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Abstract
Most synchrotron light storage rings are equipped with a higher harmonic cavity (HHC) and are currently predominantly 
used to increase beam life. With the enhancement of the beam current intensity, it is necessary to consider instability 
problems that may be caused by heavy beam loading effects. In this study, we incorporated a HHC into the small-signal 
Pedersen mathematical model and used system signal analysis to investigate the mode-zero Robinson instability driven by 
the passive superconducting harmonic cavity and active superconducting harmonic cavity fundamental modes. To further 
study and alleviate this instability, we introduced direct radio-frequency feedback, an automatic voltage control loop, and 
a phase-lock loop into the model, discussed the impact of the feedback loop parameter settings on the stability margin, and 
provided suggestions for parameter settings.

Keywords Double RF system · RF system loop instability · Pedersen model

1 Introduction

Reducing Touschek scattering is considered one of the most 
effective methods for increasing beam lifetime [1]. The 
asynchronous electrons in the beam bunch oscillate con-
tinuously around the synchronous electrons. Using a higher 
harmonic cavity (HHC) helps to decrease the total voltage 
slope encountered by the beam bunch in the storage ring. 
This reduction in the voltage slope effectively minimizes the 
impact of the longitudinal focusing force, leading to a gentler 
distribution of the longitudinal charge density of the beam 
bunch. Furthermore, the use of a HHC does not introduce 
any energy spread to the beam and has a minimal impact on 
the brightness [2, 3]. Additionally, the introduction of more 
nonlinear terms in a radio-frequency (RF) system after the 
addition of the HHC can expand the synchronous frequency 

spread, which in turn can increase the Landau damping rate. 
This increase in damping rate effectively suppresses the 
instability of the coupled beam bunch [4, 5].

HHCs can be classified into two types based on their 
operating modes: active and passive. An active HHC relies 
on an external power source to provide power, whereas the 
cavity voltage of a passive HHC is induced by the beam 
itself. Currently, there are various facilities conducting oper-
ations or preliminary research in the passive mode, such as 
HLS-II, MAX-IV, and SSRF [5–9]. By contrast, the active 
mode includes facilities such as BESSY-III, PETRA-IV, and 
HEPS [10–14].

The mode-zero Robinson instability is a typical and 
well-understood instability among the proposed mecha-
nisms [15]. In the case of bunch stretching, this insta-
bility can be excited by detuning the HHC and damped 
by detuning the main cavities (MCs) [16]. A method for 
analyzing the interaction between the beam and cavity 
using a phasor diagram was proposed and developed. This 
method demonstrated various voltage and current vectors 
in an equivalent circuit model of a cavity. Building on 
this, Pedersen introduced a small-signal feedback loop 
model that considered cavity amplitude and phase modu-
lation, as well as cavity tuning. The signals transmitted 
by this model all change in various physical parameters 
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using the amplitude and phase of the cavity voltage as a 
medium. By incorporating the transmitter and beam cur-
rent changes through the signal transmission function, 
classical control theory was applied to explain the mode-
zero Robinson instability [17, 18]. This study extended 
the original Pedersen model by including an HHC, which 
was connected to the existing system through a beam as a 
medium. In this mathematical model, the system stability 
margin is observed from a signal analysis perspective, 
which allows for convenient adjustment and observation 
of the effect of the feedback loop on the double RF sys-
tem. In addition to the commonly used automatic voltage 
control loop (AVC) and phase-lock loop (PLL), direct RF 
feedback (DRFB) directly feeds the cavity RF signal back 
to the cavity after amplification, resulting in an increased 
cavity bandwidth and reduced impedance, as perceived 
by the beam [19].

Drawing on the preceding explanation, the instability 
of the double RF system can be analyzed by employing 
the extended Pedersen model. Numerous studies have 
provided evidence that this instability aligns with the 
mode-zero instability examined from a beam dynamics 
perspective. Consequently, it becomes feasible to 
scrutinize the influence of various parameters on the 
system stability, including the loading angle of the MC, 
the detuning frequency in the passive superconducting 
harmonic cavity (PSHC), the loading angle and coupling 
coefficient in the active superconducting harmonic cavity 
(ASHC), and diverse feedback loop parameters.

The remainder of this paper is organized as follows: 
Sect.  2 presents the process of obtaining the phasor 
diagram from the equivalent circuit model of the cavity, 
derives the extended Pedersen model, and provides 
the gain and transfer function (TF) within the model. 
Section 3 discusses the impact of operating the PSHC on 
the system stability under beam-cavity interactions. This 
section presents the conclusions drawn from the instability 
analysis using beam dynamics and a comparative analysis 
with the model analysis to ensure the accuracy of the 
model [20]. Section 4 examines the addition of DRFB 
to the system, with a focus on studying the low-level 
RF control system (LLRF), that is, the impact of the 
amplitude (AVC) and phase (PLL) modulation loops on 
the stability margin of the system, using the Shanghai 
Synchrotron Radiation Facility (SSRF) as an example. 
The investigation includes analyzing the impact of each 
loop parameter on the system stability and discussing 
the relationship between the system’s open-loop TF pole 
and loop delay. In Sect. 5, the focus is expanded from 
the PSHC to ASHC, prompting revisions to the Pedersen 
model and new suggestions for system stability. Finally, 
Sect. 6 concludes the paper and provides an outlook.

2  System description and model 
establishment

In the equivalent circuit model of an RF system, the cavity 
can be modeled as an RLC resonant circuit [21–23]. Power 
transmission can be modeled as a transmission line, the 
power source as the current source, and the coupler as the 
transformer. HHCs are only excited by the beam when 
operating in passive mode, whereas the operation in active 
mode is also excited by the transmitter.

All the current and voltage amplitude phases in the 
equivalent circuit model are depicted in the same pha-
sor diagram. In this section, the PSHC is illustrated as an 
example, whereas the ASHC is discussed in subsequent 
sections. A steady-state phasor diagram of the system is 
shown in Fig. 1. Taking the beam direction as a reference, 
the vectors of the MC are positioned on the upper half of 
the real axis, whereas those of the HHC are positioned 
on the lower half of the real axis. where ṼC represents the 
MC voltage, and the total voltage ṼT is the vector sum of 
ṼC and the PSHC voltage ṼH . �S , �L , and �L correspond 
to the synchronous phase, detuning angle, and loading 
angle of the MC, respectively. �F and �LH represent the 
offset angle of the DRFB and detuning angle of the PSHC, 
respectively. Additionally, �T denotes the deflection angle 
from the positive semiaxis of the imaginary axis to ṼT . The 
directions of these angles typically progress from current 
to voltage. It is important to note that the magnitude of the 
beam ĨB is twice the average beam intensity Ībeam . Based 
on the phasor diagram at steady state, which assumes a 
uniform filling pattern, stretching the bunches reduces the 
Fourier components of the beam, thereby changing the 
bunch form factor to lower the voltage generated in the 
HHC in the passive mode. The effects of different cavity 

Fig. 1  (Color online) Phasor diagram of the PSHC
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harmonic parameters and bunch lengths on the cavity volt-
age vary. This study assumed that the natural bunch length 
is short, and that the impact of bunch stretching on the 
cavity voltage of an HHC is negligible [24].

We typically use the beam loading factor Y = IB∕I0 to 
quantify the impact of beam loading on a system [19], 
where I0 represents the projection of ĨT onto ṼC . We 
introduce the parameter X = IF∕I0 to assess the strength 
of the DRFB current. The amplitude phase of ṼH can be 
obtained from Eq. (1):

It is worth noting that in high-Q cases, we can obtain �LH 
approximately equal to 90◦ , and VH can be obtained from 
VH = Ībeam ⋅

(
RLH∕Q0H

)
⋅

(
fhrf ∕Δf

)
 [25, 26], where fhrf is 

n times the MC frequency, and Δf  is the detuning frequency. 
�L can be obtained from the positional relationship of the 
phasor diagram as follows:

From the various vector relationships and expressions of 
cavity impedance, the Pedersen model of a double RF sys-
tem can be derived, as shown in Fig. 2.

The original Pedersen model presents a TF that 
relates current excitation modulation to voltage signal 
modulation.

where the cavity damping factor � = �rf ∕(2QL) , and the 
order of the subscripts in the G TF indicates the order 
of modulation. The total current in the MC is the sum of 
the vectors of the transmitter, beam, and DRFB current. 
Therefore, by utilizing the vector synthesis relationship, we 
can determine the TF individually for the current excitation 

(1)

{
tan�LH = 2Q0H ⋅

Δf

fhrf

VH = IB ⋅ RLH ⋅ cos�LH

.

(2)
�L = − arctan[Y sin�S − X sin�F

−(1 + Y cos�S − X cos�F) ⋅ tan �L]

(3)
Gpa = −Gap=

� tan�Ls

s2+2�s+�2(1+tan2�L)

Gpp = Gaa=
�2(1+tan2�L)+�s

s2+2�s+�2(1+tan2�L)

of each component and its modulation of the MC voltage 
signal, as shown in Eq. (4):

For the PSHC, because it is excited only by the beam 
current, Eq. (3) also can be applied, that is, �L is converted 
to �LH , and the damping factor � is converted to 
�H=�hrf

/(
2QH

)
 . Then, GBH

pa
 and GBH

pp
 can be obtained. B is 

the beam TF, which can be expressed by Eq. (5):

where �s denotes the radiation damping rate, and �s 
represents the synchrotron angular frequency. The core 
function of the beam TF is to transfer the modulation of 
the equivalent phase of the total cavity voltage to the phase 
modulation of the beam. The amplitude phases of MC and 
HHC directly affect the equivalent phase of ṼT . The weight 
gain of the components is expressed by Eq. (6):

Before entering the DRFB loop, the voltage signal must be 
converted into a current signal. To achieve this, an amplifier 
is integrated into the amplitude loop with gain Gf=X

/
RL , 

where RL represents the loaded impedance of the MC. Ca 
and Cp are the TF corresponding to the amplitude (AVC) and 
phase (PLL) modulation loops, respectively.

(4)

GB
pp

=
IB

IT

[
−Gap sin

(
�S − �L

)
− Gpp cos

(
�S − �L

)]

GB
pa
=

IB

IT

[
−Gaa sin

(
�S − �L

)
− Gpa cos

(
�S − �L

)]

GG
pp

= GG
aa
=

IG

IT

[
Gap sin

(
�L − �L

)
+ Gpp cos

(
�L − �L

)]

GG
pa
= −GG

ap
=

IG

IT

[
Gaa sin

(
�L − �L

)
+ Gpa cos

(
�L − �L

)]

GF
pp

= GF
aa
=

IF

IT

[
Gap sin

(
�F − �L

)
+ Gpp cos

(
�F − �L

)]

GF
pa
= −GF

ap
=

IF

IT

[
Gaa sin

(
�F − �L

)
+ Gpa cos

(
�F − �L

)]

(5)B = �2

s
∕
(
s2 + 2�ss + �2

s

)

(6)

Gab = [− cos(�T − �S) − sin(�T − �S) tan �T]
VC

VT

Gpb = [− sin(�T − �S) + cos(�T − �S) tan �T]
VC

VT

GH
ab
= [cos(�T − �LH) + sin(�T − �LH) tan �T]

VH

VT

GH
pb

= [sin(�T − �LH) − cos(�T − �LH) tan �T]
VH

VT

Fig. 2  (Color online) Pedersen 
model of a double RF system
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In general control systems, Bode plots are commonly 
employed as a frequency domain stability assessment 
method to determine system stability. However, this method 
is only applicable to minimum-phase systems and does not 
encompass double RF systems, which are not typical control 
systems. If the amplitude-phase change of the signal in the 
MC is considered as the forward path, then the AVC, PLL, 
HHC, and DRFB can be viewed as part of the feedback 
or the entire feedback in the forward path. Consequently, 
the situation becomes more intricate, and the open-loop 
TF of the system possesses poles and zeros on the right 
half-plane. This complexity is reflected in Bode plot using 
non-monotonic phase-frequency curves. Consequently, this 
study adopted the Nyquist stability criterion for the stability 
analysis [27]:

Z represents the number of closed-loop characteristic roots 
in the right half-plane, indicating the system stability when 
Z = 0 . In contrast, p denotes the number of open-loop poles 
in the right half-plane, and N represents the number of 
crossings of the open-loop positive frequency amplitude-
phase curve with the left real axis of (−1, 0j) . For a double 
RF system, the value of p can generally be set to 0 by loop 
parameter adjustments. In this case, as long as the open-loop 
positive frequency amplitude-phase curve crosses the left 
real axis of (−1, 0j) , the system can be deemed unstable. 
Therefore, the stability of the system directly depends on 
whether the Nyquist plot crosses to the left side of −1.

Although the Bode plot is primarily an auxiliary tool for 
assessing the stability, it effectively displays the amplitude 
and phase response of a system on a logarithmic frequency 
scale. This graphical representation allows a comprehensive 
understanding of the system’s behavior over a wide 
frequency range. Interpreting the relationship between the 
Nyquist and Bode plots can assist in fine-tuning system 
parameters or controller settings, resulting in improved 
performance within a specific frequency range.

3  Verification and effection of the HHC 
on system stability in beam–cavity 
interactions

This section focuses solely on the interaction between the 
beam and the cavity, disregarding the impact of the external 
loop. The limit stable state derived from the original Ped-
ersen model, which exclusively considers the beam-cavity 
interaction, aligns with mode-zero Robinson instability. 
Building on this concept, the system can be developed using 
an equation based on the Robinson instability induced by 
any longitudinal impedance in the beam dynamics [28, 29]:

(7)Z = p − 2N

where �0 is the revolution frequency, �c is the momentum 
compaction factor, E is the beam energy, �z represents the 
damping time from radiation damping or other damping 
mechanisms (thus, the damping rate 1∕�z corresponds to �s 
in Eq.  (5)), �S =

√
eVCh�

2

0
�c sin�S∕(2�E)  represents 

unperturbed synchrotron angular frequency, and h is the 
harmonic number. For the HHC, the fundamental mode 
impedance can be expressed by Eq. (9):

where RH and QH represent the shunt impedance and 
quality factor of the HHC, respectively, �r = �hrf + 2�ΔfH 
corresponds to the resonant angular frequency, and ΔfH 
indicates the detuning frequency of the HHC. Equation (9) 
can be substituted into Eq. (8). The real part of Ω represents 
the real operating synchrotron frequency, whereas the 
imaginary part represents the growth rate of the instability 
or damping rate, which can be solved numerically. This task 
was performed by He et al. [30]. Their findings indicated 
the existence of two numerical solutions that display local 
minima. The real part of one solution was close to the 
synchrotron frequency, whereas that of the other was near 
the HHC detuning frequency. These solutions are named the 
“S mode”and “D mode” respectively.

When considering only the interaction between the beam 
and the double cavities, the open-loop TF of the system can 
be easily obtained using Eq. (10):

(8)
Ω2 + i

2Ω

�z
− �2

s
= −i

�0I0�c

2�E

�
e

∞∑
p=−∞

�
p�0Z∥

�
p�0

�

−
�
p�0 + Ω

�
Z∥
�
p�0 + Ω

��
,

(9)Z∥(�) = RH∕
[
1 + iQH

(
�r∕� − �∕�r

)]
,

(10)GH = −B
(
GH

pb
GBH

pp
+ GH

ab
GBH

pa
+ GpbG

B
pp
+ GabG

B
pa

)
.

Table 1  Main parameters of the HALF storage ring used for the 
instability study [30–32]

Parameters Value

Beam energy (GeV) 2.2
RF frequency (MHz) 500
Harmonic number 800
Radiation loss (keV) 400
MC voltage (MV) 1.2
Assumed beam current (mA) 40
Longitudinal damping time (ms) 2
Momentum compaction 9.4 × 10−5

Harmonic cavity number 3
Near-optimum HHC voltage (kV) 375
R/Q of the HHC 39
Q of the HHC 2 × 108
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Because of the complex nature of the coefficients in each 
TF, we considered the Hefei advanced light facility (HALF) 
as an example and substituted specific parameter values for 
a series of analyses. The HALF parameters used for study-
ing the mode-zero instability are shown in Table 1. When 
approaching the optimal stretching, the HHC tuning fre-
quency must be maintained at approximately 6 kHz . At this 
stage, the system parameter values were substituted into the 
open-loop TF, thus generating the Bode and Nyquist dia-
grams as shown in Fig. 3.

The presence of these two peaks in the Bode plot 
corresponds to the occurrence of two large circles in the 
Nyquist plot. This observation supports the conclusions of 
the beam dynamics analysis.

Akai et al. applied the Pedersen model to a single-cavity 
system and verified that the synchrotron frequency obtained 
from model simulations was consistent with the experimen-
tal results [33, 34], thereby confirming the model’s impact 
on the S mode. To further validate the accuracy of the model 
in a double RF system, it was necessary to verify the insta-
bility of the D mode. We utilized the STABLE code to track 
single macroparticles per bunch for 50,000 turns [30]. The 
STABLE code is executed in the MATLAB environment 
and can track the longitudinal beam dynamics for any fill-
ing pattern and passive harmonic cavity. For more detailed 
information, refer to [35]. The fitting yielded oscillations in 
the average relative momentum deviation during the expo-
nential rise or decay phases, thereby determining the growth 
rate (or damping rate), which is the imaginary part of Ω . 
It is noteworthy that the maximum real parts of the poles 
from the closed-loop TF of the model system also represent 
the growth rate. After model testing, the extended Pedersen 
model’s closed-loop TF poles explained the instability in 
both S and D modes. An effective solution is to compare the 
growth rate of the D mode with the real part of the system’s 
closed-loop TF poles under the condition that the S mode 
exhibits a higher damping rate, where the real part of the 
pole is the solution with the maximum real part of the sys-
tem characteristic equation 1 + GH = 0.

We also conducted simulations using MATLAB Sim-
ulink with parameters identical to those listed in Table 1. 
Figure 4 illustrates the impulse response under different 
quality factors of the HHC, from which the growth rate of 
the D mode was derived through exponential fitting of the 
signal envelope. Figure 5 presents a comparison of the real 
part of the poles derived from the characteristic equation, 
along with the growth rates of the D mode obtained from 
both the tracking simulations and time-domain simulations. 

Fig. 3  (Color online) Bode plot (a) and Nyquist plot (b) of a double 
RF system under the exclusive influence of the beam-cavity interac-
tion. In the Bode plot, the presence of two peaks corresponds to the 
synchrotron oscillation frequency and detuning frequency of the 
HHC, namely, the S and D modes, respectively. Similarly, these two 
modes are visually represented by the presence of two large circles 
in the Nyquist plot. Notably, the Nyquist curve does not intersect the 
real axis to the left of (−1, 0j) , indicating that the system is currently 
stable

Fig. 4  (Color online) Impulse responses of the system in the time 
domain for quality factors of the HHC set at 1 × 108 , 2 × 108 , 5 × 108 , 
and 10 × 108
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However, even under identical initial conditions, the growth 
rates obtained using the latter two methods in different time 
windows may vary marginally. These variations are repre-
sented by error bars, where the points within the error bars 
denote the average growth rates.

Using the same methodology, Figs. 6 and  7 present the 
comparative growth rates of the D mode under variations 
in the detuning frequency of the HHC and changes in the 
damping rate (1/�z ), respectively.

The growth rate of the D mode derived from the system 
characteristic equation was consistent with the results obtained 
from the time-domain simulations. Similarly, the results of 
the tracking simulation demonstrated a comparable trend in 

variation, albeit with larger numerical values. This indicates 
that the results derived from the Pedersen model are more 
stable than those from the tracking simulations. Besides con-
sidering that the S mode has a minor impact, the speculated 
reason is that the linear Pedersen model can only accurately 
describe the system when it is near or in a steady state, neglect-
ing several nonlinear effects considered in the tracking simula-
tions. Nevertheless, the advantages of quickly obtaining the 
system characteristics using the Pedersen model should not 
be overlooked.

Fig. 5  (Color online) Comparison of the growth rates of the D mode 
under various HHC quality factors, derived from the real part of the 
closed-loop TF poles, tracking simulations, and time-domain simula-
tions

Fig. 6  (Color online) Comparison of the growth rates of the D mode 
at different HHC detuning frequencies, obtained through the real part 
of the closed-loop TF poles, tracking simulations, and time-domain 
simulations

Fig. 7  (Color online) Comparison of the growth rates of the D mode 
under various radiation damping rates (1/�z ), derived from the real 
part of the closed-loop TF poles, tracking simulations, and time-
domain simulations

Table 2  Main parameters of the SSRF [36, 37]

Parameters Values

Energy (GeV) 3.5
RF frequency (MHz) 500
Harmonic number 720
Radiation loss (MeV) 1.44
MC voltage (MV) 4.5
Beam current (mA) 200
HHC voltage (MV) ∼ 1.8
R/Q of the HHC 87.5
Q of the HHC 3.8 × 108

Harmonic cavity number 3
Momentum compaction factor 4.2 × 10−4
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4  Impact of loop parameter settings 
on the system

This section considers the SSRF as an example, and its sys-
tem parameters are listed in Table 2. The conclusions drawn 
from the model, combined with the experimental results, 
comprehensively illustrate the impact of various loop param-
eters on the system stability.

The SSRF operates a digital LLRF system controlled by 
an I-Q based feedback loop, as shown in Fig. 8. By adjusting 
the filters or loop amplifier gains to avoid beam instability 
and from the perspective of mode-zero stability, there is no 
fundamental difference between I-Q and amplitude-phase 
control. Further details on the amplitude and phase loops 
are provided in the following subsection.

4.1  DRFB

In Sect. 2, it is noted that the gain and offset angle of DRFB 
can be represented by X and �F , respectively. At this time, 
DRFB can be regarded as a means of changing the cavity 
parameters. This study considered DRFB as an outer loop 
connected in the middle of the forward path.

DRFB acts on the MC, affecting the low-frequency 
segment of the S mode in the frequency domain, and the 
gain margin recorded here is also in this frequency segment. 
When X is larger, the gain margin may not be recorded, 
and as shown by the purple curve in Fig.  9b ( X = 1 , 
�F = −270◦ ), when observing the corresponding Nyquist 
curve, this part is actually in the right half-plane at zero 
frequency, indicating that the system is stable at this point. 
However, as X continues to increase, the pole of the system’s 
open-loop TF will fall into the right half-plane, which is 
manifested as the loop generating self-oscillation, and the 
system enters an unstable state at this time. When the offset 
angle is not set properly, the system gain margin is less than 
0, and the system may also become unstable. Therefore, gain 
must be maintained within a certain range. When the offset 
angle is set between −300◦ and −200◦ , it is most conducive 
to the stability margin of the S mode.

Fig. 8  LLRF control algorithm 
structure in the SSRF storage 
ring

Fig. 9  (Color online) System gain margin corresponding to different 
DRFB gains and offset angles (a), explained with the aid of Nyquist 
plots under three conditions (b). When the offset angle is −330◦ to 
−150◦ , the loop is conducive to system stability, otherwise, it reduces 
the system gain margin. The larger the X, the greater the impact of the 
loop on the system stability margin; however, there is a threshold
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During the previous operation of the SSRF, DRFB 
directly fed back the I-Q signals from the pickup end to the 
input of the cavity, as shown in Fig. 8. Considering that the 
loading angle of the MC is not zero, and correspondingly 
𝜑F ⊂ (−270◦,−160◦) , it can be inferred from Fig. 9a that, 
within this offset angle range, the system stability margin 
increases with the enhancement of the DRFB gain, which 
can be validated by the experimental test data in Table 3.

4.2  Loading angle

In the preset condition, the entire system was in a compen-
sated state, as in previous discussions, that is, maintaining 
the transmitter current and cavity voltage in phase by detun-
ing the MC to consider the beam loading effect, correspond-
ing to the case of �L = 0◦ in the phasor diagram. After add-
ing DRFB, the original loading angle did not contain loop 
information; therefore, we set the angle from the equivalent 
transmitter current to the cavity voltage as the new loading 
angle and marked it as ��

L
 in Fig. 1. The vector relationship 

can be obtained using Eq. (11):

If the loading angle setting is not properly adjusted at the 
beginning and is adjusted to a relatively unstable side, it 
is highly likely that beam loss will occur during operation. 
Using the SSRF, when DRFB was adjusted to different 
parameter groups, a gain margin in the low-frequency seg-
ment of the S mode was observed, as shown in Fig. 10.

Consistent with the beam dynamics results, the side on 
which the loading angle was greater than 0 corresponded to 
the unstable side of the Robinson impedance curve of the 
cavity. By combining DRFB, the relationship between the 
new loading angle and stability margin was explored in more 
detail. As the parameters of DRFB changed, the local mini-
mum value of the gain margin changed; however, they were 
all positive. In actual operation, the loading angle deviation 
caused by the poor loop control capability of the system is 
common. A suitable negative loading angle can be preset 
to prevent the system from reaching a more unstable area.

(11)
tan �

�

L
= [tan �L + X (sin�F − tan �L cos�F)

+Y tan �L cos�S]∕(1 + Y cos�S)
.

In practical tests, only the MC was analyzed, which 
means that the HHC part in the model can be significantly 
detuned. The loop instability region of SSRF was obtained 
and marked by simulating and adjusting the load angle. 
This region was then compared and analyzed against the 
experimentally measured data, as shown in Fig. 11.

In the experimental results, owing to the presence of 
nonlinear factors and detuning jumps (usually ±10◦ ), 
and because low-pass filters cannot fully and effectively 
simulate the actual effect of digital I-Q-based PI filters, 
there was a significant deviation from predicted values. 
However, the experimental results and model predictions 
exhibited similar trends. Near a small positive value, the 
beam current reached its minimum value. Additionally, 
when the loading angle exceeded 25◦ , coupling with the 

Table 3  Limit stable current obtained from the DRFB gain with the 
SSRF LLRF PI controller Kp = 9 × 10−4 , Ki = 9 × 10−3

Total cavity voltage (MV) DRFB gain Current (mA)

3.3 0 140
3.3 0.26 185
3.3 0.33 190
3.3 0.46 220

Fig. 10  (Color online) Gain margin of the system’s low-frequency 
segment S mode with three different DRFB parameter groups (a) and 
when X = 0.1, 0.4, and 0.7, the degree of the loading angle corre-
sponding to the lowest system stability margin when the DRFB offset 
angle changes from −360◦ to 0◦ (b). In general, the system is always 
in the most unstable area when the loading angle is 0◦–20◦
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low-frequency band of the S mode occurred at low beam 
currents. In practice, sudden drops in the beam current 
occur when the loading angle is 30◦–40◦.

4.3  AVC and PLL

The amplitude modulation (AVC) and phase modulation 
(PLL) loops, where the LLRF is located, correspond to 
the Ca and Cp parts of the system block diagram in Fig. 2, 
respectively. They have a complex impact on the system 
stability, as shown in Fig. 8, where the signal passes through 
a digital filter, a PI controller, and internal and external 
amplifiers in the loop. If the FIR filter is also simplified 
to a first-order form, the bandwidth after cascading is that 
of the digital filter, and the gain is the product of the gains 
of each amplifier and the PI controller at that bandwidth. 
The resulting TF after cascading is still equivalent to a low-
pass filter module with the specific derivations provided by 
Liu et al. [34]. These modules eliminate the DC component 
and exclude the carrier-frequency component [38], which is 
expressed in Eq. (12):

In other words, the loop parameters have the gains and 
bandwidths of the AVC and PLL. After simulation 
validation, the changes in different loop parameters with 
respect to the stability margin were difficult to describe 
clearly on the Nyquist curve. This can be explained using 
the Bode plot of the system, which can represent the stability 

(12)

Ca,p ≈ Kamp
2�fLPF

s+2�fLPF

Kps+Ki

s
≈ Kamp×√

K2

i
+(2�fLPF)

2
K2
p

2×(2�fLPF)
2

2�fa,p

s+2�fa,p
≈ Ka,p

2�fa,p

s+2�fa,p

analysis cases of systems where PSHCs are located. As 
shown in Fig. 3, modes S and D divided the entire frequency 
domain into three parts. For ease of explanation, the 
frequencies from low to high were denoted as Regions I, 
II, and III. In short, we must control the influence of the 
controller on the amplitude response of the system within 
these three areas to avoid strong coupling between the 
controller and mode S or D, which can lead to instability. 
When the bandwidth and gain of the AVC and PLL were 
small, the controller acted on Region I of the system 
spectrum. As the bandwidth and gain of the amplitude loop 
gradually increased, the controller gradually moved toward 
the S mode because of its effect on the system spectrum, 
which may cause instability in the S mode. However, as the 
bandwidth and gain of the phase loop gradually increased, 
part of the system spectrum showed an increasingly severe 
Bode plot concavity, which had little impact on the stability.

From the previous analysis of the loading angle, in the 
SSRF 2.4MV experimental environment, the controller 
was found to be located in Region I. At this point, with the 
loading angle fixed at 0◦ , when Kp = 0.1 and Ki = 1 × 10−5 , 
the beam was unstable at 110mA . However, when the 
controller Kp changed from 0.999 and Ki to 1 × 10−6 , 
the system stabilized. Increasing Kp and decreasing Ki 
reduced the low-frequency gain but increased the high-
frequency gain; when combined with other digital filters, 
this adjustment resulted in an overall increase in both the 
loop gain and the bandwidth of the system. From this, 
it can be concluded that under certain conditions of the 
phase loop bandwidth and gain, as the bandwidth and gain 
of the amplitude loop increase, the loop affects the system 
at higher frequency bands.

As AVC gain and bandwidth continued to increase, 
the controller’s impact was placed in Region II, the 
controller’s impact on the S mode gradually decreased, 
and the impact on the D mode increased, possibly causing 
instability in the D mode. While increasing the bandwidth 
and gain of the PLL, the gain margin near the S mode 
first increased and then decreased. This implies that only 
within a certain range did the parameters of the PLL 
ensure that the S mode did not oscillate. Once again, the 
continuously increasing AVC bandwidth and gain acted in 
Region III, at which point the stability margin point of the 
system was only in the low-frequency segment of the D 
mode. The PLL had a difficult time affecting the system’s 
stability, and the system was generally in the stable region.

In actual situations, loop delay must be considered. The 
delay in the LLRF is generally on the microsecond level. 
Currently, the expression of the system’s open-loop TF is 
extremely complex. We used MATLAB Simulink to simu-
late the system and found that the delay module had almost 
no impact on the Bode and Nyquist plots of the system but 
had a significant impact on the pole of the open-loop TF. 

Fig. 11  (Color online) When the cavity voltage is 2.4MV , and the PI 
controller parameters are set to Kp = 1 × 10−1 and Ki = 1 × 10−5 , the 
simulated unstable region is marked out. The actual data for the limit 
of stable beam current are indicated by red asterisks ‘*’
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In other words, p in Eq. (7) is not necessarily zero because 
of the presence of a delay.

The poles in Fig. 12 are merely partial poles influenced by 
the loop delay owing to the amplitude and phase modulation 
loops. As the loop delay time increased, the poles of the open-
loop system gradually approached the imaginary axis from the 
negative plane; the controller was extremely sensitive to loop 

delay in Region III, and the pole easily fell in the right half-
plane, leading to system instability. In practice, owing to the 
limitations of the amplifier power and loop delay, it is difficult 
for the controller to adjust to Region III; that is, the bandwidth 
gain of the loops will not be very high (Fig. 13).

5  Conversion of the ASHC from the PSHC

To allow beam currents of different intensities to achieve 
optimal stretching, the conversion of the HHC to an active 
mode was considered. Prior to this, we slightly modified the 
expanded Pedersen model HHC module.

In the phasor diagram, only the HHC components in the 
third quadrant must be modified. Similarly, in the Pedersen 
model, only the excitation source must be added to the right 
side of Fig. 2. The TF from the current excitation modulation 
in the HHC to the voltage signal modulation is consistent with 
Eq.  (4), simply changing � to �H , and �L to �LH , and 
GH

pp
,GH

pa
,GH

aa
,GH

ap
 can be obtained from Eq. (13):

(13)
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Fig. 12  (Color online) Parameters of the AVC and PLL are separately 
set to ensure the controller falls in Regions I, II, and III, and the par-
tial open-loop poles of the system are drawn for loop delays of 1, 2, 
3, and 4 μ s. As the loop delay increases, the approximate trajectory of 
the pole is drawn

Fig. 13  (Color online) Phasor diagram of the ASHC (a) and Pedersen 
model (b)

Fig. 14  Typical transfer function block diagram

Table 4  TF and gain 
values of the HHC and MC 
corresponding to those in the 
typical block diagram
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To obtain the open-loop TF of the system, we first intro-
duced a typical TF block diagram for the double RF system, 
as shown in Fig. 14. The relationship between the input and 
output is expressed by Eq. (14).

Both the MC and HHC loops in the system are represented 
by this typical structure. The corresponding TFs and gain 
values are presented in Table 4. After superposition of the 
four outputs and passing through the beam TF Bs , the overall 
open-loop TF of the system can be obtained. Subsequently, 
Bode and Nyquist plots of the system can be derived.

To achieve optimal stretching [39], the cavity voltage 
amplitude phase of the HHC should be satisfied, as 
expressed in Eq. (15):

(14)

{ outp

in
=

p(1−aa)−a⋅ap

(1−aa)⋅(1−pp)−pa⋅ap
⋅ Gp

outa

in
=

a(1−pp)−p⋅pa

(1−aa)⋅(1−pp)−pa⋅ap
⋅ Ga

where U0 is the energy loss per turn. After adding the excita-
tion source of the HHC, several parameters can be discussed: 
the loading angle, coupling coefficient, and bandwidth gain 
of the AVC-PLL of the HHC.

The initial state shown in Fig. 15 refers to not enabling 
DRFB and setting the loading angle of the MC and HHC 
to 0 without considering the amplitude-phase loop. The 
coupling coefficient of the HHC was consistent with 
that of the MC, at approximately 7500. In practice, the 
gain margin point of the low-frequency segment does 
not change significantly, and it is difficult to affect the 
actual stability of the system, which is marked with a “+” 
symbol. We were more concerned with the gain margin 
of the S mode; that is, the point marked with “*” is the 
critical gain margin.

The parameter settings in Table 5 were changed compared 
with the parameters in the initial state. We also constructed 
a MATLAB Simulink model to validate the accuracy of the 
model. After obtaining the impulse response of the system, 
we fit its envelope with an exponential function to derive the 
growth rate. This was then compared with the maximum real 
part of the poles of the characteristic equation obtained from 
the open-loop TF, which demonstrated good consistency.

Focusing on the critical gain margin column, we easily 
found that the changes in the coefficients in the MC were 
consistent with the conclusions in the passive mode system 
in Sect. 4. The change in the loading angles of the HHC 
and MC had opposite effects on the stability margin of the 
system: the higher the coupling coefficient, the more stable 
the system tended to be. For the amplitude-phase loop, as 
shown in Fig. 15a, the influence of the controller on the sys-
tem frequency domain could be applied to Regions I and II.

(15)

⎧
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∕n2 − U2
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Fig. 15  (Color online) Bode plot (a) and Nyquist plot (b) of the dou-
ble RF system of the active mode in the initial state. At this moment, 
the system only shows the S mode

Table 5  Impact of system parameters on the closed-loop TF pole Re, 
time-domain simulation growth rate and critical gain margin

System parameter Closed-loop 
TF pole Re

Time-domain 
simulation growth 
rate

Critical 
gain 
margin

Initial state −599 −589 5.89
X = 0.4,�F = −50◦ −209 −196 2.79
X = 0.4,�F = −250◦ −837 −837 7.59
�L = −10◦ −886 −886 7.76
�L = 10

◦ −258 −257 4.28
�LH = −10◦ −412 −412 3.24
�LH = 10

◦ −701 −702 7.58
� = 5 × 103 −290 −290 2.8
� = 1 × 104 −881 −887 10.1
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When the loop was set in Region I, the conclusion for 
the MC was consistent with the analysis in Sect. 4. A high-
bandwidth gain AVC was not conducive to system stabil-
ity, whereas the PLL had little impact on stability. For the 
AVC of the HHC, the opposite conclusion was drawn. As 
the bandwidth gain of the AVC increased, the gain margin of 
the system moved away from the S mode, whereas the gain 
margin always increased. In addition, as the bandwidth gain 
of the PLL increased, the Bode plot of the system produced 
a bulging shape at the stability margin, which also increased 
the gain margin. In summary, except for the phase loop of 
the MC, the controller bandwidth gain of the other loops 
must be maintained at smaller values; however, the cost is 
that the system feedback response speed may not keep up. 
Therefore, the placement of the loop controller in Region II 
should be considered.

Increasing the gain and bandwidth of the feedback loop 
of the HHC increased the stability margin of the system. 

This is clearly observed in the Nyquist plot in Fig. 16. 
There were two different circles near the unit circle, which 
corresponded to the amplitude-phase loops of the MC and 
HHC. Increasing the parameters of the HHC loop decreased 
the size of the corresponding circle, and the intersection 
with the real axis entered the unit circle. Based on the above 
discussion, the parameters of the loop controller can be 
adjusted to fall within the frequency domain of Region II. At 
this time, part of the loop in the Nyquist curve will be inside 
the unit circle, which has no effect on the system stability.

6  Summary

This study proposed a new mathematical method based on 
the Pedersen model for the first time to analyze the stability 
of a double RF system. The original model typically uses 
the Routh stability criterion to analyze the coupling between 
a single RF cavity and the loop. After adding a HHC, the 
system becomes relatively complex, and the order of the 
open-loop and closed-loop TFs increases. The Nyquist 
stability criterion can be used to analyze the system more 
clearly and quickly, and it clearly describes the impact of 
each variable parameter on system stability.

The amplitude–frequency characteristic curve of the 
double RF system has two peak values, corresponding to 
the synchronous frequency (S mode) and HHC detuning 
frequency (D mode). Taking HALF as an example, after 
incorporating the parameters into the time-frequency 
domain model and conducting tracking simulations, the 
instability of the D mode was quantitatively studied. The 
conclusions regarding the mode-zero Robinson instability 
from the model and beam dynamics perspectives were 
generally consistent. However, the growth rates of the D 
mode instabilities obtained using the Pedersen model were 
generally lower. It is speculated that this is because the 
growth rates derived from the model cannot completely 
exclude the influence of S mode instabilities, and the steady-
state working point cannot accurately simulate the entire 
dynamic process. Future research can focus on further 
optimizing the beam TF Bs to obtain more accurate results.

A large gain of DRFB within a certain range and the 
offset angle between −180◦ and −300◦ , or the loading angle 
at a smaller negative value, is beneficial for stability. As 
the bandwidth gain of the AVC in the MC LLRF increased, 
the frequency corresponding to the impact area of the 
entire spectrum of the system also increased, and the above 
conclusions were confirmed in an SSRF experiment. This 
study also divided the system frequency domain into three 
parts and analyzed the parameter settings of the amplitude-
phase loop, indicating the parameter setting required to 
reduce the coupling with the S and D modes in the frequency 
domain of the feedback loop. However, the results derived 

Fig. 16  (Color online) Amplitude-frequency plot (a) and Nyquist plot 
(b) after changing various parameters of the AVC and PLL of the 
HHC when the parameters of the MC are set to ensure the controller 
is in Region II
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from the model tended to be more stable than those obtained 
in real situations. In addition to the inherent reasons for the 
model mentioned in Sect. 3, approximating the amplitude-
phase loop as a low-pass filter introduces errors. To describe 
the effects of loop controllers on the amplitude and phase 
frequency responses of the system more accurately, further 
exploration and confirmation are required.

Moreover, this model was theoretically extended to the 
ASHC from the PSHC. After proposing a typical structure 
for this complex system, the steps for solving its open-loop 
TF were clarified. The accuracy of the model was validated 
through the solutions of the characteristic equation and the 
MATLAB Simulink time-domain model. When the ASHC 
remained in the optimal stretching state, the conclusions of 
each system parameter for the MC still held. At this time, the 
D mode was not evident in the Bode plot, and only Regions 
I and II existed. When the controller affected the frequency 
domain in Region I, only a small gain and bandwidth could 
maintain stability, which often fails to satisfy the feedback 
performance requirements. The good news is that, when in 
Region II, the feedback loops of the MC and HHC are more 
likely to contribute to system stability.
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