛
⎜⎜⎝

D̄�
l=1

C̄l−1C̄l

⎞
⎟⎟⎠
,

(17)Space ∼ O

⎛
⎜⎜⎝

D̄�
l=1

C̄l−1C̄l

⎞
⎟⎟⎠
.

(18)Time ∼ O

⎛⎜⎜⎝

D̃�
l=1

M2
l
K2
l
C̃l−1C̃l

⎞⎟⎟⎠
,

(19)Space ∼ O

⎛⎜⎜⎝

D̃�
l=1

K2
l
C̃l−1C̃l

⎞⎟⎟⎠
,

least 94.8%. Furthermore, the actual test achieved an iden-
tification accuracy of 98.4%, meeting the basic requirements 
for nuclide screening and monitoring. In future work, the 
identification speed of the method can be further improved. 
Real-time spectra or pulses could be processed using deep 
reinforcement learning methods to enable early warnings 
and nuclide identification.
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