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Abstract
The identification of ore grades is a critical step in mineral resource exploration and mining. Prompt gamma neutron activa-
tion analysis (PGNAA) technology employs gamma rays generated by the nuclear reactions between neutrons and samples 
to achieve the qualitative and quantitative detection of sample components. In this study, we present a novel method for 
identifying copper grade by combining the vision transformer (ViT) model with the PGNAA technique. First, a Monte 
Carlo simulation is employed to determine the optimal sizes of the neutron moderator, thermal neutron absorption material, 
and dimensions of the device. Subsequently, based on the parameters obtained through optimization, a PGNAA copper ore 
measurement model is established. The gamma spectrum of the copper ore is analyzed using the ViT model. The ViT model 
is optimized for hyperparameters using a grid search. To ensure the reliability of the identification results, the test results 
are obtained through five repeated tenfold cross-validations. Long short-term memory and convolutional neural network 
models are compared with the ViT method. These results indicate that the ViT method is efficient in identifying copper ore 
grades with average accuracy, precision, recall, F

1
 score, and F

1
(−) score values of 0.9795, 0.9637, 0.9614, 0.9625, and 

0.9942, respectively. When identifying associated minerals, the ViT model can identify Pb, Zn, Fe, and Co minerals with 
identification accuracies of 0.9215, 0.9396, 0.9966, and 0.8311, respectively.

Keywords Copper-grade identification · Vision transformer model · Prompt gamma neutron activation analysis · Monte 
Carlo N-particle

1 Introduction

Accurate and fast access to copper ore grades is crucial for 
mineral resource exploration, mining, and reserve assess-
ment [1, 2]. After the anomalous or mineral information 
is obtained using conventional methods, the grade of the 
mineral deposit must be further confirmed. Core samples 
obtained from drilling are generally analyzed using chemical 
methods to determine the mineral grade and chemical ele-
ment composition [3]. However, this method cannot obtain 
real-time information on the ore layer location, grade, and 
other significant details. Analyzing core samples in a labora-
tory involves relatively complex technical procedures, long 
waiting times for results, and high costs [4]. In addition, 
elemental analysis through core sampling has several issues, 
such as unavoidable sampling errors, time-consuming ana-
lytical projects, and inaccurate operational results [5].
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The prompt gamma neutron activation analysis (PGNAA) 
technique employs nuclear reactions between neutrons and 
samples [6]. Qualitative and quantitative analyses of a sam-
ple can be achieved by detecting the energy and intensity 
of the characteristic gamma rays produced during a nuclear 
reaction. As a real-time nuclear analysis method, PGNAA 
technology enables rapid, nondestructive, highly sensitive, 
and multi-element analyses [7]. It has been applied in coal 
mining, limestone mining, copper mining, and explosive or 
chemical weapons detection [8–11].

The process of analyzing spectral information from the 
collected gamma-ray spectrum to determine the relative 
elemental content is commonly known as inversion or spec-
tral unfolding [12]. Analytical methods for the gamma-ray 
energy spectrum in PGNAA include subtraction, matrix cor-
rection, peak area, and least-squares methods [13–17]. How-
ever, owing to the nonlinear phenomenon in PGNAA [18], 
the elemental content exhibit a nonlinear relationship with 
the characteristic peak area. Therefore, the conventional 
single-peak energy spectrum analysis method is not appli-
cable for the quantitative analysis of PGNAA. Moreover, 
the full-spectrum analysis method, which involves a large 
amount of work and a high degree of difficulty, requires the 
accurate acquisition of spectral libraries for individual ele-
ments or compounds [19].

In recent years, the cross application of machine learn-
ing and gamma spectral analysis has become increasingly 
widespread. Machine learning methods for analyzing the 
gamma energy spectra of PGNAA have attracted much atten-
tion [20]. Ghal-Eh et al. applied a neural network approach 
to analyze the Cl content in aqueous solutions [21]. For the 
elemental analysis of cement, Peng et al. proposed a back 
propagation (BP) algorithm to process gamma spectra to 
obtain the Si, Ca, and Fe contents [22]. Shahabinejad et al. 
analyzed the Cl and water contents in crude oil using a mul-
tilayer perceptron (MLP) model [23].

As an important metallic material, Cu is widely used in 
electrical engineering, mechanical engineering, and commu-
nication technology [24]. Many researchers have employed 
the PGNAA technique to determine the grade of copper 
ores. Charbucinski et al. constructed a PGNAA logging 
device that included a 252Cf neutron source and bismuth 
germanium oxide (BGO) detector. This device can be used 
to estimate the Cu grade in the blast holes [25]. To deter-
mine the copper-nickel ore grades, Tian et al. proposed a 
PGNAA formation-logging model in Monte Carlo N-parti-
cle (MCNP) and obtained the grades of copper, nickel, and 
iron using the least-squares method [26].

In the spectral unfolding process of copper ores, a signifi-
cant challenge arises because of the similarity between the 
characteristic Cu and Fe peaks [27]. Therefore, it is impor-
tant to accurately determine the quantitative effect of Fe on 
Cu. Conventional spectral analysis methods face challenges 

in addressing this issue [28]. However, machine learning 
methods can establish correlations between gamma-ray 
spectra and elemental content by constructing neural net-
works and optimizing weights [29, 30]. This approach effec-
tively addresses the quantitative problems associated with 
the PGNAA technique for copper-grade analysis.

In this study, a copper-grade analysis method combining 
the PGNAA technique and vision transformer (ViT) models 
is proposed. First, a PGNAA model for copper ore measure-
ments is established, and the structural parameters of the 
model are optimized using the Monte Carlo method. Subse-
quently, the gamma-ray spectra of copper ores with different 
grades are obtained using MCNP. These spectra are used for 
training and testing the machine learning models. Finally, 
the ViT model is employed to identify the copper ore grade 
and associated minerals.

2  Methods and materials

To enable effective mineral grade identification using 
gamma energy spectrum data, the ViT method was applied 
in a supervised learning manner. Figure 1 shows the flow-
chart of the proposed ViT application framework, which 
comprises three main steps. The first step is the dimension 
optimization of the PGNAA device structure, the second is 
ViT modeling for ore-grade identification, and the third is 
the evaluation of the ViT model.

The device structure was optimized using the Monte 
Carlo method, aiming to determine the optimal thicknesses 
of the moderator and shield, as well as the device size. 
Subsequently, the gamma energy spectrum data of copper 
ores of different grades, simulated using the Monte Carlo 
method, were preprocessed to construct the input dataset of 
the model. The hyperparameters of the model were carefully 
fine-tuned using a grid search method. The performance of 
the ViT model was evaluated by analyzing the identification 
results of the copper grade and associated minerals.

2.1  Monte Carlo simulation of the PGNAA device

Based on the theory of neutron-gamma distribution, a 
PGNAA measurement model was established using the 
Monte Carlo method. As shown in Fig. 2, the model bar-
rel, made of polyethylene, has a cylindrical structure. The 
PGNAA device was located in the center of the model bar-
rel and consisted of a deuterium tritium (D-T) neutron gen-
erator, a BGO detector, and a shielding layer. The dimen-
sions of the neutron generator were 7 cm×70 cm (diameter 
× height). The BGO crystals had dimensions of 7.62 cm×

7.62 cm (diameter × height). To improve the performance 
of the PGNAA device, parameters including the size of the 
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neutron moderator, the thermal neutron absorption mate-
rial, and the dimensions of the device must be optimized.

Neutrons entering a gamma detector cause activation 
noise [31]. To minimize the activation noise, a combina-
tion of heavy metals and the Li2CO3 scheme was employed 
for neutron shielding. Heavy metals were used to ther-
mally decelerate the 14 MeV energy neutrons produced by 

the D-T neutron generator. Subsequently, thermal neutrons 
are absorbed by Li2CO3.

Tungsten is an ideal material for slowing neutrons via 
inelastic scattering. These reactions can rapidly reduce 
the neutron energy and slow fast neutrons to thermal neu-
trons [32, 33]. The fast neutron flux was statistically com-
puted by varying the thickness of tungsten. The decrease in 
fast neutron flux with increasing tungsten thickness is shown 
in Fig. 3. When the tungsten thickness reached 7 cm, the 
shielding effect on fast neutrons reached 90%. Considering 
the moderating effect and model dimensions, the tungsten 
thickness was set to 7 cm.

Fig. 1  (Color online) Flowchart of the proposed vision transformer (ViT) application framework

Fig. 2  (Color online) Schematic of the Monte Carlo simulation model

Fig. 3  (Color online) Relationship between fast neutron flux and W 
thickness
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LiCO3, as a thermal neutron absorption material, was 
placed between the tungsten and the gamma detector to 
minimize neutron entry into the gamma detector [34]. The 
detector neutron fluxes with different  Li2CO3 thicknesses 
were calculated using the F4 card, as shown in Fig. 4. As 
the  Li2CO3 thickness increased, the neutron flux gradually 
decreased. At a thickness of 5 cm, the neutron flux was sig-
nificantly reduced. The detector was effectively protected 
when its thickness was 5 cm. Therefore, an Li2 CO3 thickness 
of 5 cm was used.

The radius and height of the model barrel were varied 
to determine the optimal structure. The characteristic peak 
region of copper in the gamma-ray spectrum ranged from 
7.0 MeV to 8.5 MeV. The gamma-ray count in this region 
obtained using the BGO detector verified this result. Based 

on the simulation, the count of the characteristic peak region 
of copper increased and then leveled off at approximately 
70 cm, as shown in Fig.  5a. The height of the setup was 
therefore set to 70 cm. Figure 5b shows the relationship 
between the count of the characteristic peak regions of cop-
per and the radius of the model barrel. The count rapidly 
increased at first and then became saturated at approximately 
50 cm. Therefore, the radius of the setup was set as 50 cm.

2.2  ViT model

Transformer models, which represent neural network archi-
tectures based on self-attention mechanisms, have been 
widely applied to natural language processing (NLP) and 
other sequence modeling tasks [35]. The ViT model was 
found to surpass a convolutional neural network (CNN) 
model on extremely large-scale datasets by entirely replac-
ing the convolutional structure with a transformer structure 
in classification tasks [36].

The ViT model structure is illustrated in Fig. 6. A one-
dimensional gamma energy spectrum was used as the input 
dataset for the model. The entire spectrum was divided into 
32 segments, where each segment corresponded to positional 
encoding from 0 to 31 using the tokenization method from 
NLP. Subsequently, the data were fed into the encoder mod-
ule for calculation. The encoder consisted of six identical 
stacked transformer blocks. Each transformer block included 
a multi-head attention mechanism sublayer and a multilayer 
perceptron sublayer. In the multi-head attention mechanism 
sublayer, multiple self-attention mechanism modules were 
employed in parallel to enhance the attention diversity and 
improve the expressive capacity of the model. Before the 
data entered each sublayer, they were normalized to ensure 
that the mean and variance were relatively stable. This step 

Fig. 4  (Color online) Relationship between neutron flux and  Li2CO3 
thickness

Fig. 5  (Color online) Relationship between the gamma-ray counts and device dimensions: a height; b radius
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can accelerate the model training process. When the com-
putation within the sublayer was completed, the residual 
connections that retain the original input information were 
employed to directly merge the outputs and inputs of the 
sublayer. All transformer blocks in the ViT encoder were 
configured with the same output dimensions. The output of 
each transformer block was encoded and fed into the MLP 
classification head, which ultimately resulted in category 
prediction of the input spectrum.

2.3  Hyperparameter tuning

To evaluate the classification performance of the ViT model, 
two additional classifiers (Long short-term memory (LSTM) 
and CNN) were built in Python based on the PyTorch 
library. All three models were trained and tested using the 
same input dataset. Because the selection of hyperparam-
eters significantly affects the ViT model for grade identifica-
tion, the hyperparameters must be optimized. A grid search 
is an effective hyperparameter optimization strategy that can 
exhaustively search for the optimized hyperparameters of a 
model. During the grid search process, a multidimensional 
grid with successive candidate parameter values was gener-
ated, allowing the enumeration of combinations of tunable 
parameters. Subsequently, the performance metrics of the 
model were calculated for different parameter combinations. 
The parameter combination with the best performance met-
rics was selected as the final model parameter. Table 1 lists 
the hyperparameter optimization results for each model.

2.4  Model evaluation

To compare and determine the best-performing classifica-
tion model, the input dataset was divided into training and 
test sets. After training with the training set, the models 
were evaluated using the test set to determine the number 
of true positives (TPs), false positives (FPs), true negatives 
(TNs), and false negatives (FNs). The following evaluation 
metrics were calculated to measure the performance of the 
classifier models [37]:

Accuracy refers to the proportion of samples correctly 
predicted by the model relative to the total number of sam-
ples. Accuracy represents the overall predictive accuracy 
of the classifier for all samples, which can be calculated 
using Eq. (1).

Precision is the proportion of all samples predicted to be 
positive by the classifier that are true positives. Recall is 
the proportion of all TP samples that the classifier correctly 
predicts as positive. Precision measures how accurately 
a model predicts a positive class, whereas recall assesses 
the coverage of the classifier and the risk of losing positive 

(1)Accuracy =
TP + TN

TP + FP + TN + FN

Fig. 6  (Color online) Schematic of the ViT model

Table 1  Optimal parameter values for each supervised model

Model Parameters Optimal value

LSTM Input_size 1024
Hidden_size 256
Num_layers 2
learning_rate 0.01
Epoch 100

CNN Conv_layers 2
Max_pool_layers 2
Linear_layers 2
Kernel_size 7
Number_of_kernels 3
Stride 3
Learning_rate 0.001
Activation_function tanh
Epoch 100

ViT Patch_size 32
Num_layers 6
Embedding_dim 512
Num_heads 4
Mlp_dim 128
Dropout 0.1
Learning_rate 0.0001
Num_classes 5
Epoch 100
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samples. These metrics can be calculated using Eqs. (2) and 
(3), respectively. Typically, there is a trade-off between these 
metrics, where increasing precision often tends to decrease 
recall, and vice versa. Therefore, when evaluating the per-
formance of a model, it is necessary to select an appropriate 
threshold or adjust the strategy of the classifier according to 
the actual requirements to achieve optimal results.

The F1 score combines the precision and recall of the posi-
tive class by calculating their harmonic mean of the preci-
sion and recall as the evaluation metric. The F1(−) score was 
used to measure the classification performance of the model 
for the negative class; by calculating the F1 score for nega-
tive samples. The F1 and F1(−) scores are calculated using 
Eqs. (4) and  (5), respectively, and these metrics provide a 
more comprehensive assessment of model performance in 
different classes.

Macro-averaging is an evaluation method used for multiclass 
problems that uses metrics such as precision, recall, F1 score 
from each class to calculate their arithmetic mean as the final 
metric value. For example, the macro-average precision can 
be calculated using Eq. (6). The macro-average provides the 
average performance of the model across all classes, which 
does not consider differences in the number of samples in 
each class, but treats each class as equally significant.

2.5  Dataset

To construct the dataset required for machine learning, the 
gamma spectrum of copper ore was obtained using MCNP. 
The material card of the MCNP was set according to the 
actual copper mineral composition [38]. The primary ele-
ments in the Cu ore and their contents are listed in Table 2. 
In total, 4400 energy spectrum data points were obtained. 
Based on the copper content, the data were divided into 
five categories: gangue (0–0.2%), industrial-grade copper 

(2)Recall =
TP

TP + FN

(3)Precision =
TP

TP + FP

(4)F
1
= 2 ×

1

1

Precision
+

1

Recall

=
2TP

2TP + FP + FN

(5)F1(−) =
2TN

2TP + FP + FN

(6)MacroPrecision =
1

n

n
∑

i=1

Precisioni

ore (0.2–0.5%), low-grade copper ore (0.5–1.5%), medium-
grade copper ore (1.5–2%), and high-grade copper ore 
(2–3%).

Cu is associated with minerals such as pyrite ( FeS2 ), 
sphalerite (ZnS), galena (PbS), and cobaltite (CoAsS) [39]. 
Therefore, copper ores often contain associated minerals, 
such as Pb, Zn, Fe, and Co. Machine learning models were 
used to identify the presence of associated minerals in the 
copper ore. Ores containing Pb, Zn, Fe, and Co below the 
cutoff grade were designated as gangue, whereas those above 
the cutoff grade were designated as minerals, based on the 
content of the associated elements in the ore. The cutoff 
grades for each associated element are listed in Table 3.

3  Results and discussion

3.1  Gamma spectrum analysis of copper ore

The gamma-ray spectra of copper ores with different grades 
obtained by Monte Carlo simulations are shown in Fig. 7. 
The energy range was 0–10.0 MeV. Characteristic peaks 
of major elements such as Ca (1.94 MeV), Si (3.54 MeV), 
and O (6.13 MeV) were observed. The characteristic peaks 
of Cu (7.63 MeV and 7.91 MeV) were inconspicuous, pri-
marily because of the lower copper content in the ore and 
the low detection efficiency of BGO at high energies. From 
Fig. 7b, the gamma-ray spectrum counts for different cop-
per ore grades exhibited differences in the energy range of 
7.0 − 8.5MeV . This was mainly due to the contribution of 
the captured gamma rays produced by the reaction between 
the copper and neutrons.

3.2  Identification of copper ore grade

The proposed ViT model was used for copper ore-grade 
identification based on the model parameters obtained 
through the grid search method. To evaluate the classifica-
tion performance of the proposed ViT model, the LSTM 
and CNN models were chosen for comparison. The datasets 
were randomly divided into ten subsets. One subset was 
selected to validate the model, and the other nine subsets 
were selected to train the model. A five-repetition tenfold 
cross-validation method [40] was used to ensure the robust-
ness of the classification results. Table 4 presents the results 
of copper ore-grade identification using the LSTM, CNN, 
and ViT models.

As shown in Table 4, the identification provided by the 
ViT model was better than those of the CNN and LSTM 
models. Among them, LSTM had the lowest accuracy, 
precision, recall, and F

1
 score. Although LSTM can learn 

nonlinear models, the identification results were unsat-
isfactory. The ViT model exhibited the best evaluation 
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metrics, with average accuracy, precision, recall, F
1
 score, 

and F
1
(–) score values of 0.9795, 0.9637, 0.9614, 0.9625, 

and 0.9942, respectively. The results of the CNN model 

were similar to ViT model, with average accuracy, preci-
sion, recall, F

1
 score, and F

1
(–) score values of 0.9659, 

0.9396, 0.9450, 0.9422, and 0.9899, respectively. LSTM 
performed the worst of the three models, with accu-
racy, precision, recall, F

1
 score, and F

1
(–) score values 

of 0.9455, 0.9210, 0.9272, 0.9236, and 0.9854, respec-
tively. This analysis indicates that the ViT model is the 
most effective of the three methods for copper ore-grade 
identification.

Fig. 7  (Color online) Gamma energy spectrum of copper ores with different grades: a energy range of 0 − 10MeV ; b energy spectrum in the 
energy range of 6 − 9MeV

Table 2  Main elements and 
contents in copper ore

Element Cu Pb Zn Fe Co Si Al O Ca K

Content (%) 0–3 0−0.6 0–1 0–10 0−0.03 25–35 8–15 40–50 3–6 1–5

Table 3  Cutoff grade of associated minerals

Component Pb Zn Fe Co

Content (%) 0.3 0.5 5 0.01

Table 4  Accuracy, precision, 
recall, F

1
 score, and F

1
(−) score 

for copper-grade identification 
using LSTM, CNN, and ViT 
models

Model Class Accuracy Precision Recall F
1
 score F

1
(−) score

LSTM Gangue 0.9372 0.9781 0.9572 0.9885
Industrial-grade ore 0.9766 0.9641 0.9703 0.9767
Low-grade ore 0.9541 0.9369 0.9455 0.9922
Medium-grade ore 0.9200 0.8779 0.8984 0.9827
High-grade ore 0.8169 0.8788 0.8467 0.9871
Macro-average 0.9455 0.9210 0.9272 0.9236 0.9854

CNN Gangue 0.9946 0.9634 0.9787 0.9943
Industrial-grade ore 0.9819 0.9844 0.9831 0.9870
Low-grade ore 0.9245 0.9515 0.9378 0.9917
Medium-grade ore 0.9241 0.9241 0.9241 0.9851
High-grade ore 0.8730 0.9016 0.8871 0.9915
Macro-average 0.9659 0.9396 0.9450 0.9422 0.9899

ViT Gangue 0.9950 0.9900 0.9925 0.9978
Industrial-grade ore 0.9920 0.9973 0.9947 0.9961
Low-grade ore 0.9780 0.9468 0.9622 0.9956
Medium-grade ore 0.9379 0.9444 0.9412 0.9885
High-grade ore 0.9155 0.9286 0.9220 0.9932
Macro-average 0.9795 0.9637 0.9614 0.9625 0.9942
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Figure 8 shows the confusion matrix for the copper ore-
grade identification. The diagonal elements of the confusion 
matrix denote the proportions of accurately classified cop-
per ore grades. Combined with Table 4, it can be inferred 
that the highest accuracy rate was achieved for gangue and 
industrial-grade copper ores. All three models had accura-
cies of greater than 96%. Such high accuracy is attributed 
to the significant mineral differences between gangue and 
industrial-grade copper ores as well as their typical ore 
structures. High-grade copper ores exhibited the highest 
rate of misidentification and were often misclassified as 
medium-grade ores. There are two reasons for this finding. 
The first is that the difference between high- and medium-
grade ores is small and easily confused, and the second is 
that high-grade copper ores often contain Fe. Because the 
characteristic peaks of Fe (7.631 MeV and 7.645 MeV) are 
similar to those of copper (7.64 MeV and 7.91 MeV), Fe 
affects the identification of high-grade copper ores. In iden-
tifying medium- and high-grade copper ores, the ViT model 

outperformed the LSTM and CNN models with a prediction 
accuracy of more than 92%.

3.3  Identification of associated minerals

In the identification of associated minerals, the positive class 
was associated with minerals and the negative class was 
associated with gangue. Minerals associated with copper 
mines include Pb, Zn, Fe, and Co. Table 5 shows the identi-
fication results of the LSTM, CNN, and proposed ViT mod-
els for the minerals associated with copper ore. As shown 
in Table 5, the identification of the ViT model of associated 
minerals was significantly better than those of the other two 
models, and the performance ranking was ViT> CNN > 
LSTM. ViT had the best evaluation indicators, with average 
accuracy, precision, recall, F1 score, and F1(−) score values 
of 0.9222, 0.9278, 0.8919, 0.9091, and 0.9308, respectively. 
This analysis shows that ViT is the most effective method for 
classifying and identifying associated minerals and gangue.

Fig. 8  (Color online) Confusion matrices for the copper ore-grade identification of different models: a LSTM; b CNN; c ViT
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Figure 9 shows the confusion matrix of the associated 
mineral identification using the LSTM, CNN, and ViT 
models. This figure shows that Fe is most accurately iden-
tified among all elements. A possible reason for this is that 
the capture cross section of Fe is large and the boundary 
grade is high. Co has the highest rate of misclassifica-
tion. The LSTM, CNN, and ViT models often failed to 
identify the presence of Co in minerals. This is because 

the cutoff grade of Co was low (0.01%). Therefore, the 
low intensity of the characteristic gamma rays induced by 
the reaction between Co and neutrons makes it difficult to 
determine the presence of Co in the ore. The ViT model 
outperformed the other classification methods in identi-
fying Co. In general, the ViT method achieved the best 
classification performance, particularly for Fe. The main 
reason for this is that, compared with other competing 

Table 5  Accuracy, precision, 
recall, F

1
 score, and F

1
(−) 

score for associated mineral 
identification using LSTM, 
CNN, and ViT models

Model Class Accuracy Precision Recall F
1
 score F

1
(–) score

LSTM Pb 0.8711 0.8713 0.8564 0.8638 0.8776
Zn 0.8938 0.9084 0.8676 0.8875 0.8995
Fe 0.9482 0.9373 0.9088 0.9228 0.961
Co 0.7434 0.7528 0.6175 0.6785 0.7866
Macro-average 0.8641 0.8675 0.8126 0.8382 0.8812

CNN Pb 0.9091 0.9075 0.8988 0.9031 0.9143
Zn 0.9205 0.9363 0.9023 0.919 0.9219
Fe 0.9771 0.9679 0.9526 0.9602 0.9839
Co 0.8019 0.8132 0.6953 0.7497 0.8361
Macro-average 0.9022 0.9062 0.8623 0.8830 0.9141

ViT Pb 0.9215 0.9209 0.9188 0.9199 0.9231
Zn 0.9396 0.957 0.9197 0.938 0.9412
Fe 0.9966 1.0000 0.9878 0.9938 0.9976
Co 0.8311 0.8333 0.7412 0.7846 0.8611
Macro-average 0.9222 0.9278 0.8919 0.9091 0.9308

Fig. 9  Confusion matrix plots for the associated mineral identification of three models: a–d LSTM; e–h CNN; i–l ViT
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classifiers, the ViT model employs a self-attention mecha-
nism to establish a global association of energy spectrum 
data, thus allowing the model to capture information from 
the entire gamma energy spectrum and improve the accu-
racy of identification.

4  Conclusion

A high-precision grade identification method combin-
ing machine learning and PGNAA was proposed. First, 
a PGNAA measurement model was established using the 
Monte Carlo method. Subsequently, the structural param-
eters of the measurement device were optimized using 
MCNP. The resulting ViT model was trained and tested 
using a gamma energy spectrum dataset to identify the 
grade of copper ore and its associated minerals. These 
results demonstrated that the ViT model can effectively 
distinguish between different grades of copper ore. The 
average accuracy, precision, recall, F1 score, and F1(−) 
score values of identifying copper grades were 0.9795, 
0.9637, 0.9614, 0.9625, and 0.9942, respectively. Fur-
thermore, the model effectively recognized the associated 
minerals Pb, Zn, Fe, and Co. The identification accuracies 
of these associated minerals were 0.9215, 0.9396, 0.9966, 
and 0.8311, respectively.

Although the ViT model could effectively achieve the 
grade identification of copper ores and associated min-
erals, the action mechanism of the ViT model remains 
unclear. Therefore, the interpretability of grade identifica-
tion achieved by the ViT model should be a focus of future 
research. The training and testing sets for the ViT model 
were obtained using Monte Carlo simulations. In the future 
studies, we will consider using measured data to further vali-
date the identification provided by the ViT model.

Acknowledgements The authors would thank to Jiangxi Supercomput-
ing Public Service Platform for the support of the simulation work in 
this study.

Author contributions All authors contributed to the study’s concep-
tion and design. Material preparation, data collection, and analyses 
were performed by Jie Cao, Chong-Gui Zhong, and Han-Ting You. 
The first draft of the manuscript was written by Chong-Gui Zhong, and 
all authors commented on previous versions of the manuscript. All the 
authors have read and approved the final version of the manuscript.

Data availability The data that support the findings of this study are 
openly available in Science Data Bank at https:// cstr. cn/ 31253. 11. scien 
cedb. 20541 and https:// www. doi. org/ 10. 57760/ scien cedb. 20541.

Declarations 

Conflict of interest The authors declare that they have no conflict of 
interest.

References

 1. S.C. Dominy, M.A. Noppé, A.E. Annels, Errors and uncertainty 
in mineral resource and ore reserve estimation: the importance of 
getting it right. Explor. Min. Geol. 11, 77–98 (2002). https:// doi. 
org/ 10. 2113/ 11.1- 4. 77

 2. A. Chiquini, C.V. Deutsch, Mineral resources evaluation 
with mining selectivity and information effect. Funct. Fillers 
Nanoscale Miner. 37, 965–979 (2020). https:// doi. org/ 10. 1007/ 
s42461- 020- 00229-2

 3. C. Lund, P. Lamberg, T. Lindberg, Practical way to quantify min-
erals from chemical assays at Malmberget iron ore operations-An 
important tool for the geometallurgical program. Miner. Eng. 49, 
7–16 (2013). https:// doi. org/ 10. 1016/j. mineng. 2013. 04. 005

 4. H.R. Marschall, Z. Kasztovszky, K. Gméling et al., Chemical 
analysis of high-pressure metamorphic rocks by PGNAA: com-
parison with results from XRF and solution ICP-MS. J. Radio-
anal. Nucl. Chem. 265, 339–348 (2005). https:// doi. org/ 10. 1007/ 
s10967- 005- 0830-6

 5. S. Herron, M. Herron, I. Pirie et al., Application and quality con-
trol of core data for the development and validation of elemental 
spectroscopy log interpretation. Petrophysics 55, 392–414 (2014). 
https:// doi. org/ 10. 1007/ 978-3- 319- 71216-1

 6. W.A. Metwally, S. El-Sayed, A. Ababneh et  al., Flux meas-
urements for a DD neutron generator using neutron activation 
analysis. Nucl. Sci. Tech. 29, 52 (2018). https:// doi. org/ 10. 1007/ 
s41365- 018- 0385-1

 7. C. Cheng, D.Q. Hei, W.B. Jia et al., Detection of heavy metals in 
aqueous solution using PGNAA technique. Nucl. Sci. Tech. 27, 
12 (2016). https:// doi. org/ 10. 1007/ s41365- 016- 0010-0

 8. M. Borsaru, M. Berry, M. Biggs et al., In situ determination of 
sulphur in coal seams and overburden rock by PGNAA. Nucl. 
Instrum. Methods Phys. Res. Sect. B. 213, 530–534 (2004). 
https:// doi. org/ 10. 1016/ S0168- 583X(03) 01623-9

 9. A.A. Naqvi, M.A. Garwan, M. Maslehuddin et al., Response of 
a PGNAA setup for pozzolan-based cement concrete specimens. 
Appl. Radiat. Isot. 68, 635–638 (2010). https:// doi. org/ 10. 1016/j. 
aprad iso. 2009. 09. 016

 10. D.Q. Hei, W.B. Jia, C. Cheng et al., Feasibility study of fast neu-
tron-induced gamma ray imaging of large sample based on DT 
neutron generato. Nucl. Instrum. Methods Phys. Res. Sect. B. 492, 
7–14 (2021). https:// doi. org/ 10. 1016/j. nimb. 2021. 01. 014

 11. M. Huang, J.Y. Zhu, J. Wu et al., Element analysis method of 
concealed explosive based on TNA. Nucl. Sci. Tech. 30, 6 (2019). 
https:// doi. org/ 10. 1007/ s41365- 018- 0527-5

 12. M.S. El_Tokhy, Advanced algorithms for retrieving pileup peaks 
of digital alpha spectroscopy using antlions and particle swarm 
optimizations. Nucl. Sci. Tech. 31, 37 (2020). https:// doi. org/ 10. 
1007/ s41365- 020- 0745-5

 13. J.F. He, Y.Z. Yang, J.H. Qu et al., An inversion decomposition 
method for better energy resolution of NaI (Tl) scintillation detec-
tors based on a Gaussian response matrix. Nucl. Sci. Tech. 27, 58 
(2016). https:// doi. org/ 10. 1007/ s41365- 016- 0062-1

 14. R. Shi, X.G. Tuo, H.L. Li et al., Unfolding analysis of LaBr 3: Ce 
gamma spectrum with a detector response matrix constructing 
algorithm based on energy resolution calibration. Nucl. Sci. Tech. 
29, 1 (2018). https:// doi. org/ 10. 1007/ s41365- 017- 0340-6

 15. Q. Zhang, Y. Ge, Y.L. Li et al., Source-less density measure-
ment using an adaptive neutron-induced gamma correction 
method. Nucl. Sci. Tech. 34, 125 (2023). https:// doi. org/ 10. 1007/ 
s41365- 023- 01274-4

 16. W. Tang, J.G. Liang, Y. Ge et al., A method for neutron-induced 
gamma spectra decomposition analysis based on Geant4 simu-
lation. Nucl. Sci. Tech. 33, 154 (2022). https:// doi. org/ 10. 1007/ 
s41365- 022- 01144-5

https://cstr.cn/31253.11.sciencedb.20541
https://cstr.cn/31253.11.sciencedb.20541
https://www.doi.org/10.57760/sciencedb.20541.
https://doi.org/10.2113/11.1-4.77
https://doi.org/10.2113/11.1-4.77
https://doi.org/10.1007/s42461-020-00229-2
https://doi.org/10.1007/s42461-020-00229-2
https://doi.org/10.1016/j.mineng.2013.04.005
https://doi.org/10.1007/s10967-005-0830-6
https://doi.org/10.1007/s10967-005-0830-6
https://doi.org/10.1007/978-3-319-71216-1
https://doi.org/10.1007/s41365-018-0385-1
https://doi.org/10.1007/s41365-018-0385-1
https://doi.org/10.1007/s41365-016-0010-0
https://doi.org/10.1016/S0168-583X(03)01623-9
https://doi.org/10.1016/j.apradiso.2009.09.016
https://doi.org/10.1016/j.apradiso.2009.09.016
https://doi.org/10.1016/j.nimb.2021.01.014
https://doi.org/10.1007/s41365-018-0527-5
https://doi.org/10.1007/s41365-020-0745-5
https://doi.org/10.1007/s41365-020-0745-5
https://doi.org/10.1007/s41365-016-0062-1
https://doi.org/10.1007/s41365-017-0340-6
https://doi.org/10.1007/s41365-023-01274-4
https://doi.org/10.1007/s41365-023-01274-4
https://doi.org/10.1007/s41365-022-01144-5
https://doi.org/10.1007/s41365-022-01144-5


High-precision copper-grade identification via a vision transformer with PGNAA  Page 11 of 11 120

 17. H.H. Song, Y.G. Yuan, T.P. Peng et al., Optimization study on 
neutron spectrum unfolding based on the least-squares method. 
Nucl. Sci. Tech. 29, 118 (2018). https:// doi. org/ 10. 1007/ 
s41365- 018- 0454-5

 18. Y. Zhang, B. Tang, W.B. Jia et al., Application of the Monte Carlo 
Library Least-Squares (MCLLS) approach for chromium quantita-
tive analysis in aqueous solution. Appl. Radiat. Isot. 150, 39–42 
(2019). https:// doi. org/ 10. 1016/j. aprad iso. 2019. 02. 018

 19. M.H. Hashem, H. Panjeh, A. Vejdani-Noghreiyan, Experimen-
tal optimization of a landmine detection facility using PGNAA 
method. Nucl. Sci. Tech. 19, 109–112 (2008). https:// doi. org/ 10. 
1016/ S1001- 042(08) 60033-0

 20. A. Taheri, S. Heidary, R. Gholipour Peyvandi, A bulk analysis 
system using the prompt gamma neutron activation method and 
neural network. Eur. Phys. J. Plus. 132, 273 (2017). https:// doi. 
org/ 10. 1140/ epjp/ i2017- 11533-6

 21. N. Ghal-Eh, P. Ahmadi, V. Doost-Mohammadi, A quantitative 
PGNAA study for use in aqueous solution measurements using 
Am-Be neutron source and BGO scintillation detector. Nucl. 
Instrum. Methods Phys. Res. Sect. A. 808, 123–127 (2016). 
https:// doi. org/ 10. 1016/j. nima. 2015. 11. 070

 22. K.X. Peng, J.B. Yang, X.G. Tuo et al., Research on PGNAA adap-
tive analysis method with BP neural network. Mod. Phys. Lett. B 
30, 32–33 (2016). https:// doi. org/ 10. 1142/ S0217 98491 65038 63

 23. H. Shahabinejad, N. Vosoughi, F. Saheli, Processing scintilla-
tion gamma-ray spectra by artificial neural network. J. Radio-
anal. Nucl. Chem. 325, 471–483 (2020). https:// doi. org/ 10. 1007/ 
s10967- 020- 07239-w

 24. A. Jamwal, P. Mittal, F. Saheli, Towards sustainable copper matrix 
composites: manufacturing routes with structural. J. Compos. 
Mater. 54, 19 (2020). https:// doi. org/ 10. 1177/ 00219 98319 900655

 25. J. Charbucinski, O. Duran, R. Freraut et al., The application of 
PGNAA borehole logging for copper grade estimation at Chuqui-
camata mine. Appl. Radiat. Isot. 60, 771–777 (2004). https:// doi. 
org/ 10. 1016/j. aprad iso. 2003. 12. 007

 26. L. Tian, F. Zhang, J. Liu et al., Monte Carlo simulation of Cu, Ni 
and Fe grade determination in borehole by PGNAA technique. J. 
Radioanal. Nucl. Chem. 315, 51–56 (2018). https:// doi. org/ 10. 
1007/ s10967- 017- 5636-9

 27. J. Charbucinski, J. Malos, A. Rojc et al., Prompt gamma neutron 
activation analysis method and instrumentation for copper grade 
estimation in large diameter blast holes. Appl. Radiat. Isot. 59, 
197–203 (2003). https:// doi. org/ 10. 1016/ S0969- 8043(03) 00163-5

 28. L. Zhao, X. Xu, J.B. Lu et al., Study on element detection and 
its correction in iron ore concentrate based on a prompt gamma-
neutron activation analysis system. Nucl. Sci. Tech. 30, 58 (2019). 
https:// doi. org/ 10. 1007/ s41365- 019- 0579-1

 29. H.L. Huang, P.K. Cai, W.B. Jia et al., Identification of Pb-Zn 
ore under the condition of low count rate detection of slim hole 

based on PGNAA technology. Nucl. Eng. Technol. 55, 1708–1717 
(2023). https:// doi. org/ 10. 1016/j. net. 2023. 01. 005

 30. Y. Zou, Y. Chen, H. Deng, Gradient boosting decision tree for 
lithology identification with well logs: a case study of zhaoxian 
gold deposit. Nat. Resour. Res. 30, 3197–3217 (2021). https:// doi. 
org/ 10. 1007/ s11053- 021- 09894-6

 31. I. Meric, G.A. Johansen, M.B. Holstad et al., Produced water char-
acterization by prompt gamma-ray neutron activation analysis. 
Meas. Sci. Technol. 22, 125701 (2011). https:// doi. org/ 10. 1088/ 
0957- 0233/ 22/ 12/ 125701

 32. J.T. Li, W.B. Jia, D.Q. Hei et al., The optimization of coal on-
line analysis system based on signal-to-noise ratio evaluation. J. 
Radioanal. Nucl. Chem. 318, 1279–1286 (2018). https:// doi. org/ 
10. 1007/ s10967- 018- 6173-x

 33. A. Waheed, N. Ali, M.A. Baloch et al., Optimization of moderator 
assembly for neutron flux measurement: experimental and theo-
retical approaches. Nucl. Sci. Tech. 228, 61 (2017). https:// doi. 
org/ 10. 1007/ s41365- 017- 0213-z

 34. J.T. Li, W.B. Jia, D.Q. Hei et al., Design of the explosion-proof 
detection integrated system based on PGNAA technology. J. 
Radioanal. Nucl. Chem. 322, 1719–1728 (2019). https:// doi. org/ 
10. 1007/ s10967- 019- 06837-7

 35. A. Vaswani, N. Shazeer, N. Parmar et al., Attention is all you need. 
arXiv:1706.03762. https:// doi. org/ 10. 48550/ arXiv. 1706. 03762

 36. A. Dosovitskiy, L. Beyer, A. Kolesnikov et  al., An image is 
worth 16x16 words: Transformers for image recognition at scale. 
arXiv:2010.11929. https:// doi. org/ 10. 48550/ arXiv. 2010. 11929

 37. A. Tharwat, Classification assessment methods. Appl. Comput. 
Inf. 17, 168–192 (2020). https:// doi. org/ 10. 1016/j. aci. 2018. 08. 003

 38. W. Vorster, N.A. Rowson, S.W. Kingman, The effect of microwave 
radiation upon the processing of Neves Corvo copper ore. Int. J. 
Miner. Process. 63, 29–44 (2001). https:// doi. org/ 10. 1016/ S0301- 
7516(00) 00069-7

 39. S.F. Sluzhenikin, Platinum-copper-nickel and platinum ores of 
Norilsk region and their ore mineralization. Russ. J. Gen. Chem. 
81, 1288–1301 (2011). https:// doi. org/ 10. 1134/ S1070 36321 10603 
51

 40. T.T. Wong, P.Y. Yeh, Reliable accuracy estimates from k-Fold 
cross validation. IEEE Trans. Knowl. and Data Eng. 32, 1586–
1594 (2020). https:// doi. org/ 10. 1109/ TKDE. 2019. 29128 15

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://doi.org/10.1007/s41365-018-0454-5
https://doi.org/10.1007/s41365-018-0454-5
https://doi.org/10.1016/j.apradiso.2019.02.018
https://doi.org/10.1016/S1001-042(08)60033-0
https://doi.org/10.1016/S1001-042(08)60033-0
https://doi.org/10.1140/epjp/i2017-11533-6
https://doi.org/10.1140/epjp/i2017-11533-6
https://doi.org/10.1016/j.nima.2015.11.070
https://doi.org/10.1142/S0217984916503863
https://doi.org/10.1007/s10967-020-07239-w
https://doi.org/10.1007/s10967-020-07239-w
https://doi.org/10.1177/0021998319900655
https://doi.org/10.1016/j.apradiso.2003.12.007
https://doi.org/10.1016/j.apradiso.2003.12.007
https://doi.org/10.1007/s10967-017-5636-9
https://doi.org/10.1007/s10967-017-5636-9
https://doi.org/10.1016/S0969-8043(03)00163-5
https://doi.org/10.1007/s41365-019-0579-1
https://doi.org/10.1016/j.net.2023.01.005
https://doi.org/10.1007/s11053-021-09894-6
https://doi.org/10.1007/s11053-021-09894-6
https://doi.org/10.1088/0957-0233/22/12/125701
https://doi.org/10.1088/0957-0233/22/12/125701
https://doi.org/10.1007/s10967-018-6173-x
https://doi.org/10.1007/s10967-018-6173-x
https://doi.org/10.1007/s41365-017-0213-z
https://doi.org/10.1007/s41365-017-0213-z
https://doi.org/10.1007/s10967-019-06837-7
https://doi.org/10.1007/s10967-019-06837-7
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.2010.11929
https://doi.org/10.1016/j.aci.2018.08.003
https://doi.org/10.1016/S0301-7516(00)00069-7
https://doi.org/10.1016/S0301-7516(00)00069-7
https://doi.org/10.1134/S1070363211060351
https://doi.org/10.1134/S1070363211060351
https://doi.org/10.1109/TKDE.2019.2912815

	High-precision copper-grade identification via a vision transformer with PGNAA
	Abstract
	1 Introduction
	2 Methods and materials
	2.1 Monte Carlo simulation of the PGNAA device
	2.2 ViT model
	2.3 Hyperparameter tuning
	2.4 Model evaluation
	2.5 Dataset

	3 Results and discussion
	3.1 Gamma spectrum analysis of copper ore
	3.2 Identification of copper ore grade
	3.3 Identification of associated minerals

	4 Conclusion
	Acknowledgements 
	References




