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Abstract
Neutron time-of-flight (ToF) measurement is a highly accurate method for obtaining the kinetic energy of a neutron by 
measuring its velocity, but requires precise acquisition of the neutron signal arrival time. However, the high hardware costs 
and data burden associated with the acquisition of neutron ToF signals pose significant challenges. Higher sampling rates 
increase the data volume, data processing, and storage hardware costs. Compressed sampling can address these challenges, 
but it faces issues regarding optimal sampling efficiency and high-quality reconstructed signals. This paper proposes a revolu-
tionary deep learning-based compressed sampling (DL-CS) algorithm for reconstructing neutron ToF signals that outperform 
traditional compressed sampling methods. This approach comprises four modules: random projection, rising dimensions, 
initial reconstruction, and final reconstruction. Initially, the technique adaptively compresses neutron ToF signals sequen-
tially using three convolutional layers, replacing random measurement matrices in traditional compressed sampling theory. 
Subsequently, the signals are reconstructed using a modified inception module, long short-term memory, and self-attention. 
The performance of this deep compressed sampling method was quantified using the percentage root-mean-square differ-
ence, correlation coefficient, and reconstruction time. Experimental results showed that our proposed DL-CS approach can 
significantly enhance signal quality compared with other compressed sampling methods. This is evidenced by a percentage 
root-mean-square difference, correlation coefficient, and reconstruction time results of 5%, 0.9988, and 0.0108 s, respectively, 
obtained for sampling rates below 10% for the neutron ToF signal generated using an electron-beam-driven photoneutron 
source. The results showed that the proposed DL-CS approach significantly improves the signal quality compared with other 
compressed sampling methods, exhibiting excellent reconstruction accuracy and speed.
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1  Introduction

The neutron time-of-flight (ToF) measurement method is 
used to determine the neutron kinetic energy by measuring 
the velocity based on the relationship between the velocity 
and kinetic energy of a neutron when its flight path length 
is constant. This technique is widely used in neutron cross-
sectional measurements [1–6] and large neutron spectrom-
eters [7–13]. However, the accuracy of ToF measurements 
relies on the precision of the nuclear signal. Previously, the 
measurement of neutron flight times relied on large-scale 
analog circuits for signal amplification, timing conver-
sion, and amplitude analyses. However, the transmission of 
analog signals often results in distortion and system instabil-
ity. Hence, a waveform digitizer was introduced to convert 
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continuous analog waveform signals into discrete digital 
forms. It provided time information and captured complete 
waveform information in digital form to overcome these 
issues, thereby exhibiting enhanced anti-interference capa-
bility and measurement accuracy [14, 15]. Additionally, 
digital signals can be transmitted using more stable digital 
methods, thereby minimizing the risk of signal distortion.

However, obtaining fast neutron ToF data at high frequen-
cies can be challenging because it requires a narrow detector 
signal width. This requires the capability to be receive and 
process a higher signal frequency, while complying with the 
requirements of the Nyquist–Shannon sampling theorem. 
This method requires an analog-to-digital converter with a 
higher sampling frequency, which leads to challenges such 
as high-power consumption and increased costs. Moreover, 
the high sampling rates of the analog-to-digital converters 
result in large data volumes, placing significant burden on 
data transmission, storage, and processing. Therefore, there 
is an urgent need to develop an approach to alleviate the 
challenges associated with neutron ToF data transmission, 
storage, and energy consumption. Compressed sampling is a 
potential solution that allows simultaneous direct compres-
sion of signals during the sampling process, enabling signal 
recovery from a reduced number of measurements (below 
the Nyquist–Shannon sampling rate) [16, 17]. Thus, data 
can be effectively compressed with compressed sampling, 
thereby reducing the amount of data transmission and energy 
consumption in neutron ToF measurements.

Compressed sampling technology is widely applied to 
nuclear data processing and acquisition in nuclear physics 
and related fields. Wang et al. [18] proposed a new com-
pressed sampling framework integrating a discrete wave-
let transform, Bernoulli measurement matrix, and spar-
sity adaptive matching pursuit for reconstructing neutron 
TOF signals. Bin et al. [19] used the compressed sampling 
framework of the SL0 algorithm to reconstruct the neu-
tron spectrum expansion for Bonner sphere spectrometer 
measurements. Additionally, Liu et  al. [20] proposed a 
compressed sensing-based coded-aperture method to opti-
mize gamma-ray imaging technology and achieve higher 
imaging quality and faster imaging speed. Jeong et al. [21] 
employed a compressed sensing iterative algorithm with a 
coded-aperture mask to accurately reconstruct gamma cam-
era images. Kahuguna et al. [22] investigated a compressed 
sensing-based method for flow mapping in nuclear reactors, 
which reduced the sampling volume and cost, while main-
taining mapping accuracy. Vargas et al. [23] designed a neu-
tron energy spectrum system based on compressed sensing 
measurements and revealed the energy characteristics of the 
neutron field using the theoretical framework of compressed 
sensing.

In our previous work [18], to address the limitation of 
applying conventional algorithms at low sampling rates for 

signal reconstruction, we have proposed a compressed sam-
pling framework to sample neutron ToF signals per discrete 
wavelet transform (reverse biorthogonal 5.5, rbio5.5) + 
Bernoulli measurement matrix + sparsity adaptive match-
ing pursuit (SAMP) reconstruction algorithm. Experiments 
were performed to verify the feasibility of the compressed 
sampling theory for neutron ToF signal acquisition. We also 
address the issues of massive data storage and processing 
when acquiring neutron ToF signals. Experimental results 
showed a percentage root-mean-square difference (PRD) of 
6.7348%, correlation coefficient (CC) of 0.9977, and recon-
struction time of 0.1108 s at a sampling rate of 20% of 2.5 
Gs/s for neutron ToF signals generated from an electron-
beam-driven photoneutron source.

These methods used the sparsity of nuclear data and 
employed compressed sampling for compression and recon-
struction. However, traditional compressed sampling recon-
struction methods encounter two main challenges. First, 
these methods failed to account for the specific character-
istics and structure of the original signal in the universal 
random matrix, leading to suboptimal performance. Second, 
these methods require multiple iterations to solve optimiza-
tion problems owing to an increase in the dimensions of the 
solution space with an increase in the length of the signal 
frame, resulting in a longer reconstruction time. Therefore, 
traditional compressed sampling was introduced to signifi-
cantly reduce data redundancy and energy costs. However, 
traditional compressed sampling still has some limitations in 
practical applications because traditional iterative algorithms 
are unsuitable for reconstructing numerous neutron ToF sig-
nals. Therefore, we introduced a deep learning-based com-
pressed sampling (DL-CS) algorithm to accurately recover 
the original signal at lower sampling frequencies, especially 
when dealing with a large number of neutron ToF signals.

The DL-CS algorithm does not rely on prior knowledge 
of the signal. Hence, it is robust. In other words, the original 
signal does not need to be inherently sparse or in the k-space. 
Instead, the algorithm designs a suitable deep neural net-
work (DNN) based on signal characteristics and provides 
a network with substantial training data. This data-driven 
approach allows the network to learn hidden patterns in data, 
thereby enabling signal reconstruction. Furthermore, DL-CS 
can leverage the parallel computing power advantages of 
graphics processing unit (GPU) graphics cards for rapid 
signal reconstruction. Therefore, DL-CS has a better com-
pression performance than traditional compressed sampling 
algorithms, as it effectively balances the trade-off between 
the compressed sampling reconstruction speed and quality.

When compressing neutron ToF signals, deep learning 
uses a combination of the sparse representation theory and 
DNN joint learning to obtain a signal measurement matrix. 
The sparse representation theory holds that sparse signals 
can be recovered with fewer measurements. The deep neural 
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network adjusts its weight parameters by training on a data-
set to adapt to the signal characteristics and minimize recon-
struction errors. An effective signal measurement matrix 
can be acquired for signal optimization and reconstruction. 
Regarding neutron ToF signal reconstruction, traditional 
iterative reconstruction algorithms perform better for sparse 
signals but are not as effective for nonstrictly sparse signals. 
These algorithms also face challenges in achieving satis-
factory reconstruction quality at high compression ratios 
and for small signal frame sizes. Furthermore, their perfor-
mance deteriorates with low compression ratios and large 
signal frame sizes, where reconstruction time increases sig-
nificantly as the number of tests grows. Therefore, the deep 
learning method exhibited better reconstruction results than 
the traditional approaches for reconstructing compressed 
physiological signals, particularly those with high compres-
sion ratio sampling.

We explored a data-driven deep learning method called 
the iterative shrinkage algorithm compressed sampling 
network (ISACSNet) to address these issues, compress 
the neutron ToF signal, and reconstruct the measurement 
values. This method directly models the mapping relation-
ship between the dimensions of the rising measurements 
and original signals without considering prior information 
regarding the neutron ToF signal. Multiple convolution lay-
ers were employed to obtain the initial neutron ToF signal 
measurements. Moreover, a convolution layer increased the 
measurement dimensions, ensuring that the signal preserved 
its original shape. We also used multiscale convolutions to 
learn different signal features. Finally, a combination of long 
short-term memory (LSTM) and self-attention was used to 
improve the quality of the initial reconstruction signal and 
realize nonlinear reconstruction of the signal.

This study introduced a deep compressed sampling 
method for analyzing neutron ToF signals to address some of 
the constraints associated with traditional compressed sam-
pling using ISACSNet, which combines inception blocks, 
LSTM, and self-attention. This deep compression sampling 
significantly improves the reconstruction accuracy and speed 
compared to traditional compression sampling. This study 
also proposes a measurement matrix based on the features 
of neutron ToF signals. This measurement matrix achieved a 
reconstruction accuracy superior to those of Bernoulli matri-
ces at all sampling rates. Furthermore, this study evaluated 
the capability of deep compressed sampling in terms of the 
reconstruction accuracy and speed for neutron ToF signals 
using the PRD, correlation coefficient, and reconstruction 
time.

2 � Materials and methods

2.1 � Neutron ToF signals

This study focused on neutron ToF measurements using a 
photoneutron source powered by a 45-MeV electron beam 
pulsed at 8 ps. The ToF measurements were taken over a dis-
tance of 5 m. In this experiment, an electron linear accelerator 
(e-LINAC), a target, and a neutron ToF detection system were 
used, as shown in Fig. 1 [24]. At the accelerator laboratory of 
Tsinghua University, an ultrashort pulsed electron linear accel-
erator was used to generate an electron beam pulse. The pulse 
was directed toward a Ta-target located approximately 2 cm in 
front of the e-LINAC Ti window. The interaction between the 
electron beam and Ta-target resulted in the conversion of elec-
trons to neutrons through the e → � → n process, producing a 

Fig. 1   (Color online) Neutron ToF detection system [24]
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continuous neutron energy spectrum. For an electron intensity 
of 0.7 nC/pulse at 10 Hz, the optimized Ta-target ( � 20 mm × 
16 mm cylinder) produced pulses with energies ranging from 
sub-keV levels to over 10 MeV and a neutron beam intensity 
of up to 1.925 × 108 n/s.

In the neutron ToF detection system, a � 100 mm × 100 mm 
EJ299-33A plastic scintillator was coupled to a Hamamatsu 
R13089 photomultiplier tube to detect neutron signals. Neu-
tron signal acquisition was performed using a LeCroy Wave-
Runner 64 Mix 600 MHz oscilloscope at a sampling rate of 
2.5 Gs/s. Data acquisition was performed using a synchroniza-
tion signal provided by the e-LINAC, and it was controlled by 
a computer connected via the transmission control protocol/
internet protocol (TCP/IP) protocol. During offline processing, 
constant fraction timing was employed to accurately determine 
the arrival time of photons and neutrons.

The proposed approach was simulated using MATLAB 
R2021a and PyCharm on a Windows 10 operating system. The 
computer was equipped with an Intel Corei7-6500U CPU @ 
2.50 GHz processor and 8-GB memory to process the neutron 
ToF signal from the EJ299_neutron_10k dataset. The dataset 
included the 104 neutron signals detected by the EJ299-33A 
plastic scintillator.

2.2 � Compressed sampling

Compressed sampling is a novel signal-processing technique 
designed to efficiently compress signals. This technique 
allows sub-Nyquist rate sampling of analog signals and the 
reconstruction of singles with less sampled data. Compressed 
sampling relies on the sparsity and incoherence of a signal, 
indicating that the signal contains only a few nonzero elements 
in a specific transform domain. By applying a sparse transfor-
mation, signals can be sampled at rates significantly lower than 
the traditional sampling requirements. Then, a reconstruction 
algorithm can restore the original signal from the relatively 
fewer sampled data. A transform domain for the neutron ToF 
signal exists in the neutron pulse signals, and it randomly 
changes into a nonstationary signal with low-frequency com-
ponents. Therefore, the neutron ToF signal exhibited sparsity, 
enabling compressed sampling for signal reconstruction. 
The compressed sampling framework was divided into three 
steps, as illustrated in Fig. 2. The first step involved sparsify-
ing the signal, followed by designing a measurement matrix 
to sample the sparsified signal. Finally, the original signal is 

reconstructed using the sampled observations through a recon-
struction algorithm.

2.3 � Deep network for compressed sampling 
reconstruction

Traditional reconstruction algorithms can be tedious and 
time-consuming because of their iterative nature, which 
requires significant computational power. In contrast, deep 
learning-compressed sampling uses neural networks to sim-
plify the entire process by learning the mapping from the 
input to the output in an end-to-end manner. This technique 
reduces the need for manual parameter adjustments and 
streamlines the entire system. Additionally, unlike traditional 
compressed sampling, deep learning models automatically 
learn signal features through convolutional layers, eliminat-
ing the need for manually designing measurement matrices. 
However, deep learning-compressed sampling requires more 
data for training, particularly in end-to-end learning, which 
can be advantageous in scenarios with abundant measure-
ment data.

Figure 3 illustrates the ISACSNet workflow, where the 
original neutron ToF signal with a size of 1024 × 1 serves as 
the input, and a reconstructed signal of 1024 × 1 is generated 
as the output. ISACSNet comprises four key modules that 
are essential for its functionality.

(1) Random projection module: The number of channels 
in the convolutional layers is adjusted to represent the vari-
ous sampling rates in the training set. Moreover, the neutron 
ToF signals undergo simultaneous sampling and compres-
sion through multilayer convolution to yield measurements.

(2) Rising dimension module: The acquired measure-
ments are processed through a convolutional layer to expand 
their dimensionality, while keeping the resulting signal con-
sistent with the original neutron ToF signal.

(3) Initial reconstruction modules: By expanding the 
dimensions, we leverage the inception module to learn the 
features of the signals at different scales. The learned fea-
tures are integrated, passed through a convolution layer, and 

Fig. 2   Theoretical framework of compressed sampling Fig. 3   Overall workflow for ISACSNet
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ultimately processed using the LSTM module to achieve the 
initial reconstruction.

(4) Secondary reconstruction module: We employ self-
attention to restore the initial reconstruction signal and 
enhance the signal quality.

2.3.1 � Random projection

In the compression process of traditional compressed sam-
pling, a fixed measurement matrix is replaced by three 
sequential convolution layers owing to the substantial stor-
age requirements of the fixed measurement matrix and the 
necessity to satisfy the restricted isometry property principle 
[25]. The convolution operation is a critical factor because 
it can be represented as a matrix multiplication [26]. This 
process is described as follows.

Here, wi and bi ( i = 1, 2, 3 ) represent the weight and bias, 
respectively, of the first convolutional layer of the compres-
sion module, and y denotes the output. The convolution is 
expressed as a linear representation of the original neutron 
ToF signal (x). Hence, it serves as a measurement matrix in 
compressed sampling.

The kernel size of the three convolution layers is 1 × 8, 1 
× 8, and 1 × 4, with the strides of 8, 8, and 4, and the number 
of filters is denoted as C, where C = 256× Sampling rate, 
in which sampling rate is the ratio of the number of meas-
urement sampling points to the original signal. Therefore, 
after the convolution operation, the length of the signal will 
be reduced to a quarter of its original length. Following all 
three consecutive convolutional layers, a measurement of 
size 1 × 4 × C is obtained.

2.3.2 � Rising dimension

The measured dimensions were significantly smaller than 
those of the original signals. Therefore, the measurement 
dimensions must be increased to match the original signal 
before initiating the reconstruction of the initial measure-
ment. The most effective way to achieve this is by employ-
ing a convolution layer with a kernel size of 1 × 1, stride 
of 1, and 256 filters, and then a leaky rectified linear unit 
(LeakyReLU) activation function. This nonlinearity ensures 
that the measurements match the initial dimensions. After 
the initial signal passed through the first convolution layer, 
the measurement dimensions were 1 × 4 × 256 pixels. Sub-
sequently, a reshaping layer was applied to convert the signal 
from 1 × 4 × 256 to 1 × 1024 × 1.

(1)
y = 𝛴

(
w3𝛴

(
w2𝛴

(
w1x̂(i) + b1

)
+ b2

)
+ b3

)

= w3w2w1 + w3w2b1 + w3b2 + b3

2.3.3 � Initial reconstruction

The inception module is a powerful tool for learning signal 
features at multiple scales, making it an essential component 
of neutron ToF signal analyses. With a design concept that 
combines multiscale feature extraction, dimension reduction, 
and expansion, the neutron ToF signal is time sequential, with 
different stages exhibiting multiscale characteristics. This tech-
nology can simultaneously capture features at different scales 
by using convolutional kernels of various sizes. This multi-
scale feature extraction enables the network to simultaneously 
focus on local and global information, thereby capturing signal 
characteristics.

Therefore, we highlighted the challenges in determining 
the optimal convolutions to achieve the best convolutional 
effect for the convolutional layers. It is vital to incorporate 
convolutional layers of various sizes into an inception mod-
ule. The network learns features of different dimensions using 
convolution kernels of various sizes (1 × 3, 1 × 5, 1 × 7, and 1 
× 13), thereby gathering information from distinct perceptual 
domains. This approach can significantly improve the network 
performance. Skip connections were used in convolution to 
prevent a decline in network performance and enhance the 
reconstruction accuracy. This powerful technique is illustrated 
in Fig. 4.

Moreover, the skip connections employed in signal process-
ing do not increase the network parameters or computational 
complexity because they involve the addition of feature maps 
rather than multiplication. Therefore, skip connections are well 
suited for signal processing. The overall process is as follows:

Here, xinput and xoutput represent the input and output, respec-
tively, in the nth line ( n = 1, 2, 3, 4 ); f (n)

1
 and f (n)

2
 represent 

the first and second convolution, respectively, in the nth line; 
and � represents the LeakyReLU function.

(2)x
(n)

output
= �

(
f
(n)

2

(
�

(
f
(n)

1

(
x
(n)

input

)))
+ x

(n)

input

)

Fig. 4   Schematic of skip connection
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When the inception module outputs four branches, feature 
maps are stacked together through a concatenation operation, 
and the integrated feature maps are mapped to be consistent 
with the original neutron ToF signal through a 1 × 1 convolu-
tion kernel. This process can be expressed as follows:

Here, Concat(⋅) represents an operation that integrates four 
branches to output feature graphs, F(⋅) represents the 1 × 1 
convolution operation, and Con_xinception represents the fea-
ture graphs extracted by the inception module.

Recurrent neural network (RNN) is a deep neural network 
extensively employed for modeling time-series data. LSTM, a 
variant of the RNN, effectively addresses the gradient explo-
sion or vanishing problems encountered in RNNs. To the best 
of the our knowledge, LSTM [27] has not yet been applied 
to the compression sampling of neutron ToF signals. In this 
regard, LSTM was used to extract local temporal features 
from the initial reconstruction signal output of the inception 
module, thereby improving the overall performance of signal 
reconstruction.

The LSTM unit comprised various components including 
a storage unit, an input gate, an output gate, and a forgetting 
gate. The activation and current-status updates for each gate 
were calculated as follows:

Here, it represents the input gate calculated using the sig-
moid activation function, xt represents the input data, and 
ht−1 , which is a hidden node, is the output. Furthermore, ft 
represents the forgotten gate that determines the ct−1 fea-
tures used in the ct calculation. The neural network layer 
determines the updated value of the cell state, c̃t . Then, the 
activation function tan h is applied to xt and ht−1 ; it selects 
the value c̃t from the feature to update ct . The output gate is 
calculated in the same manner as the input gate. Addition-
ally, ht is calculated using ot and ct , where � represents the 

(3)
Con_xinception = F

(
Concat

(
x
(1)

output
, x

(2)

output
,

x
(3)

output
, x

(4)

output

))

(4)it =�
(
Wf

[
ht−1, xt

]
+ bi

)

(5)ft =�
(
Wf

[
ht−1, xt

]
+ bf

)

(6)c̃t =𝜎
(
Wf

[
ht−1, xt

]
+ bc

)

(7)ct =ft ⊙ ct−1 + it ⊙ c̃t

(8)it =�
(
Wi

[
ht−1, xt

]
+ bi

)

(9)ht =ot tan h
(
ct
)

sigmoid activation function, and Wi and bi are the weight and 
bias of the corresponding layer, respectively.

The LSTM network had a hidden layer of 250 cells, and 
the activation function was tan h , which is linear. The dense-
layer output was 1024, and the final output dimensions were 
1024 × 1. Finally, through the initial reconstruction module, 
the different captured features were integrated and mapped 
to keep the original neutron ToF signal dimensions consist-
ent. This process can be expressed as follows:

Here, F(⋅) represents the convolution operation, and xoutput1 
represents the initial reconstruction signal.

2.3.4 � Secondary reconstruction

Attention mechanisms have revolutionized computer vision, 
allowing targeted focus on critical regions of an image, 
while disregarding irrelevant parts. The application of atten-
tion mechanisms has led to significant progress in various 
aspects of computer vision, such as image classification, 
object detection, and semantic segmentation. The human 
brain has a similar cognitive process: quickly identifying 
crucial areas within complex visual scenes and processing 
them in greater detail. This cognitive process within the 
visual system is represented by the following equation:

where x denotes the input data; g(x) denotes the features 
extracted from the input data and the attention obtained; 
and f (g(x), x)denotes the attention generated to process the 
input data. With respect to the self-attention [28] mecha-
nism, Eq. (11) evolves as follows:

Designing different g(x) and f (x) produces different attention 
mechanisms.

Therefore, self-attention is a valuable tool for assisting 
models in understanding the connections between different 
positions within a sequence. It complements convolution 
by facilitating the modeling of long-range and multilevel 
dependencies among signal regions. The approach used by 
the model involves encoding each element of the sequence 
and analyzing the similarity between them to determine the 
most critical and contextually relevant elements.

Ultimately, the reconstruction network primarily com-
prises a self-attention module that plays a pivotal role in 

(10)xoutput1 = F
(
Con_xoutput

)

(11)Attention = f (g(x), x),

(12)Q,K,V =Linear(x)

(13)g(x) =Soft max(QK)

(14)f (g(x), x) =g(x)V
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signal reconstruction by effectively capturing local tempo-
ral information and positional relationships. This technique 
enhances the quality of the reconstruction. This process is 
expressed as follows:

where SA(⋅) represents the self-attention operation, and x̂ 
represents the final reconstructed neutron ToF signal.

2.4 � Performance metrics

The proposed ISACSNet was validated using a neutron ToF 
signal database. This database is divided into two parts: a 
training set that contains 15,000 signals with dimensions 
of 1024 and a testing set that comprises 100 signals with 
dimensions of 1024.

(1) The sampling ratio represents the degree of signal 
sampling during an experiment. The sampling ratio is 
defined as follows:

where SR is the sampling ratio, N is the sampling point of 
the original neutron ToF signal, and M is the sampling point 
of the signal after projection by the sensing matrix. The Ber-
noulli distributed random matrix was selected because of its 
hardware-friendly advantages. The sampling ratio variations 
can be controlled by adjusting the shape of the perception 
matrix, where N is fixed at 1024, and M represents different 
sampling ratios ranging from 10 to 512.

(2) The PRD is used to evaluate the quality of signal 
reconstruction, and it is defined as follows:

where x is the original neutron ToF signal, x̂ is the recon-
structed neutron ToF signal, and ‖ ⋅ ‖ is the norm of Rm.

(3) The correlation coefficient reflects the degree between 
the original and reconstructed neutron ToF signals, similar 
to the variations per unit, and it is defined as follows:

3 � Results and discussion

In this section, we evaluate the performance of the pro-
posed ISACSNet for compressed sampling reconstruction. 
We also describe the datasets used for training and testing, 
along with some training details. A series of experiments 

(15)x̂ = SA
(
xoutput1

)
,

(16)SR =
M

N
× 100%,

(17)PRD =
‖x − x̂‖2
‖x‖2

× 100%,

(18)CC =
1

Nx

Nx

𝛴
i=1

x̂i ⋅ xi

‖x̂i‖2‖xi‖2

were performed using the correlation coefficient, PRD, and 
reconstruction time as evaluating metrics for reconstructive 
performance. Subsequently, the reconstruction performance 
of ISACSNet was tested and compared with those of itera-
tive hard thresholding (IHT) [29–31], basis pursuit (BP) 
[32–34], SAMP [35–38], temporal multiple measurement 
vector sparse Bayesian learning (T-MSBL) [39–42], and 
focal underdetermined system solver (FOCUSS) [43–45] in 
different aspects. The above comparison algorithms involve 
iterative thresholding, convex optimization, greedy iteration, 
statistical class, and nonconvex optimization.

3.1 � Dataset and training details

Our experiment used a neural network trained on 15,000 sets 
of neutron ToF signals, each with dimensions of 1024. Our 
final test signals consisted of 100 neutron ToF signals that 
were distinct from the training set but with the same signal 
dimensions.

The basic network parameters are described in Sect. 3. 
For other hyperparameters of Adam, we set the initial learn-
ing rate to 0.0005 and the first- and second-moment decay 
rates to 0.9 and 0.999, respectively. The epoch number of 
ISACSNet was set to 200, and the batch size was set to 16. 
We used the mean-squared loss as the loss function during 
training. Our proposed method was run on PyTorch 1.12.1 (a 
deep learning framework) on a Windows 10 64-bit operating 
system with an 8-GB RAM configuration. For other hyper-
parameters of Adam, we set the exponential decay rates for 
the first- and second-moment estimates to 0.9 and 0.999, 
respectively. We trained our model for 100 epochs, and each 
epoch iterated 1400 times with a batch size of 64.

3.2 � Comparison of different compression methods

This study used a different approach to compress sig-
nals by using sequential convolutional layers instead of 
a fixed random matrix. We validated the effectiveness of 
the compression module by comparing it with the Ber-
noulli random matrix, while keeping the rest of the model 
unchanged. Table 1 shows the performance of different 
compression methods using our compression method and 
the Bernoulli matrix for various traditional compressed 
sampling reconstruction algorithms. We investigated five 
different sampling ratios from 1 to 50% using PRD as the 
assessment criteria to evaluate the performance of the 
compression methods. The results indicate that our com-
pression method consistently outperformed the Bernoulli 
random matrix in different compressed sampling recon-
struction algorithms, regardless of the sampling ratios. For 
instance, even with a low sampling ratio of 10% in the 
SAMP algorithm, the PRDs achieved using the Bernoulli 
random matrix and proposed compression method were 



	 C. Deng et al.112  Page 8 of 13

27.31% and 21.04%, respectively; the PRD of the proposed 
matrix is 6.27% lower than that of the Bernoulli random 
matrix for the SAMP algorithm.

Figure 5 illustrates the PRD improvement rates of dif-
ferent algorithms at various sampling rates. The figure 
shows that the compression approach outperformed the 
Bernoulli matrix in terms of signal reconstruction accu-
racy at different sampling rates. This advantage is particu-
larly evident at a relatively low sampling rate because our 
method is specifically tailored to the unique characteristics 
of neutron ToF signals, enabling it to capture the signal 
characteristics more effectively than the traditional univer-
sal measurement matrix.

3.3 � Comparison with traditional CS methods

In this section, ISACSNet is compared with five traditional 
compressed sampling methods in terms of two aspects. 
The Bernoulli random matrix was selected as the measur-
ing matrix for traditional compressed sampling methods. 
We used PRD and correlation coefficient to evaluate the 
errors between the different techniques and reconstructed 
neutron ToF signals. We also investigated the signal recon-
struction times of different methods.

3.3.1 � Evaluation of reconstruction performance

This section compares ISACSNet with different types of tra-
ditional reconstruction algorithms to determine the recon-
struction accuracy. Using the Bernoulli random matrix as 
the measurement matrix, we employed PRD and correlation 
coefficient to assess the reconstruction error of the neutron 
ToF signal.

Figure 6 illustrates the average PRD of the neutron ToF 
signal test sets under different sampling rates for various 
methods. The x-axis represents the sampling rate, and 
the y-axis represents the average percentage of residuals. 
Our approach consistently achieved the lowest PRD val-
ues among the six methods, indicating that it consistently 
exhibited the lowest reconstruction errors and maintained a 
relative stability. Under the same sampling ratio conditions, 
the reconstruction performance of the proposed method sur-
passed that of the other methods. For instance, at a sampling 
ratio as low as 10%, our method outperformed (PRD value: 
47.08%) other popular methods, such as IHT, BP, SAMP, 
T-MSBL, and FOCUSS, which exhibited PRD values of 
31.64%, 27.31%, 28.93%, 37.43%, and 3.81%, respectively. 
As shown in Fig. 6, the performance of the DL-CS method is 
significantly better than those of the traditional compressed 
sampling methods at low sampling ratios. For example, at 

Fig. 5   PRD lifting rate under different sampling ratios

Table 1   Comparison of the 
PRDs of the compression 
module and Bernoulli random 
matrices across various 
algorithms for reconstructing 
test signals (size = 1024)

Algorithm Sampling ratio (%)

1 5 10 25 50

IHT 103.04/93.22 75.03/53.36 47.08/35.37 7.89/5.04 2.50/2.45
BP 106.11/93.54 66.79/36.99 31.64/15.30 4.68/4.24 2.06/2.05
SAMP 100/99.98 76.01/75.14 27.31/21.04 3.71/3.64 2.49/2.41
T-MSBL 99.14/99.13 91.25/90.01 28.93/26.17 3.84/3.19 2.60/1.99
FOCUSS 106.58/94.50 70.784/42.46 37.43/23.83 8.22/8.21 3.35/3.12

Fig. 6   PRDs of different reconstruction algorithms
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a sampling ratio of 1%, the PRD of the proposed method is 
only 9.17%.

The correlation coefficients for various reconstruction 
algorithms when reconstructing a test signal of size 1024 
with different sampling ratios are provided in Fig. 7 and 
Table 2. The proposed method achieved a correlation coeffi-
cient of 0.9715 at a sampling ratio of 1%, whereas the corre-
lation coefficients for the other methods were all below 0.2. 
Additionally, as the sampling ratio increased, our approach 
tended to stabilize, maintaining correlation coefficient val-
ues above 0.9715, outperforming the other methods. This 
approach highlights its advantages at low sampling ratios, 
demonstrating its effectiveness in achieving good recon-
struction results.

Fig. 7   Correlation coefficient of different reconstruction algorithms

Fig. 8   Reconstructed neutron ToF signals of various reconstruction algorithms at a sampling ratio of 10%

Table 2   Correlation coefficient 
of various reconstruction 
algorithms for reconstructing a 
test signal (size = 1024)

Algorithm Sampling ratio (%)

1 2 3 4 5 10 25 50

IHT 0.18654 0.38093 0.48366 0.56611 0.63952 0.87511 0.99654 0.99969
BP 0.19645 0.38931 0.56623 0.66587 0.71543 0.94302 0.99891 0.99979
SAMP 0.1764 0.28497 0.42514 0.51171 0.64611 0.94507 0.99928 0.99968
T-MSBL 0.1564 0.19842 0.23829 0.29563 0.4049 0.92543 0.99926 0.99966
FOCUSS 0.17838 0.37162 0.54205 0.64221 0.6799 0.92114 0.99646 0.99942
Proposed 0.9715 0.9753 0.9756 0.9757 0.9758 0.9759 0.976 0.976
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Figure 8 illustrates the original and reconstructed sig-
nals obtained using the different reconstruction methods at a 
sampling ratio of 10%. Our proposed reconstruction method 
outperformed traditional compressed sensing methods at a 
sampling rate of 10%, with a PRD of 5% and correlation 
coefficient of 0.998 (Fig. 8) and showed a better reconstruc-
tion performance with the reconstructed signal peaks closer 
to the original signal.

3.3.2 � Investigation of reconstruction time

The reconstruction time of a signal plays a critical role in 
neutron ToF compressed sampling. We reconstructed 100 
signals from the test set by using different algorithms at 
various sampling rates. We also evaluated the reconstruc-
tion performances of the different algorithms by comparing 
their average reconstruction times.

Table 3 and Fig. 9 show the reconstruction times of the 
different test algorithms at different sampling rates. As 
shown in Fig. 9, the proposed ISACSNet method had the 
shortest and most stable reconstruction times. As shown 
in Table  3, for sampling ratios in the range of 1–50%, 
the proposed method required a reconstruction time of 
0.0108–0.0136 s.

At the same sampling rate, our proposed algorithm could 
reconstruct 1024 signals, which is one to four orders of mag-
nitude faster than the other methods. Our proposed method 
fully exploits the computational power of the graphics card, 
resulting in shorter processing times compared to traditional 
methods that rely solely on CPU computation. This advan-
tage is evident because traditional iterative methods strug-
gle with parallel transformation when solving optimization 
problems. Each layer of deep learning is designed for paral-
lel computation. By leveraging the parallel computing power 
of the GPU, our method enables high-speed inference. Even 

Fig. 9   Reconstruction time 
of different reconstruction 
algorithms at different sampling 
rates

Table 3   Reconstruction time (in 
seconds) of various algorithms 
for reconstructing a test signal 
(size = 1024)

Algorithm Sampling ratio (%)

1 2 3 4 5 10 25 50

IHT 0.00459 0.00534 0.00753 0.00878 0.01455 0.01845 0.12051 0.55543
BP 0.08245 0.09047 0.10416 0.12012 0.17071 0.38656 2.74138 22.87237
SAMP 0.0012 0.00258 0.009 0.0114 0.02011 0.0351 0.09959 0.17924
T-MSBL 0.06378 0.11472 1.05917 2.45918 5.33227 8.44691 7.56503 9.26934
FOCUSS 0.02076 0.02905 0.05986 0.10479 0.13794 0.52653 1.66972 2.06762
Proposed 0.0126 0.011 0.0108 0.0116 0.0136 0.0108 0.0111 0.0113
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if traditional generation selection methods can be parallelly 
modified and executed on a GPU, they cannot match the 
efficiency of deep learning owing to the numerous assump-
tions and limitations in their theoretical design. Therefore, 
the deep learning reconstruction network proposed in this 
study capitalizes on hardware parallelization, resulting in 
significantly shorter reconstruction times compared to tra-
ditional compressed sampling methods.

4 � Conclusion

This study proposes a new approach for tackling two critical 
compressed sampling theory issues by incorporating deep 
learning techniques. This paper presents a sampling opera-
tor tailored for neutron ToF signals and a noniterative fast 
reconstruction algorithm called ISACSNet. The proposed 
DNN model comprises four main modules: random pro-
jection, dimensional expansion, initial reconstruction, and 
secondary reconstruction. Unlike the traditional compressed 
sampling theory, which uses fixed random matrices, this 
model employs sequential convolutional layers to compress 
the neutron ToF signals. In addition, the model uses a modi-
fied inception block, LSTM, and self-attention to learn the 
mapping relationship between the measurements and origi-
nal signal directly without requiring prior knowledge.

We performed extensive experiments on the neutron 
ToF signal database and demonstrated that our compres-
sion approach outperformed Bernoulli’s in terms of PRD. 
Specifically, when the sampling ratio was below 10%, the 
PRD was 5%, and the correlation coefficient was 0.9988; 
furthermore, the reconstruction time was 0.0108 s. The PRD 
and correlation coefficient significantly exceeded those of 
the other methods. As the sampling ratio increased, the 
reconstruction time did not increase substantially with the 
signal length, thereby effectively improving the reconstruc-
tion efficiency of longer signals.

Our proposed deep learning compression method outper-
formed traditional compressed sampling approaches, ena-
bling accurate and fast reconstruction of the original signals 
at lower sampling frequencies when dealing with a large 
number of neutron ToF signals. Future studies will explore 
hardware structures suitable for neutron ToF signals and 
deploy them in ToF systems.
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