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Abstract
Neutron radiographic images (NRIs) typically suffer from multiple distortions, including various types of noise, geometric 
unsharpness, and white spots. Image quality assessment (IQA) can guide on-site image screening and even provide metrics for 
subsequent image processing. However, existing IQA methods for NRIs cannot effectively evaluate the quality of real NRIs 
with a specific distortion of white spots, limiting their practical application. In this paper, a novel no-reference IQA method 
is proposed to comprehensively evaluate the quality of real NRIs with multiple distortions. First, we construct large-scale 
NRI datasets with more than 20,000 images, including high-quality original NRIs and synthetic NRIs with various distor-
tions. Next, an image quality calibration method based on visual salience and a local quality map is introduced to label the 
NRI dataset with quality scores. Finally, a lightweight convolutional neural network (CNN) model is designed to learn the 
abstract relationship between the NRIs and quality scores using the constructed NRI training dataset. Extensive experimen-
tal results demonstrate that the proposed method exhibits good consistency with human visual perception when evaluating 
both real NRIs and processed NRIs using enhancement and restoration algorithms, highlighting its application potential.

Keywords Neutron radiography · Image quality assessment · Convolutional neural network · Visual salience

1 Introduction

Because of the high sensitivity of neutron beams to light 
elements (e.g., H, B, and Li), neutron radiography (NR) 
has become an important nondestructive testing method 
in fields such as the nuclear industry, biology, chemical 
engineering, archaeology, and aerospace [1–3]. Currently, 
high-quality neutron radiographic images (NRIs) can be 
obtained using high-flux neutron sources such as research 
reactors and large-scale accelerators. However, the high cost, 
immobility, and large footprint of these NR devices limit 

their applications. Consequently, compact NR technology is 
gradually emerging as a research hotspot, both domestically 
and internationally.

Compact NR systems typically use small accelerators or 
high-yield neutron generators as neutron sources, resulting 
in neutron flux levels that are several orders of magnitude 
lower than those from reactors and large-scale accelerators. 
Additionally, to satisfy the miniaturization requirements, 
the collimator ratio (L/D, the length of the beam collima-
tor to the diameter of the neutron source) is also limited. 
The long exposure times required to compensate for the 
low-flux neutron source further increase the likelihood of 
high-energy particles irradiating imaging detectors. These 
factors lead to specific distortions in NRIs, including Pois-
son–Gaussian noise, geometric unsharpness (blurring), and 
white spots [4–15].

Various studies have been conducted to improve the 
performance of compact NR systems. In 2014, Sun et al. 
proposed a deblurring method for NRIs using a steering 
kernel-based Richardson–Lucy algorithm [16]. In 2015, 
Qiao et al. developed a denoising method for NRIs using 
BM3D frames and nonlinear variance stabilization [17]. In 
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2020, Zhao et al. introduced a white-spot removal method 
for NRIs by integrating a spatially adaptive filter and median 
filter [18]. Over the following two years, Li et al. studied 
moderators and collimators suitable for compact NR systems 
using MCNP simulations [19]. In 2024, Meng et al. pro-
posed a generative adversarial network-based image restora-
tion method to improve the perceptual quality of degraded 
NRIs [20]. Although hardware improvements and image 
processing algorithms designed for NRIs have achieved con-
siderable success, objective image quality assessment (IQA) 
for NRIs has rarely been reported. The primary reason for 
this is the lack of NRI datasets compared with those avail-
able for natural images.

Image quality assessment (IQA) is a crucial technique 
for predicting the quality scores of digital images and is 
widely used in various digital image processing tasks such 
as image restoration and super-resolution reconstruction. 
However, because the imaging mechanisms and distortion 
types of neutron radiographic images (NRIs) differ signifi-
cantly from those of natural images, IQA methods designed 
for natural images cannot be applied directly to NRIs. To 
address this issue, Zhang et al. proposed a proof-of-concept 
IQA method for NRIs in 2021 based on a deep bilinear con-
volutional neural network (CNN) framework. This method 
utilizes two datasets, a large-scale natural image dataset and 
a small number of real NRIs, leveraging transfer learning to 
achieve quality prediction [21]. Notably, this IQA method 
only evaluates the quality of various noises in NRIs with-
out considering blurring and white spots. In the same year, 
Zhang et al. further improved their IQA scheme for NRIs by 
expanding the evaluation scope to include Poisson-Gauss-
ian noise and blurring [22]. However, these IQA methods 
focus solely on Gaussian noise, Poisson noise, and blurring, 
neglecting white spots, which are other significant distor-
tions that severely degrade the visual quality of NRIs.

White spots in neutron radiographic images typically 
appear as randomly shaped blocks with smooth high-bright-
ness structures. Traditional gradient-based IQA methods can 
only detect the edges of white spots, rather than their internal 
pixels. To address this issue, we propose treating white spots 
as special image content rather than noise owing to their 
blocky nature. In addition, the saliency of white spots differs 
significantly from that of noise and blurring within the same 
image, making it an effective metric for calibrating the qual-
ity of NRIs with multiple distortions, including noise, blur-
ring, and white spots. Therefore, we propose a novel quality 
assessment method for NRIs based on visual salience and 
gradient magnitudes aimed at comprehensive quality evalu-
ation. Specifically, a large-scale NRI dataset with more than 
20,000 images was constructed, including high-quality origi-
nal NRIs and synthetic NRIs with random multi-distortions. 
Subsequently, an image quality calibration method based on 
visual salience and a local quality map is introduced to label 

the NRI dataset with quality scores. Finally, a lightweight 
CNN model was designed to learn the abstract relationship 
between the NRIs and corresponding quality scores using 
the constructed NRI dataset. The experimental results show 
that the proposed IQA method exhibits good consistency 
with human visual perception when evaluating real NRIs as 
well as processed NRIs using enhancement and restoration 
algorithms.

2  Construct degraded datasets of NRIs

Most public image datasets designed for image processing 
are based on natural images. However, the imaging prin-
ciples and degradation models of NRIs significantly differ 
from those of natural images. In addition, acquiring NRIs is 
much more challenging because of the scarcity of available 
neutron sources and the high cost of neutron radiography. 
Therefore, 30 high-quality NRIs from published papers and 
shared laboratories were selected and then degraded using 
random levels of noise, blurring, and white spots to con-
struct a degraded NRI dataset for subsequent calibration and 
training.

To simulate the degradation process of real NRIs, two 
degradation models were employed to generate synthetic 
NRIs as follows:

where g is the synthetic degraded image, f is the original 
high-quality NRI (i.e., the latent clear image), B denotes 
the blur kernel [15], ⊗ denotes the convolution operation, 
P(⋅) denotes the function of adding Poisson noise, and 
n ∼ N

(
0, �2

)
 is the additive Gaussian noise with zero mean 

and variance �2.

where w denotes additive white spots and ĝ denotes the 
degraded image with additive white spots.

As shown in Fig. 1, random levels of Gaussian noise, Pois-
son noise, Gaussian blur, and defocus blur were employed for 
f (i.e., high-quality NRIs) based on Eq. (1) to obtain Dataset 

(1)g = P(B⊗ f ) + n

(2)ĝ = P(B⊗ f ) + n + w

Gaussian and 

defocus blur

Gaussian noise

Poisson noise

White spots

Dataset A 

(High-quality NRIs)  

Dataset B

Dataset C

Degradation 

model 1

Degradation 

model 2

Fig. 1  (Color online) Illustration of proprietary dataset construction
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B. In addition, random quantities, sizes, and positions of the 
white spots were added to the resulting g based on Eq. (2) to 
obtain Dataset C. Note that both Datasets B and C contain the 
original high-quality NRIs as reference images.

Existing white-spot simulations [23] are limited to a few 
fixed shapes that differ significantly from real white spots 
in terms of size and distribution, as shown in Fig. 2(a). To 
address this issue, we propose a novel method for simulating 
white spots with high fidelity for proprietary dataset construc-
tion. Specifically, authentic white-spot samples, such as those 
in Fig. 2(b), are first extracted from real NRIs. These samples 
are used to train a generative adversarial network (GAN) [24] 
to generate synthetic white spots, as shown in Fig. 2(c).

Because the generated white-spot samples contain white 
speckle noise (i.e., large areas of discrete white dots) out-
side their main shape, mean filtering and cubic spline 
interpolation were employed to suppress the unexpected 
discrete white dots and smooth the processed white spots, 
respectively. Contrast stretching was used to improve the 
brightness and contrast of the generated white spots. As 
a result, the generated white spots closely resemble the 
authentic white-spot samples, as shown in Fig. 2(d). Note 
that the one-dimensional pixel range of the generated white 
spots was approximately one-twentieth of that of the NRIs.

3  Quality calibration method for NRIs 
based on gradient magnitudes and visual 
saliency

3.1  Saliency analysis of white spots

Currently, the gradient is widely used as a metric to evaluate 
image degradation, such as blur and noise, in classical image 

quality assessment methods (e.g., GMSD [25]). However, 
the gradient is not sensitive to the white spots because of 
their smooth interior structure. In contrast, white spots can 
severely degrade the visual quality of NRIs compared with 
noise and blur. Because all IQA algorithms aim to simulate 
the human visual system (HVS), the predicted quality score 
should be highly correlated with the subjective quality score 
perceived by human vision.

To solve this issue, image saliency is introduced into 
the designed IQA method for NRIs, which can enhance 
the image content, including white spots, using a transfor-
mational model. Specifically, a saliency map is utilized to 
display the saliency of visual scenes, which is a grayscale 
image corresponding to the original image. In the saliency 
map, areas of high and low brightness denote the salient 
and non-salient regions, respectively. Brightness intensity 
is directly correlated with the degree of saliency in each 
region.

For example, consider a pair of synthetic NRIs in which 
the only difference between Fig. 3(a) and (d) is the presence 
or absence of white spots. Figure 3(b) and (e) shows the cor-
responding visual saliency maps of Fig. 3(a) and (d), respec-
tively. Note that, except for the white spots, the same levels 
of noise and blurring were also added to Fig. 3(a) and (d). A 
comparison between Fig. 3(c) and (f) shows that the saliency 
algorithm enhances the white spots more effectively than the 
noise and blurring. This demonstrates that image saliency 
is sensitive to the special degradation types of white spots. 
Therefore, image saliency can be used to refine the local 
quality map obtained from the gradient operation, thereby 
ensuring that the proposed quality calibration method can 
effectively evaluate NRIs with white spots.

(b) (d)(c)(a)

Fig. 2  a White-spot model with fixed shapes [16]; b authentic white 
spots; c generated white spots by GAN; and d generated white spots 
by GAN with additional image processing

Fig. 3  (Color online) Illustration of the image saliency of white spots: 
a is a synthetic NRI with noise, blurring, and white spots; b is the 
visual saliency map of a; c is the enlarged local area of b containing 
white spots; d is a without white spots; e is the visual saliency map of 
d; and f is the same enlarged local area of e compared with b 
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3.2  Calculation methodology of image saliency

In this study, a classical context-aware (CA) algorithm was 
selected as the saliency detection method [26]. The main 
reason for using CA rather than other types of saliency 
detection is that it can enhance the context of the dominant 
objects and the objects themselves, which is especially suit-
able for NRIs with white spots. In addition, CA can prevent 
distortions in important regions of NRIs. A brief calculation 
process for the CA is given below:

Let G(�x, �y) be a two-dimensional Gaussian positioned at 
the center of an image. The saliency of a pixel i is defined as:

where Sr
i
 is the single-scale saliency, R and M, respectively, 

denote the set of different scales (e.g., R={r, 1
2
r,

1

4
r} ) and the 

number of scales, dr
foci

(i) denotes the Euclidean positional 
distance between pixel i and the closest focus of attention 
pixel at scale r, which is normalized to the range [0, 1], and 
Gi is the value of pixel i in the map G. Note that CA is a 
well-known method for saliency detection, and more details 
on CA and the open-source code can be found in Ref.  [26].

3.3  Verification of image saliency and white spots

From the perspective of image features, density (Den), back-
ground brightness ( B_b ), and aggregation degree ( A_d ) 
can be considered as the key factors influencing the visual 
saliency of white spots. Using the control variable method, 
five different levels of the above features were selected to 
validate the correlation between saliency and white spots. 
Specifically, B_b was adjusted via contrast stretching on the 
same reference NRI with the same parameters as those of 
Den and A_d . For Den, different numbers of white spots 
were added to the same reference NRI with the same param-
eters B_b and A_d . For A_d , the same number and shape of 
white spots were added to different sizes of the local area of 
the same reference NRI with the same parameters as those of 
Den and B_b . The bar graph in Fig. 4 shows the relationship 
between the preset parameters and saliency levels.

Figure 4 indicates that each feature shows a good linear 
relationship between the preset parameters and saliency lev-
els of the white spots. Specifically, for the features Den and 
A_d , the saliency levels of the white spots increased as the 
parameter value increased. For B_b , the bar graph shows 
an opposite trend. This was because the bright background 
drowned out the white spots and reduced their saliency level. 
To quantitatively analyze these correlations, Spearman’s 

(3)Si =
1

M

∑
r∈R

Sr
i
(1 − dr

foci
(i)) ⋅ Gi

rank order correlation coefficient (SROCC) was introduced 
to measure the correlation between the preset parameters 
(i.e., Den, B_b , A_d ) and the saliency levels as follows:

where sj and pj are the sorted saliency and preset parameters, 
respectively. From the inset of Figure  4, we can see that the 
calculated saliency levels of Den, B_b , and A_d are highly 
correlated with the ground truth (i.e., preset parameters). All 
SROCC values reached a threshold of 0.95.

The above analysis indicates that visual saliency can be 
considered an effective metric for evaluating white spots and 
can be employed in the quality calibration method of NRIs 
with white spots.

3.4  Quality calibration method for NRIs 
with multi‑distortions

Inspired by classical gradient-based IQA methods [25, 27, 
28], a novel IQA method was designed for NRIs with mul-
tiple distortions, based on gradient magnitudes and visual 
saliency. The gradient magnitude is defined as the orthogo-
nal decomposition of an image along two directions and can 
be considered a valuable indicator of the image’s structural 
information. Different structural distortions resulted in dif-
ferent gradient amplitude degradations. In general, image 
gradients can be obtained by convolving an image with lin-
ear filters such as the well-known Roberts, Sobel, Canny, 
and Prewitt filters. In this study, a Prewitt filter was used to 
calculate the image gradients. The Prewitt filters along the 
horizontal (x) and vertical (y) directions are defined as

(4)SROCC = 1 −
6
∑n

j−1
(sj − pj)

2

n(n2 − 1)

Fig. 4  (Color online) Bar graph of preset parameters versus saliency 
levels of white spots
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Convolving hx and hy with the reference image (i.e., high-
quality NRIs from Dataset A) and degraded images yields 
the horizontal and vertical gradient images of the reference 
and degraded images, respectively. Let mr(i) and md(i) , 
respectively, represent the gradient magnitudes at pixel i in 
the reference image r and degraded image d as follows:

We can then calculate the similarity of the GMS as

where c is a positive constant that provides numerical stabil-
ity. Note that GMS(i) can be displayed as a local quality map 
(LQM) of a degraded image, as shown in figure 5. When 
mr(i) and md(i) are identical, GMS(i) attains the maximum 
value of 1. Conversely, as the local image quality of the 
degraded image decreases, the value of GMS(i) decreases.

Although the local GMS can effectively evaluate image 
degradation, such as noise and blurring, it is still insen-
sitive to the special distortion type of white spots exist-
ing in NRIs. The gradient operator only affects the edges 
of the white spots during local gradient computation and 
is insensitive to the internal pixels of the white spots. 
Therefore, visual saliency is further introduced to LQM 
to achieve comprehensive quality calibration for NRIs with 
white spots. A flowchart of the calibration algorithm is 
shown in Fig. 5, which can be summarized in four steps.

Step 1: The original high-quality NRIs from Dataset A 
and the corresponding degraded image from Dataset C are 
first employed to calculate the local GMS as LQM using 

(5)hx=

⎡
⎢⎢⎣

1∕3 0 −1∕3

1∕3 0 −1∕3

1∕3 0 −1∕3

⎤
⎥⎥⎦
, hy=

⎡
⎢⎢⎣

1∕3 1∕3 1∕3

0 0 0

−1∕3 −1∕3 −1∕3

⎤
⎥⎥⎦

(6)

⎧
⎪⎨⎪⎩

mr(i) =

�
(r⊗ hx)

2(i) + (r⊗ hy)
2(i)

md(i) =

�
(d⊗ hx)

2(i) + (d⊗ hy)
2(i)

(7)GMS(i) =
2mr(i)md(i) + c

m2
r
(i) + m2

d
(i) + c

Eq.  8, which can predict the quality of NRIs with noise 
and blurring.

Step 2: Calculate the saliency of the white spots to correct 
for LQM. Using the CA algorithm [26], the visual saliency 
maps of the corresponding images from Datasets B and C 
were first computed and then subtracted from each other to 
obtain the saliency maps of the white spots.

where Sdc and Sdb are the visual saliency maps of the 
degraded images dc and db , respectively, and the visual sali-
ency of the white spots (VSW) is the absolute value of the 
difference between the degraded images dc and db . Note that 
db and dc denote images from Datasets B and C, respectively, 
and the only difference between db and dc is the presence or 
absence of white spots.

Step 3: LQM quantifies the differences in each pixel by 
gradient magnitude. The inner product operation between 
the saliency maps of white spots and background images 
containing only white spots was used to avoid affecting 
pixels other than white spots during the correction process.

where ∙ represents the inner product and VSW ′ is the VSW 
after the inner product operation. Finally, the calibrated 
LQM′ is obtained by a subtraction operation between LQM 
and the normalized VSW ′.

Step 4: LQM′ reflects the local quality of each small 
block in the degraded image. Inspired by GMSD [25], 
which uses the standard deviation of GMS(i) as the final 
IQA index, this pooling strategy was also used for the 
proposed IQA method. Therefore, the overall image qual-
ity score can be obtained by employing standard deviation 
pooling operations on the calibrated LQM′ as follows:

Note that obtaining the saliency map (i.e., VSW) of white 
spots requires not only the CA algorithm but also a unique 
dataset construction mechanism (i.e., Datasets B and C). In 
addition, because the calculated saliency map of the white 
spots shows a blocky structure, it cannot be directly used 
to correct the pixel-level GMS (i.e., LQM). Therefore, we 
further calculated the difference between dc and db and per-
formed an inner product operation with VSW to achieve a 
pixel-level correction for LQM using Eq. 10.

(8)LQM = GMS(i)

(9)

⎧
⎪⎨⎪⎩

Sdc = Context − Aware(dc)

Sdb = Context − Aware(db)

VSW = ��Sdc − Sdb
��

(10)
{

VSW � = VSW ∙ (dc − db)

LQM� = LQM − VSW �

(11)Score = std(LQM�)

Fig. 5  (Color online) Flowchart of proposed calibration algorithm 
based on gradient magnitude and visual saliency
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3.5  Validation of the proposed calibration method

To validate the effectiveness of the proposed calibration 
method, several classical IQA methods were compared using 
scatter plots to illustrate their sensitivity to white spots. The 
vertical and horizontal axes in Fig. 6 denote the saliency 
level of the white spots and the quality score variation, 
respectively. The variation in quality scores can be obtained 
by a subtraction operation on the same reference image with 
and without white spots using the proposed quality calibra-
tion method and other classical IQA methods. For the verti-
cal axis in Fig. 6, the saliency level is calculated VSW by 
Eqs. 9, which can indicate the significance level of white 
spots. Using the images from datasets B and C, the distribu-
tion between the variation in quality scores and the saliency 
level of the white spots can be obtained. The scatter distri-
bution demonstrates that the proposed calibration method 
shows good linearity between the saliency level of the white 
spots and the variation in quality scores. In contrast, the 
three classical IQA methods (PSNR [29], SSIM [30] and 
GMSD [25]) do not show sufficient linearity, which aligns 
with our previous theoretical analysis.

We further validated the proposed method using the 
public dataset TID2013, which comprised 3,000 distorted 
images generated from 25 reference images, including dis-
tortion types of noise, Gaussian blur, and local blockwise. 
The mean opinion scores (MOS) of all distorted images 
ranged from 0 to 9, and a higher MOS value indicated better 
image quality. Because Gaussian blur, high-frequency noise, 
and local blockwise distortions are similar to the degrada-
tion types in NRIs, we chose the above distortion types with 
different intensities in TID2013 to validate the cross-dataset. 

Local blockwise distortions can be approximated as white 
spots to some extent.

Next, a comprehensive comparison of several distortion 
types was performed using the aforementioned IQA meth-
ods, as shown in Table 1. SROCC was also employed as a 
metric to evaluate the correlation between the preset value 
of degradation and the predicted value obtained by PSNR, 
SSIM, GMSD, and proposed IQA methods. The SROCC 
results for the proprietary IQA dataset of NRIs indicated 
that the proposed method outperformed the classical PSNR, 
SSIM, and GMSD methods in terms of blurring, noise, 
white spots, and average scores. In addition, the SROCC 
results for the IQA dataset of TID2013 further demonstrate 
that the proposed method shows good consistency with MOS 
in evaluating degradation types similar to NRIs. Overall, 
the proposed method was proved to be a satisfactory IQA 
method, designed specifically for NRIs.

4  No‑reference image quality assessment 
based on convolution neural networks

According to the degree of dependence on the reference 
image, IQA can be categorized as full-reference image 
quality assessment (FR-IQA), semi/reduced-reference 
image quality assessment (S/RR-IQA), or no-reference 
image quality assessment (NR-IQA). Owing to the lack 
of an ideal reference image for on-site NR, the classical 
full-reference IQA model cannot be applied. To achieve 
a no-reference image quality assessment (NR-IQA) for 
NRIs, the CNN framework is further employed to learn 
the abstract relationship between the degraded NRIs and 
the corresponding quality scores based on the constructed 
quality assessment Dataset C. Using the aforementioned 
image quality calibration method, the degraded NRIs of 
Dataset C are labeled with the quality scores, as shown 
in Fig. 7. From left to right in Fig. 7, the level of image 

Fig. 6  (Color online) Illustrations of saliency level of white spots 
with variation of quality scores

Table 1  SROCC of distortions and quality scores

Distortions

Method PSNR SSIM  GMSD  Proposed

Proprietary IQA dataset of NRIs
Blurring 0.870 0.965 0.943 0.972
Noise 0.930 0.976 0.954 0.979
White spots 0.821 0.645 0.804 0.953
Average 0.873 0.861 0.891 0.968
IQA dataset of TID2013
Gaussian blur 0.910 0.924 0.954 0.943
High-frequency noise 0.913 0.863 0.904 0.924
Local blockwise 0.300 0.572 0.553 0.901
Average 0.707 0.786 0.803 0.922
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quality decreased, and the calibrated image quality score 
increased accordingly. Specifically, the constructed IQA 
Dataset C contained 20,000 synthetic NRIs generated 
from 30 high-quality original NRIs with different types 
and intensity distortions, including noise, blurring, white 
spots, and mixed distortions. A histogram of the score 
distribution of the constructed IQA dataset is presented 
in Fig. 8, which can be used to achieve subsequent end-
to-end training.

4.1  The proposed CNN framework for no‑reference 
image quality assessment

CNNs have achieved tremendous progress in pattern recog-
nition. Therefore, we fully utilized the feature extraction and 
nonlinear fitting ability of the CNN to achieve a no-reference 
quality assessment of NRIs. To satisfy the miniaturization 

development requirements of NR devices, a lightweight 
CNN framework was designed, as shown in Fig. 9.

The input NRI was first cropped into 4 × 4 subimages 
and thereafter fed into the feature extraction model to 
extract the image feature information. Finally, a feature 
fusion model was employed to obtain the predicted qual-
ity scores. Specifically, the CNN model comprises three 
convolutional and three fully connected (FC) layers. 
Each convolutional layer is equipped with a 5 × 5 filter. A 
smaller number of convolutional layers can mitigate the 
overfitting issues induced by small datasets [31]. Because 
severe image distortions can significantly affect subjec-
tive impressions [32], we incorporated 2 × 2 max pooling 
operations after each convolutional layer to capture salient 
features. Moreover, to address the problem of the van-
ishing gradient existing in deep-learning-based methods, 

Fig. 7  Illustrations of constructed NRI Dataset C with quality scores

Fig. 8  (Color online) Histogram of score distribution of constructed 
IQA dataset

Fig. 9  (Color online) Network framework of proposed NR-IQA 
method



 Z. Zhang et al.118 Page 8 of 13

rectified linear unit (ReLU) activation functions [33] were 
applied to all layers except the final FC layer. The last FC 
layer with 100 dimensions was employed to obtain the 
feature vector of each subimage. For the feature fusion 
model, the mean and standard deviation of the feature vec-
tors were selected as the most representative features [29, 
34, 35]. After obtaining the standard deviation and mean 
of the feature vectors from each subimage using the feature 
extraction model, two FC layers were used to map them to 
the final predicted score for image quality.

4.2  Performance comparison of the proposed 
lightweight network with the mainstream 
networks

The performance was tested on the constructed IQA 
dataset with the ratio of the training set to the testing set 
divided at 8:2. Table 2 presents a performance compari-
son between the proposed lightweight network and other 
mainstream networks such as Resnet18 [36], AlexNet [37], 
DenseNet  [38], VGG16  [39], VIT  [40], and the Swin 
Transformer [41]. Floating point operations per second 
(FLOPS) and the number of parameters in each network 
were employed to evaluate the complexity. The PLCC and 
SROCC of the above networks were calculated to show the 
statistical results between the predicted and calibration 
scores of each network on the testing set. Table 2 indicates 
that the proposed network is very close to the state-of-the-
art (SOTA) performance of the current mainstream net-
work frameworks (e.g., ResNet18 and DenseNet), but with 
a significant reduction in calculation time and parameters, 
which is much more suitable for a compact NR system.

5  Experiments and discussions

A series of experiments were conducted to evaluate the 
effectiveness of the proposed NR-IQA method on real NRIs. 
The following experiments were conducted on the same 

workstation with an AMD 3700X CPU and an NVIDIA 
RTX 4090 GPU.

5.1  Quality predictions on original NRIs

Specifically, the first line in Fig. 10 is the NRIs of the same 
small motor with different L/D ratios (i.e., 320, 115, and 
71). The second line of Fig. 10 shows the NRIs of the same 
floppy driver taken at different distances (i.e., 0 cm, 10 cm, 
and 20 cm) but with the same L/D of 71. The third line of 
Fig. 10 shows the NRIs of a ball bearing with different imag-
ing parameters, where (a) was obtained with an L/D of 20, 
exposure time of 5 min, and total fluence of 6 × 107n/cm

2 , 
and (b) was obtained with an L/D of 50, exposure time of 
10 min, and total fluence of 2.1 × 107n/cm

2 . The fourth line 
of Fig. 10 shows the NRIs of a hard drive with and without 
the moderator, where an L/D of 50 and an exposure time of 

Table 2  Comprehensive performance comparison between the pro-
posed lightweight network and other mainstream networks

Networks FLOPS.(M) Params.(M) SROCC PLCC

ResNet18 1823 11.1 0.945 0.940
AlexNet 714 61.1 0.932 0.927
DenseNet 2897 9.8 0.939 0.938
VGG16 15466 134.3 0.798 0.794
VIT 2674 53.5 0.853 0.847
Swin transformer 4361 27.50 0.856 0.850
Proposed 442 9.34 0.929 0.927 Fig. 10  Four groups of real NRIs taken with different parameter set-

tings
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10 min are set to be the same in this case. The visual qual-
ity shown in Fig. 10 gradually decreases from left to right, 
which is consistent with the imaging parameter settings. 
The NRIs in Fig. 10 were chosen to validate the subjective 
and objective consistency of the proposed IQA method with 
three NR-IQA counterparts: BLINDS [42], NIQE [43], and 
Qiao et al. [22]. The predicted quality scores are presented 
in Table 3. Note that, the symbol ‘+’ means that the higher 
the predicted score, the better the quality of the image, and 
‘−’ means the opposite trend.

Because the evaluation metrics (e.g., score range and 
monotonicity, etc.) of different IQA methods are different, 
a quantitative comparison between these IQA methods is 
not fair. However, the subjective and objective consistency 
of each method indirectly reflects its effectiveness. As the 
visual quality of each line in Fig. 10 is known, we further 
drew a line graph of the predicted results of different IQA 
methods in Fig. 11 to illustrate the consistency with the per-
ception trend. From the results in Fig. 11, we can conclude 
that only the proposed method shows remarkable consist-
ency and monotonicity compared with the other NR-IQA 
methods. For the BLINDS method, although the predicted 
quality trends of the first and fourth lines of Fig. 11 are cor-
rect, the second and third lines show fluctuations and even 
opposite trends, which are not consistent with the real qual-
ity trend. For the method of NIQE, except for the second line 
showing the correct trend, the first line also shows fluctua-
tions, and the third and fourth lines show incorrect trends. 
The poor performance of IQA methods such as BLIINDS 
and NIQE can be attributed to the design targets of natural 
images rather than NRIs. For the method proposed by Qiao 
et al., although the predictions of the first and second lines 
showed a satisfactory trend, the third and fourth lines were 
also incorrect. The main reason for this is that Qiao et al. did 
not consider the special distortion type of the white spots. 
Figure 11(d) shows the evaluated results of the proposed 

IQA method, which indicates that the proposed IQA can not 
only accurately predict the quality of the above real NRIs 
containing noise, blurring, and white spots but also matches 
the subjective evaluation trend well.

Although the subjective and objective consistency of the 
proposed IQA method was demonstrated by the NRIs (i.e., 
Fig. 10) obtained under different imaging parameters with 
significant quality differences, the robustness of the pro-
posed IQA in evaluating NRIs with small quality differences 
still needs to be verified. In addition, a good IQA method 
should only be relevant to the distortions of the image rather 
than the content of the images.

To verify this, two sets of NRIs are selected, as shown 
in Fig. 12 and 13. Specifically, for the first line of Fig. 12, 
this group of NRIs for different objects [44] was obtained 
using the same equipment with the same imaging param-
eters, which means that the quality of these NRIs should 
be similar. The second line in Fig. 12 [44] is another group 
of NRIs of the same object in different states, which is also 
obtained using the same equipment with the same imaging 
parameters. The predicted quality scores in Fig. 12 using the 
proposed IQA method indicate that the proposed method is 
robust in evaluating NRIs with small quality differences.

Simultaneously, we believe that the local and whole 
NRIs should have similar quality scores. Therefore, we 
cropped the same NRIs into two subimages containing 
most of the detected objects and backgrounds, as shown 
in Fig. 13. Note that the two cropped subimages contain 
overlapping areas. The same prediction results further 
demonstrate the accuracy of the proposed IQA method 
for evaluating NRIs with small quality differences.

Table 3  Predicted quality scores of figure 10 with different NR-IQA 
methods

Figure 10 label

Method BLIINDS + NIQE - Qiao[22] - Proposed -

1st Line (a) 57.5 8 0.21 0.11
(b) 49 10.3 0.26 0.22
(c) 4 5.1 0.32 0.24

2nd Line (a) 32.5 5.4 0.22 0.11
(b) 17.5 12.4 0.35 0.19
(c) 23.5 15.2 0.43 0.30

3rd Line (a) 17.5 39.7 0.29 0.21
(b) 20.5 39.8 0.25 0.31

4th Line (a) 15.5 35.2 0.31 0.23
(b) 7.5 33.6 0.30 0.27

Fig. 11  (Color online) Line graph of quality prediction scores by dif-
ferent NR-IQA methods



 Z. Zhang et al.118 Page 10 of 13

5.2  Quality predictions on the enhanced NRIs 
via ImageJ with different thresholds

A good IQA method should also have the capability to eval-
uate both the original and processed images, which can be 
used as an objective metric for optimizing image processing 
algorithms. Therefore, the validity of the proposed method 
was demonstrated by the consistency of the enhanced images 
with their corresponding scores. Fortunately, this can be 
realized using the well-known software ImageJ [45]. It can 
easily yield a series of enhanced images of sorted quality. 
Specifically, we can set several sorted thresholds by using 
the function of ‘Process-noise-Remove Outside’ of ImageJ 
to improve the quality of NRIs with significant white spots. 
Note that a smaller threshold value results in a superior sup-
pression effect on the white spots. The original NRI and pro-
cessed NRIs using ImageJ with sorted thresholds are shown 
in Fig. 14, which shows a decreasing trend in the visual 
quality from (a) to (k).

In addition, the quality prediction of Fig. 14 using the 
proposed NR-IQA method and its three counterparts is 
shown in Fig. 15. For BLIINDS, it fails to perceive subtle 
changes in quality scores resulting from minute enhance-
ments (e.g., thresholds from 1 to 200). The NIQE method 
has large quality fluctuations that are not consistent with 
the above analysis. For the method proposed by Qiao et al., 
it is difficult to perceive changes in the white spots. Only 
the proposed method exhibited a trend consistent with the 
parameter setting of ImageJ. In addition, we calculated the 
correlation coefficients (i.e., SROCC and PLCC) and root 
mean square error (RMSE) of the quality evaluation and 
parameter settings of ImageJ, as well as the average of the 
above results, to quantitatively analyze the performance of 
the above IQA methods in Table 4. The results indicate that 
the proposed method exhibits superior performance in terms 
of SROCC, PLCC, RMSE, and so on.

5.3  Quality predictions on the enhanced NRIs 
with different image processing algorithms

In the previous subsections, we validated the performance of 
the proposed method using the well-known software ImageJ. 
In this section, we use a series of advanced image process-
ing algorithms to further demonstrate the effectiveness of 
the proposed method. Four algorithms, including Non-Local 
Means (NLM), BM3D Frames [17], KSVD [46], and Zhao 
et al. [47], were employed to suppress the distortion of white 
spots. Because the white spots have the properties of high light 
and a large area, the three-dimensional (3D) grayscale distri-
bution of local images containing white spots is chosen and 
illustrated in Fig. 16. The suppression effects of white spots 
can indirectly reflect the quality of the enhanced NRIs. These 
NR-IQA methods were then employed to predict the quality 
score of the original NRI and its corresponding processing 
results using different algorithms. From the viewpoint of 3D 
distribution, the white-spot suppression effect of NLM is very 

Fig. 12  Quality prediction on NRIs with small quality differences by 
proposed IQA method

Fig. 13  (Color online) Quality prediction on local and whole of the 
same NRIs by proposed IQA method
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limited. Although BM3D can filter white spots to some extent, 
additional blurring is generated owing to the nature of the fil-
tering algorithm. The final algorithm proposed by Zhao et al. 
showed the best suppression effect for white spots. The above 
analysis and perception quality indicates that only the pro-
posed method shows good consistency between the predicted 
and perceptual quality.

6  Conclusion

In this study, a comprehensive image quality assessment 
method is proposed for neutron radiographic images based 
on a lightweight convolutional neural network. Large-
scale NRI datasets with more than 20,000 images were 
constructed, including high-quality original NRIs and 

Fig. 14  Enhanced NRIs by ImageJ with small quality differences

Fig. 15  (Color online) Comparison in quality prediction by different 
NR-IQA methods

Table 4  Quantitative comparison between the proposed method and 
other NR-IQA methods on the enhanced NRIs via ImageJ

Index

Method BLIINDS NIQE Qiao et al. [22] Proposed

SROCC 0.850 0.385 0.312 0.993
PLCC 0.803 0.409 0.249 0.987
RMSE 0.789 0.272 0.345 0.978
Average 0.814 0.355 0.302 0.986

Fig. 16  (Color online) Illustrations of enhanced NRIs with different 
image processing algorithms and corresponding 3D grayscale distri-
bution of partial images containing white spots
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synthetic NRIs with multiple distortions. Subsequently, 
an image quality calibration method based on visual sali-
ence and a local quality map is proposed to label the NRI 
dataset with quality scores. After end-to-end training on 
the constructed IQA dataset, a no-reference image quality 
assessment was achieved. Extensive experimental results 
demonstrate that the proposed IQA method exhibits good 
consistency with human visual perception in evaluating 
real NRIs as well as processed NRIs with enhancement 
and restoration algorithms, thus demonstrating its applica-
tion potential in the field of neutron radiography.
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