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Abstract
Molten salt reactors (MSRs) are a promising candidate for Generation IV reactor technologies, and the small modular molten 
salt reactor (SM-MSR), which utilizes low-enriched uranium and thorium fuels, is regarded as a wise development path to 
accelerate deployment time. Uncertainty and sensitivity analyses of accidents guide nuclear reactor design and safety analy-
ses. Uncertainty analysis can ascertain the safety margin, and sensitivity analysis can reveal the correlation between accident 
consequences and input parameters. Loss of forced cooling (LOFC) represents an accident scenario of the SM-MSR, and the 
study of LOFC could offer useful information to improve physical thermohydraulic and structural designs. Therefore, this 
study investigates the uncertainty of LOFC consequences and the sensitivity of related parameters. The uncertainty of the 
LOFC consequences was analyzed using the Monte Carlo method, and multiple linear regression was employed to analyze 
the sensitivity of the input parameters. The uncertainty and sensitivity analyses showed that the maximum reactor outlet 
fuel salt temperature was 725.5 ◦C , which is lower than the acceptable criterion, and five important parameters influencing 
LOFC consequences were identified.
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1 Introduction

Molten salt reactors (MSRs) are promising candidates for 
Generation IV reactor technologies [1–3] owing to their 
inherent safety [4–9] and economic efficiency [10–14]. In 
2011, the Chinese Academy of Sciences (CAS) initiated the 
Strategic Priority Research Program titled Future Advanced 
Nuclear Fission Energy, which included a molten salt reactor 
as one of the key projects. Following this, a small modular 
molten salt reactor (SM-MSR) was proposed [15]. Safety 
analysis is crucial in MSR design, both to ensure that the 
reactor meets the necessary safety requirements set by 

regulatory authorities and industry organizations and to opti-
mize design features to enhance overall safety performance. 
One of the most critical scenarios in safety analysis is the 
loss-of-forced-cooling (LOFC) accident, which helps con-
firm that the design stays within acceptable limits for radia-
tion doses and releases under various operational conditions.

The use of best-estimate codes combined with uncer-
tainty evaluation, known as BEPU methodologies [16], is 
recognized by regulatory authorities as a standard approach 
for deterministic safety analyses. In the late 1980s, the US 
Nuclear Regulatory Commission began allowing best-
estimate methods with uncertainty quantification for safety 
analysis in place of earlier deterministic methods that used 
conservative assumptions to account for uncertainties [17]. 
The BEPU approach calculates the uncertainty associated 
with the best-estimate code to more realistically assess the 
safety margin relative to established criteria. When paired 
with sensitivity studies, BEPU also allows the identification 
and quantification of critical input parameters.

Several researchers have explored uncertainty and 
sensitivity analyses in salt reactors. Jiao et al. [18] used 
RELAP5/MOD4.0 to study the impact of the trip setpoint 
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in a reactivity-initiated accident, identifying sensitivity 
rankings for these parameters. Jiao et al. [19] also exam-
ined the sensitivity of initial conditions during a low-power 
reactivity-initiated accident in an MSR, finding low sensitiv-
ity in accident outcomes to the temperature coefficients of 
reactivity. Santanoceto et al.[20] investigated the uncertainty 
and sensitivity of the steady state of a molten salt fast reac-
tor using a polynomial chaos expansion method, showing 
that the heat exchanger could be a critical component based 
on analysis across the entire temperature field. J.J. Wang 
et al. [21] examined the uncertainty in heat transfer in the 
TMSR-SF0 simulator, finding that the uncertainty propa-
gated to the core outlet temperature is approximately ±10 ◦C 
within a 95% confidence interval under steady-state condi-
tions. Although previous studies have analyzed uncertainty 
and sensitivity in salt reactors, most focused on steady-state 
operations or specific parameters, and comprehensive uncer-
tainty and sensitivity studies of accident scenarios remain 
limited. This study aims to address this gap by examining 
the comprehensive uncertainty of LOFC outcomes and the 
sensitivity of related input parameters.

2  Description of SM‑MSR

Figure 1 shows the schematic design of an SM-MSR, with its 
main design parameters listed in Table 1. The reactor utilizes 
a double-molten salt circuit. The primary circuit comprises 
a reactor core, intermediate heat exchangers (IHX), control 
rods, primary pump, and pipelines. The reactor core is made 
up of open-celled graphite elements, forming 241 molten 
salt channels and six channels for the control rods. The fuel 
salt, composed of LiF − BeF2 − ZrF4 − UF4 − ThF4 , enters 

the reactor at about 629 ◦C through the lower plenum, flows 
upward through the core where nuclear fission occurs, heat-
ing the salt, and exits the core at approximately 700 ◦C [15].

The secondary circuit includes a secondary pump, molten 
salt-air heat exchangers (AHX), and pipelines. The cool-
ant salt, LiF − NaF − KF , is pumped into the primary heat 
exchanger’s tube side to absorb power from the primary cir-
cuit and then transfers the heat to the Brayton cycle system 
via the molten salt-air heat exchanger, ultimately converting 
nuclear power into electrical energy through a Brayton cycle 
turbine.

To mitigate accident consequences, a natural circulation 
flow loop is incorporated for decay heat removal, forming 

Fig. 1  Schematic of the 150-
MWt molten salt reactor

Table 1  Main parameters of the 150-MWt molten salt reactor design

Main parameter Design value

Thermal power (MWt) 150
Fuel salt composition LiF − BeF2 − ZrF4 − UF4 − ThF4

Fuel salt temperature(inlet/ 
outlet) ( ◦C)

629/700

Diameter × height of reactor 
body ( m2)

3.54 × 3.6

Fuel salt power density ( MW/m
3) 66

Lifetime of reactor body (year) 10
Graphite structure Hexagonal prism
The secondary circuit salt com-

position
LiF − NaF − KF

PRACS salt composition LiF − BeF2 − ZrF4 − UF4 − ThF4

DRACS salt composition LiF − NaF − KF

Design power of PRACS and 
DRACS

2% FP

Structure material Hastelloy-N
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a pathway between the hot core and the pool reactor aux-
iliary cooling system (PRACS) heat exchangers (PHX). 
Under standard operating conditions, the PRACS flow path 
is partially restricted by a check valve, which has a much 
higher loss coefficient for reverse flow than for forward flow. 
The PHX modules transfer heat from the primary salt to a 
buffer salt, which is then cooled by direct reactor auxiliary 
cooling system (DRACS) modules. The DRACS facilitates 
heat transfer from the buffer salt to a molten salt-air heat 
exchanger (ADHX) via natural circulation, where the heat is 
finally dissipated by ambient air. All components in contact 
with molten salt are made from Hastelloy-N.

3  Methodology

Currently, there are two general approaches to uncertainty 
analysis: propagation of input uncertainty and extrapola-
tion of output accuracy [22, 23]. The extrapolation of out-
put accuracy requires significant experimental data. Given 
the limited number of current molten salt reactor experi-
ments, this study adopts the propagation of input uncer-
tainty approach, which is based on Monte Carlo methods. 
This approach involves two key elements: the association of 
uncertainty with input parameters and multiple executions of 
the best-estimate code. A flowchart of the SM-MSR LOFC 
accident uncertainty and sensitivity analyses is shown in 
Fig. 2.

3.1  Uncertainty parameters

The uncertainty of the input parameters stems from impre-
cise knowledge of the actual values, with sources of 

uncertainty consisting of reactor system data, structural 
material properties, and B-E code correlations. Uncertain 
parameters for the LOFC accident were selected using a phe-
nomenon identification and ranking table (PIRT). The pri-
mary approaches for quantifying input uncertainty include 
both probabilistic and deterministic methods. Probabilistic 
methodologies utilize statistical elements to character-
ize and combine input uncertainty, whereas deterministic 
methodologies use reasonable ranges or bounding intervals 
of uncertainty and combine input uncertainty based on the 
maximization and minimization of the output value [24–26]. 
The probabilistic approach is the most widely adopted pro-
cedure and is endorsed by industry and regulators. Limited 
detailed information about certain aspects of SM-MSR is a 
significant drawback. To minimize the impact of this draw-
back, a list of input parameters and their associated density 
functions were adopted using a probabilistic methodology. 
Quantification of the uncertainty parameters was established 
based on previous studies, experimental data, and expert 
judgment. In this study, 30 uncertainty input parameters 
were identified, and Table 2 lists the parameters and their 
probability distribution functions used in this study.

3.2  Best‑estimate code

The RELAP5 code is a transient analysis tool designed for 
light-water reactors and developed by the US Nuclear Reg-
ulatory Commission (NRC) for various applications, such 
as rulemaking, licensing audit calculations, and evaluation 
of operator guidelines. It uses a one-dimensional two-fluid 
thermal-hydraulic model. The latest version, RELAP5/
MOD4.0, was developed by Innovative System Software 
(ISS) specifically for the analysis of nuclear power plants 
[27].

In RELAP5/MOD4.0, an uncertainty analysis package 
was incorporated following the methodology developed by 
the Gesellschaft f ̈u r Anlagen- und Reaktorsicherheit (GRS) 
[24]. This methodology integrates order statistics and Wilks’ 
formula [28, 29] into the propagation of the input uncer-
tainty approach. Because the heat transfer coefficient cor-
relations and coolants for the SM-MSR are not available 
in the current RELAP5/MOD4.0, new correlations [30] 
and coolants applicable to the MSRs were inserted, and the 
updated code was named RELAP5-TMSR [31–33]. Given 
that the uncertainty analysis package can only be employed 
for the partial analysis of light-water reactors, an uncertainty 
analysis package for molten salt reactor systems was devel-
oped in this study. It can propagate uncertainties associated 
with molten salt properties. Furthermore, it can propagate 
uncertainties related to the inserted heat transfer correla-
tions, which are applicable to the fuel channels in the reactor 
core and heater exchangers of the SM-MSR.Fig. 2  SM-MSR uncertainty and sensitivity analysis procedures
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3.3  Sensitivity analysis method

Sensitivity analysis assesses the impact of varying the val-
ues of the independent variables on a particular dependent 
variable within the defined assumptions. In other words, it 
examines how uncertainties in a mathematical model from 
various sources contribute to the overall model uncertainty.

Linear regression [34–36] uses a straight line to describe 
relationships between variables. It identifies the best-fit line 
in a dataset by searching for the regression coefficient(s) that 
minimizes the total error of the model. The model’s equa-
tion presents coefficients that clarify the influence of each 
independent variable on the dependent variables. There are 
two primary types of linear regression. 

1) Simple linear regression, the simplest form of linear 
regression, involves only one independent and depend-
ent variable.

2) Multiple linear regression (MLR) involves more than 
one independent and dependent variables. In this study, 
multiple linear regression (MLR) method is adopted. 
The equation for multiple linear regression is shown in 
Eq. (1), where y is the dependent variable, xi is the inde-
pendent variable, β0 is a constant, �i is a coefficient. 

A systematic sensitivity analysis process based on the MLR 
is shown in Fig. 3, which was proposed by Manache [37] and 
has also been applied to the functional reliability analysis of 
a molten salt natural circulation system [38]. The adjusted 
coefficient of determination ( R2

adj
 ) was used to estimate 

whether the linear model was acceptable (with R2
adj

≥ 0.7 
indicating that the model was acceptable). The collinearity 
problem in multiple linear regression is addressed by calcu-
lating the variance inflation factor (VIF) for each parameter, 

(1)y = �0 + �1 x1 + �2 x2 +… �i xi +…+ �n xn

Table 2  Input uncertainty 
parameters of the SM-MSR

No. Parameters Distribution Range

p-1 Heat transfer coefficient of tube side h_tube Uniform 75∼125%
p-2 Heat transfer coefficient of shell side h_shell Uniform 75∼125%
p-3 Heat transfer coefficient of air side h_air Uniform 75∼125%
p-4 Viscosity of fuel salt ν_fuel Uniform 90∼110%
p-5 Heat conductivity of fuel salt k_fuel Uniform 90∼110%
p-6 Coefficient of thermal expansion of fuel salt b_fuel Uniform 90∼110%
p-7 Volumetric heat capacity of fuel salt Cpv_fuel Uniform 90∼110%
p-8 Isothermal compressibility of fuel salt e_fuel Uniform 90∼110%
p-9 Viscosity of FLiNaK ν_f linak Uniform 90∼110%
p-10 Heat conductivity of FLiNaK k_flinak Uniform 90∼110%
p-11 Coefficient of thermal expansion of FLiNaK b_flinak Uniform 90∼110%
p-12 Volumetric heat capacity of FLiNaK CPv_f linak Uniform 90∼110%
p-13 Isothermal compressibility of FLiNaK e_flinak Uniform 90∼110%
p-14 Thermal conductivity of graphite k_graphite Normal 90∼110%
p-15 Volumetric heat capacity of graphite cpv_graphite Normal 90∼110%
p-16 Thermal conductivity of Hastelloy-N k_hn Normal 90∼110%
p-17 Volumetric heat capacity of Hastelloy-N cpv_hn Normal 90∼110%
p-18 Reactor power P_reactor Uniform 95 ∼105%
p-19 Control rod dropping time t_drop Uniform 80 ∼120%
p-20 Reactor shutdown margin ρ_shutdown Uniform 80∼120%
p-21 Fuel salt temperature coefficient of reactivity ρ_f Uniform 80∼120%
p-22 Graphite temperature coefficient of reactivity ρ_g Uniform 80∼120%
p-23 Core Hot Spot Factor f_hsf Uniform 80∼120%
p-24 Atmospheric temperature T_atmo Uniform 95∼105%
p-25 Local resistance coefficient of reactor core f_core Uniform 80∼120%
p-26 Local resistance coefficient of primary circuit 

(excluding reactor core)
f_primary Uniform 80∼120%

p-27 Local resistance coefficient of PRACS f_PRACS Uniform 80∼120%
p-28 Local resistance coefficient of 2nd circuit f_second Uniform 80∼120%
p-29 Local resistance coefficient of DRACS f_DRACS Uniform 80∼120%
p-30 Local resistance coefficient of air-cooling tower f_Airtower Uniform 80∼120%
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where VIF≤ 5 indicates weak collinearity. If the linear 
model is strongly collinear, a significance test of the semipa-
rtial correlation coefficient (SPC) is used to rank the input 
uncertainty parameters; otherwise, the standardized regres-
sion coefficient (SRC) is used for the significance test [38].

4  Analysis and results

4.1  Thermal‑hydraulic model

Figure 4 presents an overview of RELAP5-TMSR nodaliza-
tion of the SM-MSR. The system consisted of four parts: 

1) The primary circuit includes the downcomer, reac-
tor core, lower plenum, upper plenum, primary pump, 
pipes, and IHX tube side.

2) Second circuit, including pipes, second-circuit pump, 
IHX shell side, and AHX tube side.

3) Brayton cycle modules, including air inlet volume, AHX 
shell side, and air outlet volume.

4) The passive residual heat removal system, which con-
sists of DRACS and PRACS, includes pipes, PHX, 
ADHX and an air-cooling loop.

4.2  Uncertainties and sampling

Wilks’ formula is frequently used to quantify the minimum 
computational work required to meaningfully assess model 
uncertainty by specifying acceptable tolerance limits on the 
output parameter [39]. A fundamental advantage of using 
the Wilks’ formula is that it has no limit on the number 
of uncertainty parameters considered in the analysis. The 
number of code runs required in the uncertainty analysis 
depends only on the statistical features of the imposed toler-
ance limits, including the percentile tolerance interval, con-
fidence interval, and order, and is irrelevant to the number 
of uncertain parameters [28, 29]. The number of code runs 
for a one-sided tolerance interval can be calculated using 
Eq. (2), where � is the percentile tolerance interval, � is the 
confidence interval, N is the number of input samples (or 
number of code runs), and m is the order.

Table 3 shows the number of code runs based on Wilks’ for-
mula, varying with the percentile tolerance and confidence 

(2)� = 1 −

N
∑

i=N−m+1

N!

i!(N − i)!
� i(1 − �)N−i

Fig. 3  Sensitivity analysis steps

Fig. 4  Nodalization of the 
150-MWt molten salt reactor 
(MS-MSR)
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intervals at different orders. In this study, the percentile and 
confidence of the upper tolerance limit were set to the stand-
ard 95%/95% at the 5th order, and the minimum number of 
code runs was 181 using Wilks’ formula.

Figure 5 shows the Cobweb plot of 181 random samples 
for the 30 parameters, where the x-axis shows the uncertain 
parameters and the y-axis shows the normalized sample val-
ues. According to Fig. 5, the achieved sample population is 
representative and satisfies the requirements of an LOFC 
uncertainty study.

4.3  Safety variables and acceptance criteria

The safety variables and their acceptance criteria are crucial 
for the safety analysis of the SM-MSR. The primary circuit 
boundary serves as the principal safety barrier against radi-
oactive leaks. Therefore, the performance of Hastelloy-N, 

which is used as the structural material for the primary cir-
cuit, is crucial for reactor safety.

Temperature is a pivotal indicator of the performance of 
Hastelloy-N, and some studies have confirmed its ability to 
maintain mechanical properties at 800 ◦C [40]. Considering 
the direct contact of the fuel salt with Hastelloy-N structural 
materials, the reactor outlet fuel temperature ( Tout ) with a 
limit of 800 ◦C was selected as the criterion in this study.

4.4  Uncertainty propagation result

After the code run numbers and sets of uncertain input 
parameters were established, the input uncertainty was 
propagated using the RELAP5-TMSR code. Under normal 
operating conditions, the core flow was driven by a pump 
at approximately 1000 kg/s. However, following an LOFC 
event, the pump stops, reducing core flow, which, in turn, 
increases Tout . Simultaneously, the reactor protection system 
sends a shutdown signal, causing the control rods to drop 
and the power to coast down, which in turn reduces Tout.

Under the influence of changes in core flow and nuclear 
power, Tout reaches its first peak at approximately 10s and 
reaches the second peak at approximately 200 s, and the sec-
ond peak is the maximum point. Then, Tout changes slowly 
and finally reaches a safe and stable temperature, where 
decay heat continues to be removed by PRACS and DRACS.

The evolution of Tout for 181 code runs is shown in 
Figs. 6 and Fig. 7. The figures show the maximum reactor 
outlet fuel salt temperature ( Tout_max ) for the 181 cases. 
However, all the results are below the acceptable criterion 

Table 3  The number of code runs as a function of the percentile tol-
erance and confidence at different orders by Wilks’ formula

Order Confidence interval and percentile tolerance

0.90 &0.90 0.95 &0.95 0.97 &0.97 0.99 &0.99

1st 22 59 116 459
2nd 38 93 177 662
3rd 52 124 231 838
4th 65 153 281 1001
5th 78 181 330 1157

Fig. 5  (Color online) Cobweb plot of the 181 random samples for the 30 parameters
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( 800 ◦C ), and the maximum and minimum Tout_max are 
725.5 ◦C and 715.4 ◦C , respectively. Figure 8 illustrates 
the upper and lower uncertainty bands, with a maximum 
difference of 18.5 ◦C between the upper and lower bounds 
observed during the initial temperature ascent phase. In 
the base case, the maximum temperature increase of the 
reactor outlet fuel salt ( ΔTout ) was 22.2 ◦C with respect 
to the initial condition. In the upper limit case, ΔTout was 
25.5 ◦C , representing a 26.2% increase relative to the base 
case, and ΔTout was 15.4 ◦C for the lower limit case, indi-
cating a 23.7% decrease relative to the base case.

4.5  Identification of T
out_max

 distribution

Figure 9 shows the histogram and probability density func-
tion obtained from 181 simulations of Tout_max . The data 
points follow an approximately bell-shaped curve, indicat-
ing a normal distribution. In this study, the Shapiro-Wilk 
(S-W) test [41] was adopted to assess whether the cal-
culated Tout_max followed a normal distribution. The S-W 
test compares the observed dataset to the expected normal 
distribution to determine whether the dataset is normally 
distributed. The test statistic of the S-W test for normality 
is shown in Eq. 3, where xi represents the ordered random 
sample values, x̄ is the mean of the samples, and ai repre-
sents the constants that are functions of n.

Fig. 6  (Color online) Uncertainty propagation results of 181 cases for 
the reactor outlet fuel temperature ( Tout)

Fig. 7  Final value of T
out_max

 for 181 cases

Fig. 8  (Color online) Uncertainty analysis bound results for the reac-
tor outlet fuel temperature ( Tout)

Fig. 9  Histogram and probability density function obtained from 181 
simulations for T

out_max
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The null hypothesis for the Shapiro-Wilk test is that the vari-
able is normally distributed. If p < 0.05 , the null hypoth-
esis was rejected; otherwise, it was accepted. The obtained 
p-value was 0.197, which exceeded 0.05; therefore, the null 
hypothesis of normality was acceptable.

A quantile–quantile (Q-Q) plot is a graphical technique 
for determining whether two datasets originate from popu-
lations with a common distribution [42]. In a Q-Q plot, if 
the data are normally distributed, the points are aligned on 
a straight diagonal line. Conversely, the greater the number 
of points in the plot that significantly deviate from this line, 
the less likely the dataset is to follow a normal distribution. 
Figure 10 shows the Q-Q plot for Tout_max , where the points 
mostly lie along a straight diagonal line, with some minor 
deviations along the tail.

Based on the analysis above, Tout_max follows a normal 
distribution. Table 4 shows the main statistical results and 
Tout_max values at different percentiles according to the prob-
ability density function.

4.6  Sensitivity analysis

The multiple linear regression (MLR) method was adopted 
by following the steps outlined in Fig.  3 to ascertain the 
importance of the input parameters. The F-test was used 

(3)w =
(
∑n

i=1
aixi)

2

∑n

i=1

�

xi − x̄
�2

to assess whether the MLR models complied with statisti-
cal laws. The acceptance region was set to have an F-value 
greater than 1.83 at a significance level of 0.01. Table 5 
lists the F value and R2

adj
 . The results demonstrate that the 

model is convincingly linear.
Figure 11 shows the VIF values, which were all less 

than five; therefore, the SRCs of the input parameters were 
selected for the sensitivity analysis. The absolute values of 
the SRCs provide a relative measure of parameter impor-
tance, and Fig.  12 presents the final absolute values of the 
SRCs of 30 input parameters.

The t-test was performed to test the significance of the 
sensitivity coefficient. The acceptable range was the abso-
lute value of a t-value larger than 1.66 with a significance 
level of 0.05. Finally, five important parameters that are 
considered to have a significant contribution to LOFC 
consequences based on the t-test and SRCs are listed in 
Table 6.

Unlike traditional pressurized water reactors, which 
utilize solid fuels with fission energy transferred from the 
fuel pellet to the cladding and finally to the coolant, the 
SM-MSR uses liquid fuel salt, which also serves as the 
coolant. In this system, fission energy is directly trans-
ferred to the coolant. Therefore, the reactor power, the 
flow of the fuel salt in the reactor, and the properties of 
the fuel salt are essential to the LOFC consequences. Sen-
sitivity analysis revealed that the volumetric heat of the 
fuel salt (density × specific heat) is the most critical input 
uncertainty parameter, influencing both heat absorption 
and fuel salt flow in the reactor core. The reactor power 
and reactor shutdown margin values can influence the heat 
generation after a scram; thus, they significantly affect the 
fuel salt temperature. The local resistance coefficients of 
the reactor core and primary circuit play a crucial role in 
affecting the fuel salt flow, making them important for the 
fuel salt temperature. Table 6 lists the relationships among 
the five important input parameters and Tout_max . A nega-
tive SRC indicates a negative correlation, while a positive 
SRC signifies a positive correlation relationship.

Fig. 10  Q-Q plot for T
out_max

Table 4  Statistical results of 
T
out_max

Variable Mean Standard deviation Minimum Maximum Percentile (%)

95 96 97 98 99

Tout_max ( ◦C) 720.3 2.2 715.4 725.5 724.0 724.3 724.9 725.3 725.5

Table 5  Statistical analysis 
results

Parameter F R
2
adj

Value 887.9 0.993
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4.7  Parameter prediction

Multiple linear regression can be used to predict the value 
of one variable using the available information. By using 
the multiple linear regression method, confident predic-
tive values of T

out_max
 can be obtained without numerous 

calculations. Here, we used five important parameters to 
predict Tout_max.

The weights of the parameters used for the prediction are 
shown in Table 7. The RCSs of CPv_fuel and ρ_shutdown are 
negative, indicating that there is a negative correlation between 
these parameters and Tout_max ; thus, the weights are arranged 
from large to small. Conversely, the RCSs of P_reactor, f_core, 

Fig. 11  VIF values of 30 
parameters

Fig. 12  Absolute value of SRCs 
final achieved

Table 6  Most important 
parameters to LOFC 
consequences

No. Parameters SRC t

1 Volumetric heat capacity of fuel salt CPv_fuel −0.681 −99.4

2 Local resistance coefficient of reactor core f_core 0.578 91.1
3 Reactor power P_reactor 0.365 52.0
4 Reactor shutdown margin ρ_shutdown −0.115 −17.3

5 Local resistance coefficient of primary circuit 
(excluding reactor core)

f_primary 0.113 16.9
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and f_primary are positive; therefore, the weights are arranged 
from small to large to obtain a conservative prediction of 
Tout_max.

Section 4.4.2 shows that T
out_max

 follows a normal distri-
bution, and the significant statistical parameters used for the 
prediction are listed in Table 4. Figure 13 shows the predicted 
values of Tout_max and bounds of the 95% prediction inter-
val. The predicted upper bound of the 11th case is 752.2 ◦C , 
slightly exceeding 750 ◦C . From Table 7, the weights are 0.6 
or 1.4, and the uncertainty range is very large.

5  Conclusion

In this study, uncertainty and sensitivity analyses of LOFC 
accidents in a molten salt reactor were conducted using 
Monte Carlo and multiple linear regression methods. An 
uncertainty analysis package for the molten salt system was 
developed, and 181 samples of 30 input uncertainty param-
eters were propagated through RELAP5-TMSR, successfully 
executing the package. The uncertainty analysis showed that 
all cases met the acceptance criterion, and with Tout_max rang-
ing from 715.4 ◦C to 725.5 ◦C . Statistical analysis confirmed 
that Tout_max follows a normal distribution.

According to the statistical analysis, the multiple linear 
regression method can be used for the LOFC sensitivity 
analysis of a molten salt reactor. The results indicate that 
CPv_fuel , f_core, P_reactor, ρ_shutdown , and f_primary are 
the most important parameters for LOFC consequences, and 
these parameters should be key considered during the design 
and safety analysis of the 150-MWt SM-MSR.

After identifying the Tout_max distribution and completing 
the sensitivity analysis, a prediction study of Tout_max using 
MLR was conducted. When the uncertainty of the five key 
parameters reached 40%, the predicted Tout_max was 752.2 ◦C , 
maintaining a substantial safety margin below the accept-
ance criterion ( 800 ◦C).

Future research will focus on refining the uncertainty 
range of critical input parameters through combined experi-
mental and rigorous numerical analysis to further reduce 
accident consequence uncertainty.
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