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Abstract
In recent years, the development of new types of nuclear reactors, such as transportable, marine, and space reactors, has 
presented new challenges for the optimization of reactor radiation-shielding design. Shielding structures typically need to 
be lightweight, miniaturized, and radiation-protected, which is a multi-parameter and multi-objective optimization prob-
lem. The conventional multi-objective (two or three objectives) optimization method for radiation-shielding design exhibits 
limitations for a number of optimization objectives and variable parameters, as well as a deficiency in achieving a global 
optimal solution, thereby failing to meet the requirements of shielding optimization for newly developed reactors. In this 
study, genetic and artificial bee-colony algorithms are combined with a reference-point-selection strategy and applied to the 
many-objective (having four or more objectives) optimal design of reactor radiation shielding. To validate the reliability of 
the methods, an optimization simulation is conducted on three-dimensional shielding structures and another complicated 
shielding-optimization problem. The numerical results demonstrate that the proposed algorithms outperform conventional 
shielding-design methods in terms of optimization performance, and they exhibit their reliability in practical engineering 
problems. The many-objective optimization algorithms developed in this study are proven to efficiently and consistently 
search for Pareto-front shielding schemes. Therefore, the algorithms proposed in this study offer novel insights into improv-
ing the shielding-design performance and shielding quality of new reactor types.

Keywords Many-objective optimization problem · Evolutionary algorithm · Radiation-shielding design · Reference-point-
selection strategy

1 Introduction

Radiation-shielding designs for reactors aim to minimize 
the external radiation dose (ALARA) by selecting appropri-
ate shielding materials and structures to meet the radiation-
safety requirements of the personnel [1, 2]. Additionally, 
with the development of new types of nuclear reactors in 
various fields, the shielding design needs to balance safety 
standards with the consideration of miniaturization and 
lightweight design, such as for marine, transportable, and 
space reactors [2–5]. Consequently, the radiation-shield-
ing design for newly developed reactors presents a typical 
multi-objective optimization problem, as it involves multiple 
design objectives and parameters, including the radiation 
dose, volume, and weight (Fig. 1).
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Conventional shielding-design methods rely heavily on 
expert knowledge, and require manual iterations to achieve 
acceptable results. With the development of evolutionary 
optimization algorithms, some researchers have begun to 
employ single-objective optimization algorithms, such as 
the genetic algorithm (GA), particle swarm optimization, 
and differential evolution, to optimize the radiation dose as a 
single objective [5–7]. In recent years, studies have also uti-
lized multi-objective (two or three objectives) optimization 
algorithms, such as the non-dominated sorting genetic algo-
rithm II (NSGA-II) and multi-objective particle swarm opti-
mization, to optimize the volume-dose trade-off as multiple 
objectives [8–12]. This means that evolutionary algorithms 
have received considerable attention and can provide new 
opportunities for complex shielding-optimization problems.

However, in practical shielding-optimization designs, the 
number of objectives to be optimized often exceeds four, 
resulting in a typical many-objective problem (four or more 
objectives to be optimized) [13, 14]. Conventional multi-
objective optimization algorithms exhibit suboptimal perfor-
mance when dealing with many-objective optimization prob-
lems [15, 16], failing to meet the requirements of achieving 
a global optimal solution in the shielding design. Therefore, 
in this study, we propose a reference point-based many-
objective artificial bee-colony algorithm (RP-MOABC) 
and reference point-based non-dominated sorting algorithm 
(RP-NSGA) to solve many-objective shielding-optimization 
problems.

The remainder of this paper is organized as follows. 
Section 2 presents the mathematical model of the many-
objective optimization problem in reactor radiation shielding 
and discusses the encoding methods for shielding design. 
In Sect. 3, we provide an overview of the fundamental prin-
ciples of the proposed genetic-and bee-colony-based opti-
mization algorithms. We also outline a detailed framework 
for their application in radiation-shielding designs. Sec-
tion 4 presents the numerical models of reactor-shielding 

design applications, along with the corresponding numerical 
results. Finally, the concluding section summarizes the key 
findings and conclusions of this study.

2  Many‑objective optimization problem 
in reactor radiation‑shielding design

This section provides a concise overview of reactor radia-
tion-shielding design and the associated mathematical model 
for the many-objective shielding-optimization problem. It 
begins with a brief explanation of the principles underlying 
the shielding design for neutrons and gamma rays in reac-
tors. Next, a mathematical model is proposed to address the 
many-parameter, many-objective, and many-constraint reac-
tor-shielding design. Finally, a special encoding method is 
proposed to represent the shielding parameters (such as the 
number of shielding layers, types of shielding materials, and 
their compositions), facilitating the optimization process.

2.1  Principles of radiation‑shielding design

The primary objective of reactor radiation shielding is to 
design a shielding system composed of multilayer and multi-
material structures that surround the core facilities within 
the reactor, ensuring that the personnel are in an environ-
ment where the radiation dose meets the specified limits. 
This is achieved by utilizing suitable shielding materials and 
geometric configurations combined with multilayered and 
multi-component structures to shield the radiation sources. 
The selection and arrangement of materials in each layer 
are based on their specific shielding capabilities and nuclear 
interactions with radiation particles, with the aim of mini-
mizing radiation levels to the maximum possible extent.

The principles governing the design of radiation shielding 
are based on the interactions between the radiation particles 

Fig. 1  (Color online) Applica-
tion of evolutionary algorithms 
in reactor-shielding design



Many‑objective evolutionary algorithms based on reference‑point‑selection strategy for… Page 3 of 15 105

and materials. Radiation predominantly comprises neutrons 
and gamma rays. Neutron interactions include absorption 
and scattering, which is further categorized into elastic and 
inelastic scattering. For neutron shielding, the secondary 
gamma rays generated during inelastic scattering reactions 
must be considered. The interactions of gamma rays include 
Compton scattering, photoelectric absorption, and pair pro-
duction. Typically, neutron shielding requires materials con-
taining heavy and light isotopes, such as light water, boron 
carbide, and polyethylene [17, 18]. Conversely, gamma-ray 
shielding requires materials with high-Z isotopes, including 
lead, concrete, and steel [19].

2.2  Many‑objective mathematical model 
for radiation‑shielding design

Many-objective optimization in practical applications aims 
to achieve multiple optimized objectives within specific con-
straints. However, owing to the inherent conflicts between these 
objectives, optimizing one objective is typically achieved at the 
expense of deteriorating the others. As a result, a unique optimal 
solution is elusive; instead, a set of Pareto-front solutions con-
sisting of non-dominated individuals is obtained [20]. Radiation-
shielding design presents a typical many-objective optimization 
problem in nuclear engineering. The goal is to minimize the 
mass and volume of the total shielding system while ensuring 
that the external radiation dose satisfies the ALARA principle. 
However, weight, volume, and radiation dose are conflicting 
objectives that cannot be optimized simultaneously. In this study, 
we focus on minimizing the total weight, total volume, and axial 
and radial radiation doses outside the shielding layers. These 
objectives are influenced by various parameters, including the 
thickness of the shielding layer, materials used, and the composi-
tion of the materials used. Additionally, constraints are imposed 
on the fast-neutron, thermal-neutron, and gamma-ray flux rates 
outside the shielding layers during the optimization process. 
Reactor radiation-shielding design involves many objectives, 
parameters, and constraints. To address these challenges, the 
mathematical model in Eq. (1) is proposed:

(1)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

minF(X) = (FR(X),FW(X),FV(X))
T

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

FR(X) = RN(X) + RP(X) ≤ R0

FW(X) =
M∑

m=1

Vm ⋅ �m ≤ W0

FV(X) =
M∑

m=1

Vm ≤ V0

ΦN(X) ≤ ΦN0

ΦP(X) ≤ ΦP0

X = (x1, x2, x3,… , xn−1, xn),X ∈ ℜ

Li ≤ xi ≤ Ui(i = 1, 2,… , n)

.

Based on the optimization model (1), where X is the deci-
sion variable in the shielding design (geometry thickness, 
material type, material composition), the values Li and 
Ui represent the lower and upper bounds of the variables, 
respectively; the vector space containing all decision vari-
ables is represented by X ; and ΦN(X) and ΦP(X) represent 
the neutron and photon flux rates outside the shielding 
layer, respectively, while ΦN0

 and ΦP0
 are their correspond-

ing constraint values; Vm represents the volume of the m-th 
shielding layer, and �m represents the corresponding density 
of the shielding material denoted by m . Wm is the mass of 
the shielding layers; RN and RP represent the neutron and 
photon dose external to the shielding layer, respectively; 
FR(X) , FW(X) , and FV(X) represent the radiation dose of 
the shielding layer and the total weight and total volume of 
the shielding system, respectively; R0 , W0 , and V0 represent 
the constraints for the radiation dose, weight, and volume, 
respectively; F(X) is the radiation-shielding design objective 
vector, and the minimized value is expected to be optimized 
for each dimension of the objective vector.

2.3  Encoding methods of radiation‑shielding model

In recent years, the development of radiation-shielding 
designs has progressed significantly, and a series of stud-
ies combining evolutionary algorithms with various types 
of shielding designs have emerged. However, the deci-
sion vector in this type of research only covers the shield-
ing structure and shielding-material-type changes, and no 
material-composition-optimization research has been previ-
ously carried out. In this study, the reactor-shielding model 
is simulated for the many-parameter problem in shielding 
optimization using both binary encoding and real-number 
encoding, which can be encoded to characterize the shield-
ing-model geometry, material type, and material composi-
tion, and coupled with a variety of evolutionary algorithms 
for calculation.

Figure 2 illustrates the encoding process for the simple 
shielding scheme. First, the thicknesses of the shielding lay-
ers and the corresponding index numbers for the shielding 
materials are obtained. The composition is determined for 
materials with variable compositions, such as borated and 
lead-borated polyethylene. Second, the above parameters 
are encoded in real or binary numbers. The composition 
content, which is subject to fixed-sum constraints, is trans-
formed using spherical-coordinate conversion [21], as in 
Eq. (2) prior to encoding. Finally, the encoding design is 
completed for all shielding layers. The purpose of encod-
ing is to combine the shielding model with the evolutionary 
algorithm such that the model parameters can be optimized 
by the algorithm, and the final shielding scheme can be 
obtained for the reference of the designer.
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3  Many‑objective evolutionary algorithms 
for radiation‑shielding design

3.1  Scheme of radiation‑shielding optimization 
with many‑objective evolutionary algorithm

In this study, shielding-optimization methods are proposed 
by combining many-objective evolutionary algorithms with 
particle-transport calculation software that can optimize the 
reactor primary-shielding structures, material types, and 
material compositions to obtain optimal shielding-design 
schemes through an automated process. These methods 
are embedded into the multi-functional radiation-transport 
simulation platform (MOSRT) developed by the NEAL 
team [22, 23].

A schematic of the many-objective optimization of the 
radiation-shielding design is shown in Fig. 3, and the steps 
are described as follows.

(1)  Preprocessing of the initial shielding model is per-
formed using the MOSRT software. First, the CAD 

(2)
xi = (sin �1 ⋅ sin �2... sin �n−1)

2, i = 1

xi = (cos �i−1 ⋅ sin �i... sin �n−1)
2, i = 2,

xi = (cos �n−1)
2, i = n

..., n − 1

model of the reactor geometry is modeled with 
MOSRT, and the model is automatically converted into 
a particle-transport calculation model. The shielding 
regions to be optimized are labeled. Finally, the initial 
running parameters are set, including the maximum 
number of iterations g , population size N , and optimi-
zation-objective number M.

(2) The evolutionary algorithm is selected. In this study, 
the genetic and ABC algorithms are invoked as evo-
lutionary algorithms to optimize the weight, volume, 
and region-specific radiation-dose rate of the reactor 
radiation-shielding model.

(3) The decision-vector encoding method (real-number 
encoding or binary encoding) is chosen based on the 
requirements, and the initial parent population Pg=1 is 
generated.

(4)  The initial offspring population Qg=1 is generated based 
on the parent-population characteristics. The GA uses 
selection, crossover, and mutation to generate the off-
spring population, and the bee-colony algorithm uses 
employed, onlooker, and scout bees to update the off-
spring population. The parent population Pg is merged 
with the offspring population Qg to obtain the g-th 
generation combined population Cg . The population is 
decoded and converted into a particle-transport input 
card to solve the objective values. The MOSRT has a 
built-in shielding-calculation module integrated with 
the Monte Carlo method (MC) [24].

Fig. 2  (Color online) Example of the encoding method for a radiation-shielding model
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Fig. 3  (Color online) Schematic of radiation-shielding design with many-objective evolutionary algorithm
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(5) A fast non-dominated sorting strategy is applied to the 
merged population, and each algorithm uses the refer-
ence-point-selection strategy [25] to generate the new 
parent population Pg+1 . A performance-comparison 
analysis is conducted simultaneously with conventional 
methods that use crowding-distance strategy selec-
tion [26]. Specific strategies are explained in Sect. 3.5.

(6) Steps (4) and (5) are repeated if the maximum number 
of iterations is not reached, and the parent population 
Pg+1 is continuously updated; otherwise, step (7) is 
implemented.

(7) The optimization process is completed, and the optimi-
zation results of each algorithm are thoroughly com-
pared and analyzed.

3.2  Evolutionary strategy based on genetic 
algorithm

The GA [27] is a classical evolutionary strategy for simulat-
ing inheritance and evolution in nature. It searches for the 
solution space of optimization problems through operations 
such as selection, crossover, and mutation. GAs based on 
different evaluation strategies exhibit significant differences 
in performance when solving various problems [28]. The 
following section explains the basic operations of GAs.

Selection: In this study, a binary tournament-selection 
operation is used, where two individuals (the individual in 
the paper means a specific shielding scheme) are taken from 
the current population at a time, the dominance relationship 
between the two individuals is judged, and the individual 
in the dominant position is selected for subsequent crosso-
ver and mutation. If two individuals do not dominate each 
other, one individual is randomly selected for the subsequent 
genetic steps. The determination of the dominance relation-
ship will be explained in Sect. 3.4.1.

Crossover: The crossover operation mimics the process of 
hybridization in biological evolution. It selects the chromo-
somal segments (genes) of two or more parent individuals for 
exchange to generate new offspring. In this study, we use a 
single-point crossover operation for GAs with binary encod-
ing and a simulated binary crossover operation for GAs with 
real-number encoding.

Mutation: The mutation operation introduces a degree of 
randomness to the algorithm by changing some gene values 
on individual chromosomes to generate new individuals. The 
mutation operation can increase the diversity of the population 
and prevent it from falling into a locally optimum solution. The 
mutation operation can randomly select some genes of an indi-
vidual to be changed or mutate each gene on the chromosome 
with a particular probability. In this study, we use the bit-flip 
mutation operation for GAs with binary encoding and polyno-
mial mutation operations for GAs with real-number encoding.

3.3  Evolutionary strategy based on artificial 
bee‑colony algorithm

The ABC [29, 30] algorithm is a global optimization tech-
nique based on swarm intelligence. It draws inspiration from 
the foraging behavior of bee colonies, where individual bees 
perform specific tasks and share information to collectively 
find the optimal solution to a problem. This study builds on 
the fundamental ABC algorithm and introduces improvements 
by employing two methods: a differential evolution search [31] 
and golden sine search [32]. The following sections explain the 
search strategies of the algorithm.

Employed bee search: In this phase, a number of hired bees 
consistent with the population size will be dispatched to search 
for historical food sources (solution space). In this study, the 
bee population searches using a differential-search method 
based on an elite strategy. Individuals in the Pareto optimal 
set (the Pareto optimal set will be explained in Sect. 3.4.2.) are 
randomly used as bootstrap terms, and the differential evolu-
tion operator is used to generate new solutions, as shown in 
Eq.(3):

where Xt1 , Xt2 , and Xt3 are three mutually dissimilar solu-
tions selected from the Pareto optimal set and R are random 
numbers between [0, 1].

The elite-guided search mechanism is an exploitation oper-
ation that unavoidably reduces the diversity of the population 
and may cause the algorithm to converge locally. To better 
balance the global-search and local-exploitation capabilities, 
this study proposes a solution-space search method based on 
the golden sine function:

In Eq. (4), Xi represents the i-th individual, r1 and r2 are 
random numbers belonging to [0, 2�] and [0,�], respectively, 
c1 and c2 are introduced as golden section coefficients in the 
position-update formula, respectively, and a and b are ini-
tial values set to −� and � , respectively. The golden section 
number gs is (

√
5 − 1)∕2.

The employed bees use Eq. (3) and Eq.(4) for searching 
with equal probabilities to balance the diversity and local-
search capability of the population.

Onlooker bee search: The onlooker bees perform 
repeated optimization on the excellent food sources based 
on the roulette-wheel selection. The specific optimization 
operations are the same as those of the employed bees, and 
the onlooker-bee evaluation function is as follows:

(3)Xt = Xt1 + R
(
Xt1 − Xt2

)
+ R

(
Xt1 − Xt3

)
,

(4)
Xt = Xi| sin(r1)| + r2 ⋅ sin(r1) ⋅ |c1Xt1−c2Xi|,
c1 = ags + b(1 − gs),

c2 = a(1 − gs) + bgs.
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where dom represents the number of solutions in which the 
i-th feasible solution dominates among all feasible solu-
tions, and FoodNumber represents the total number of food 
sources.

The roulette-wheel selection probability is defined as

Food sources with higher probabilities have a greater prob-
ability of being explored in the subsequent bee stage, thereby 
facilitating the algorithm’s efficient exploration of the space 
for excellent solutions.

Scout bee search: A food source is randomly selected 
from the last Pareto layer, its decision vector is rand-
omized, and its corresponding objective values are reset.

3.4  Evaluation method of shielding scheme based 
on Pareto domination

3.4.1  Pareto domination of the shielding schemes

When evaluating the performance of different shielding-
design schemes, in the case of a single objective (such as 
shield weight), a smaller shield weight indicates better 
performance of the design scheme. However, for multiple 
objectives, each shielding-design scheme has multidimen-
sional attributes (such as shield weight, volume, and dose 
rate). The performance of shielding schemes cannot be 
evaluated simply based on numerical magnitudes.

First, the decision vectors must be decoded and con-
verted into particle-transport program-input files, and 
the population objective values are calculated using the 
particle-transport program, as shown in Eq. (7):

(5)fiti =
dom

FoodNumber
,

(6)
pi =

fiti
FoodNumber∑

n=1

fitn

.

(7)

Dpop =

⎡
⎢⎢⎢⎢⎢⎣

X1 =
�
x1,1x1,2.........x1,n

�
...

...

...

XN =
�
xN,1xN,2.........xN,n

�

⎤
⎥⎥⎥⎥⎥⎦

⇓

Fpop =

⎡⎢⎢⎢⎢⎢⎣

F(X1) =
�
F1,1F1,2.........F1,M

�
...

...

...

F(XN) =
�
FN,1FN,2.........FN,M

�

⎤⎥⎥⎥⎥⎥⎦

.

In this study, the performance evaluation method for the 
shielding-design schemes is based on the Pareto-domination 
method. Specifically, when a Pareto-domination relationship 
exists between the two schemes, the scheme in the domi-
nant position performs better than the other schemes in the 
dominant position. For any two schemes Xu and Xv in a set 
of schemes, Xu dominates Xv if Eq. (8) is satisfied:

For constrained optimization problems, we employ the fea-
sibility rule [33] to assess the superiority of the schemes. 
First, the feasibility of the scheme with respect to the con-
straints is evaluated. If the constraints are satisfied, then the 
constraint variable Res(X) is set to zero; otherwise, it is set 
to one. When comparing two schemes Xu and Xv with the 
same value of Res(X) , the domination judgment is based on 
Eq. (8). However, when the two schemes have unequal val-
ues of Res(X) , the scheme with a value of 0 dominates that 
with a value of 1, as shown in Eq. (9) and (10):

where r0(X) is the constraint vector and r(X) is the constraint 
value of the corresponding individual.

3.4.2  Fast non‑dominated sorting strategy

Based on the Pareto-domination judgment method, fast non-
dominated sorting (Fig. 3e) of the populations can be per-
formed to divide the different levels of the non-dominated 
layers. First, all schemes in the population are judged for 
domination, and all schemes that are not dominated by oth-
ers are removed from the population and constitute the non-
dominated layer F1 . Then, the population that eliminates 
the schemes in F1 is again judged for domination, and all 
non-dominated schemes are removed from the population 
to constitute F2 . This is repeated until all the schemes are 
deposited in the non-dominated layer of the corresponding 
rank.

The schemes at each level of the non-dominated layer are 
not dominated by each other, and the smaller the level of the 
non-dominated layer, the better the integrated performance 

(8)Dom(Xu,Xv) = if

⎧⎪⎨⎪⎩

F(Xu) ≠ F(Xv)

W(Xu) ≤ W(Xv)

V(Xu) ≤ V(Xv)

R(Xu) ≤ R(Xv)

⇒ Xu ≺ Xv.

(9)Res(X) =

{
0 if r(X) ≤ r0(X)

1 else

(10)

Domres(Xu,Xv) =

⎧
⎪⎨⎪⎩

Dom(Xu,Xv) ifRes(Xu) = Res(Xv)

Xu ≺ Xv else ifRes(Xu) < Res(Xv)

Xv ≺ Xu else,
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of the schemes in the layer. The F1 non-dominated layer is 
called the Pareto optimal set.

3.5  Pareto‑set‑selection strategy

When offspring are generated, the parent set Pg and result-
ing offspring set Qg are combined into a set Cg . The schemes 
at the smaller non-dominant level of the set are selected to 
enter the next generation until all schemes at level Fl are 
selected to Pg+1 , such that Pg+1 is equal in size to Pg . If 
all the individuals at level Fl are selected to Pg+1 , the next-
generation population Pg+1 is larger than Pg . Therefore, a 
certain strategy is required to select individuals at level Fl . In 
this study, crowding distance and reference-point-selection 
strategies are used. The details are as follows.

3.5.1  Selection strategy based on crowding distance

Conventional multi-objective optimization algorithms use 
the crowding distance to compare schemes in non-domi-
nated layers. Further judgment is made by calculating the 
CD value for each scheme. The calculation method is given 
in Eq. (11) and Fig. 3f:

By summing the normalized distance of each scheme in each 
dimension of the objective space, we can determine whether 
the scheme has diversity in the current non-dominated layer. 
A scheme with a larger value of CD represents fewer simi-
lar schemes and is more likely to be selected for the next 
generation.

3.5.2  Selection strategy based on reference point

In the reference-point-selection strategy [34, 35], the refer-
ence points are first predefined in the normalized hyperplane 
and the number of reference points should be close to the 
population size, which is defined by Eq. (12):

where M denotes the number of optimization objectives 
and H denotes the number of divisions. A schematic of the 
reference points in the case of three objectives and six divi-
sions is shown in Fig. 4. The purpose of generating reference 
points is to generate a set of reference vectors in the objec-
tive space, through which schemes in the population can be 

(11)CDi =

⎧
⎪⎨⎪⎩

∞ i= (1 or n)
M∑
j=1

Fi+1,j−Fi−1,j

Fmax
j

−Fmin
j

i = (2, ..., n − 1)
j = (1, ...,M).

(12)RefCount =

(
H +M − 1

H

)
= CH

H+M−1
,

associated with ensure that the diversity of the population is 
maintained during subsequent evolution.

We define Sg as the set consisting of all schemes in 
the F1–Fl layers and adaptively normalize all schemes 
in Sg to the hyperplane. First, we define the ideal point 
z = (zmin

1
, zmin

2
, ..., zmin

M
) , where zmin

i
 is the minimum value of 

the i-th objective. Next, the objective values of each scheme 
in Sg are transformed with respect to the ideal point as 
F�
i
(X) = Fi(X) − zmin

i
 . Subsequently, the extreme point ( zmax

i
 ) 

on each (i-th) objective axis is determined, and the hyper-
plane is formed based on the M extreme points. Finally, the 
intercept ai of each objective axis is obtained and the nor-
malized objective value is obtained from Eq.(13).

The normalized scheme in Sg in the hyperplane is associated 
with a reference point. First, the reference points are con-
nected to the ideal points to form a reference vector. Sec-
ond, the Euclidean distance between each individual and 
the reference vector is computed. Finally, each individual is 
associated with the nearest reference vector.

After associating the reference points with the scheme in 
Sg , the number of times the first l – 1 layers of the schemes 
are associated with each reference point �j is counted. Let 
Jmin =

{
j ∶ argminj�j

}
 be the set of reference points with the 

smallest �j . Select the reference point j̄ ∈ Jmin.
If the selected 𝜌j̄ = 0 , no scheme is associated with j̄ in 

the first l – 1 layers. At this time, two choices are available. 
1) A scheme in Fl that is associated with this reference point 
exists. At this time, the individual with the shortest distance 

(13)Fn
i
(X) =

F�
i
(X)

ai

Fig. 4  (Color online) Reference points are shown on a normalized 
hyperplane for a three-objective problem with p = 6
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from the reference vector Euclidean is selected to join the 
population, and at the same time, 𝜌j̄ is increased by 1. 2) If 
the reference point j̄ does not have a scheme associated with 
it in Fl , then this reference point is skipped.

If 𝜌j̄ > 0 , then at least one scheme exists in the first l - 1 
layers associated with j̄ . In this case, the scheme in j̄ is cho-
sen randomly to join the population, whereas 𝜌j̄ increases by 
one. The reference-point strategy ensures that the population 
is well distributed and can guide the evolution of the popula-
tion to a uniform Pareto front.

4  Numerical evaluation 
for radiation‑shielding‑optimization 
problems

Two sets of numerical simulations are conducted, as follows:

(1) The GA and ABC algorithms are combined with 
Pareto-frontier-selection strategies based on the ref-
erence-point strategy or crowding-distance strategy, 
respectively, to test the optimization of a simple three-
dimensional (3D) shielding problem, and the optimiza-
tion performance of each strategy is compared.

(2) Constrained many-objective optimization of a complex 
shielding problem is conducted using the proposed 
optimization method and is compared with the initial 
shielding scheme.

In the following sections, we refer to the algorithms based 
on the reference-point-selection strategy as RP-NSGA and 
RP-MOABC, and those based on the crowding-distance 
strategy as CD-NSGA and CD-MOABC. The neutron data-
base used in the simulation is ENDF/B-VIII.0 [36], and the 

photon database is MCPLIB84. The neutron flux-dose rate 
and photon flux-dose rate conversion factors used are NCRP-
38 and ANSI/ANS 1977 [37], respectively. Particle-trans-
port simulations are conducted using the Monte Carlo code 
MagicMC [38], and the overall optimization process, includ-
ing evolutionary algorithms and the Monte Carlo code, is 
integrated into the self-developed software MOSRT (Fig. 5).

4.1  Many‑objective optimization for a simple 3D 
shielding problem

The first problem focuses on the multiple objectives of a 
simple 3D shielding structure, as shown in Fig. 6a. The opti-
mization objectives are to determine the total volume and 
weight of the R1-R10, U1-U5, and L1-L5 shielding layers 
as well as the radial lateral, axial upward, and axial down-
ward dose rates of the shielding layers. The thickness of each 
shielding layer in the optimized model ranges from 0.3 cm 
to 13 cm . The reactor consists of a homogenized core with 
a height of 167.6 cm and radius of 78.8 cm . The source term 
is set as a fixed source with a probability distribution based 
on the Watt-fission spectrum. A comparative analysis of the 
optimization performance of each algorithm is performed 
using the average objective value and hypervolume [39] 
value.

In this problem, GA-based algorithms use binary encod-
ing and ABC-based algorithms use real-number encoding. 
The population size of all algorithms is set to 210, and the 
number of reference points of the algorithms using the RP 
strategy is 210 (the number of divisions H=6). The number 
of MC transported particles is 1.0 × 107.

For the shielding-optimization process, the time com-
plexity is mainly related to the number of evolutionary gen-
erations g and the population size N , where the total time 

Fig. 5  (Color online) Radiation-
shielding design optimization 
based on MOSRT software
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complexity of the GA is O(gN) and that of the ABC algo-
rithm is O(2gN) . To ensure that the tests are conducted under 
identical conditions, the number of evolutionary generations 

of the GA-based algorithms is set to 100, whereas that of 
ABC-based algorithm is 50.

Fig. 6  (Color online) Many-objective optimization results for the sim-
ple 3D shielding problem. a Schematic of the simple 3D shielding 
structure. b The average values of the volumes for shielding schemes 
in the Pareto front. c The average values of the weights for shielding 
schemes in the Pareto front. d The average values of the axial upward 

dose rates for shielding schemes in the Pareto front. e The average 
values of the axial downward dose rates for shielding schemes in the 
Pareto front. f The average values of the radial dose rates for shield-
ing schemes in the Pareto front. g Hypervolume indicator results
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As observed in the average objective values shown in 
Fig. 6b-f, the algorithms based on the reference-point strat-
egy show excellent optimization results in terms of the 
weight and volume objectives. Compared with the conven-
tional crowding-distance strategy, the average volume and 
weight values for the shielding schemes in the final gen-
eration of RP-NSGA are only 24.5% and 14.5% of those 
of CD-NSGA, and the average volume and weight values 
of RP-MOABC are only 17.3% and 9.77% of those of CD-
MOABC. Regarding the dose rates in each region, the results 
in the final generation of each strategy are not significantly 
better or worse; the distribution of the results is relatively 
close, and the algorithm with relatively better performance 
is RP-NSGA. Overall, based on the average objective values, 
the algorithms using the reference-point strategy exhibit bet-
ter convergence results.

To further evaluate the comprehensive performance of 
each algorithm scientifically, the hypervolume (HV) is cho-
sen as the quantified factor to measure the convergence and 
distribution of the shielding schemes. The HV metric is a 
widely used performance evaluation method for engineering 
optimization problems and does not require a real Pareto 
front to judge the strengths and weaknesses of a set of popu-
lation schemes. The HV metric is calculated as shown in 
Eq.(14):

The combined performance of the algorithms can be deter-
mined by calculating the sum of the values of the hypervol-
ume vi in space for all the schemes in the population. The 
larger the combined value of the hypervolume, the better the 
performance. Figure 6g shows that the optimization perfor-
mance from high to low follows the order of RP-MOABC, 
RP-NSGA, CD-MOABC, and CD-NSGA. The algorithms 
based on the reference-point strategy are comprehensively 
better than the conventional crowding-distance strategy for 
many-objective optimization problems.

4.2  Constrained many‑objective optimization 
for a complex 3D shielding problem

The second problem focuses on conducting a constrained 
many-objective optimization for the complex shielding 
structures shown in Fig. 7a. For the constraint objectives, 
the thermal neutron-flux rate on the outermost shielding 
layer of the primary-shielding system must be less than 
1.0 × 105 n∕(cm2

⋅ s) , the fast neutron-flux rate must be less 
than 1.0 × 103 n∕(cm2

⋅ s) , and the gamma-ray energy-flux 
rate must be less than 6.0 × 106 MeV∕(cm2

⋅ s) . The opti-
mization objectives include the total volume and weight of 
shielding layers R1–R8 and U1–U3, as well as the dose rates 

(14)HV = �

�
Si⋃
i=1

vi

�
.

in the radial and axial upward directions of the shielding 
layers. The variable parameters are the shielding-layer thick-
ness, shielding-layer materials, and partial material composi-
tions (boron polyethylene, lead boron polyethylene, tungsten 
alloy). The thickness of each shielding layer in the optimized 
model ranges from 15 cm to 80 cm . The reactor consists of 
a homogenized core with a height of 167.6 cm and radius 
of 78.8 cm . The source term is set as a fixed source with a 
probability distribution based on the Watt-fission spectrum.

In this problem, GA- and ABC-based algorithms use 
real-number encoding. The population size of all the algo-
rithms is set to 100, and the number of reference points of 
the algorithms using the RP strategy is 84. (The number of 
divisions H=6.) The number of MC transported particles is 
2.0 × 108 . For computational efficiency, eight AMD EPYC 
7H12 CPUs (Dual 128 core, 2.6 GHz) are used for massive 
parallel computation.

A heat map of the optimization ratio is plotted for the 
last generation of optimized shielding schemes compared 
to the initial shielding scheme, where the optimization ratio 
is defined in Eq.(15):

In Eq. (15), i represents the individual index, N represents 
the population size, j represents the dimension of the objec-
tive values, M represents the total number of objective val-
ues, and F represents the corresponding objective values. 
A higher value of the optimization ratio indicates a better 
optimization of the corresponding objective. Figure 7b-e 
shows that the optimization effect of each method is obvi-
ous in the three objective dimensions of volume, weight, and 
radial dose rate. However, for the top-side dose rate, some 
of the schemes show a degree of degradation, but they still 
achieve a better scheme set compared to the initial shield-
ing scheme. The optimization performances of RP-NSGA 
and RP-MOABC in each objective dimension are better than 
those of CD-NSGA and CD-MOABC, which proves that 
the algorithms proposed in this study are feasible for many-
objective optimization problems.

In practical engineering shielding-design problems, the 
final design scheme can be selected from a Pareto set of 
optimization schemes based on specific requirements. In 
this study, the miniaturization schemes obtained by the RP-
NSGA algorithm (Shield #1 ) and RP-MOABC algorithm 
(Shield #2 ) are selected for demonstration. The shielding 
structure is shown in Fig. 8b-c, the dose field distribution 
is shown in Fig. 8d-e, and the specific parameters and opti-
mization effects are listed in Tables 1, 2, 3 and 4. The dose 
rates are computed with the MagicMC Monte Carlo code 
using the global variance-reduction method [40–43] with a 
statistical error of less than 5%.

(15)
improvements =

(Finitial,j−Fi,j)
Finitial,j

× 100%

i = 1, ...,Nj = 1, ...,M
.
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5  Conclusion

With the development of new nuclear-reactor types, 
this study introduces two many-objective evolutionary 

algorithms based on a reference-point-selection strategy and 
applies them to many-objective radiation-shielding-optimi-
zation problems. The basic principles of the proposed evolu-
tionary algorithms for shielding optimization are described 

Table 1  Component ratios 
of various materials for each 
optimized shielding scheme

Shielding Scheme No. Borated Polyeth-
ylene

Lead-Borated Polyethylene Tungsten Alloy

B4 C (%) PE (%) Pb (%) B4 C (%) PE (%) W (%) Ni (%) Fe (%)

Initial shield 80.30 19.70 53.17 2.34 44.49 98.66 0.94 0.40
Shield #1 76.85 23.15 80.17 0.99 18.83 90.53 6.63 2.84
Shield #2 30.34 69.66 90.00 0.50 9.50 90.62 6.57 2.81

Table 2  Objective values 
and optimization ratios of the 
optimized shielding schemes

Shielding Scheme No. Volume Weight Radial dose rate Axial upper dose 
rate

Numeric OR Numeric OR Numeric OR Numeric OR

(cm3) (%) (g) (%) (rem/hr) (%) (rem/hr) (%)

Initial shield 1.01 × 108 – 9.11 × 108 – 9.90 × 100 – 9.95 × 10−1 –
Shield #1 8.17 × 107 18.95 4.44 × 108 51.19 9.36 × 100 5.44 7.75 × 10−1 22.09
Shield #2 8.15 × 107 19.12 6.88 × 108 24.50 9.77 × 100 1.32 5.31 × 10−1 46.62

Table 3  Numerical values of constrained objectives for the optimized shielding schemes

Shielding Scheme No. Radial outermost shield Axial topmost shield

Thermal neutron Fast neutron Photon Thermal neutron Fast neutron Photon

(n∕(cm2
⋅ s)) (n∕(cm2

⋅ s)) (MeV∕(cm2
⋅ s)) (n∕(cm2

⋅ s)) (n∕(cm2
⋅ s)) (MeV∕(cm2

⋅ s))

Initial shield 1.06 × 102 6.15 × 102 3.56 × 105 1.94 × 102 7.39 × 101 5.35 × 105

Shield #1 6.01 × 10−2 3.57 × 100 5.28 × 105 2.53 × 100 2.53 × 100 2.88 × 105

Shield #2 2.34 × 101 3.02 × 102 3.95 × 105 5.96 × 100 1.81 × 102 1.01 × 105

Table 4  Design parameters of 
the optimization schemes

Shielding 
layer No.

Initial shield Shield #1 Shield #2

Thickness Material Thickness Material Thickness Material

(cm) type (cm) type (cm) type

R1 28.7 B-Steel 28.2 Pb-B-PE 40.0 Pb-B-PE
R2 25.8 Pb-B-PE 33.3 Pb-B-PE 40.0 B

4
C

R3 35.4 W-Ni-Fe 34.7 W-Ni-Fe 29.8 H
2
O

R4 32.2 Pb-B-PE 31.0 B
4
C 15.0 W-Ni-Fe

R5 36.9 W-Ni-Fe 33.2 B-PE 40.0 W-Ni-Fe
R6 21.8 W-Ni-Fe 22.0 Pb-B-PE 15.0 Pb-B-PE
R7 50.0 Pb-B-PE 20.0 W-Ni-Fe 20.0 B-Steel
R8 66.8 H

2
O 20.3 H

2
O 20.0 B-PE

U1 34.1 W-Ni-Fe 64.3 W-Ni-Fe 74.4 W-Ni-Fe
U2 58.0 H

2
O 78.5 H

2
O 80.0 W-Ni-Fe

U3 46.4 Air 20.0 Air 20.0 Air
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in detail. The algorithms efficiently and accurately deliver an 
optimal set of shielding schemes that are more compact and 
lightweight and have lower dose rates. This study conducts 
a performance assessment based on a simple 3D shielding 
problem, with the results indicating superiority over evo-
lutionary algorithms that rely on crowding-distance strate-
gies. However, for the optimization of a complex shielding 
problem with multiple constraints for practical applications, 
the algorithms proposed in this study are able to obtain 
optimized design schemes with superior objective values 

compared to the initial scheme. Furthermore, by incorpo-
rating the composition of the shielding materials into the 
optimization process, the algorithms enhance the diversity 
and creativity of the shielding design. In summary, optimiza-
tion algorithms can effectively identify excellent shielding 
schemes in the early stages of radiation-shielding design for 
nuclear reactors. This study provides significant guidance 
for radiation-shielding design and provides supplementary 
data during the conceptual design phase of novel nuclear 
facilities with limited engineering experience.

Fig. 7  (Color online) Constrained many-objective optimization 
results for complex shielding structure. a Schematic of the com-
plex shielding structure. b Improvements of the optimized objec-
tives with RP-NSGA. c Improvements of the optimized objectives 

with RP-MOABC. d Improvements of the optimized objectives with 
CD-NSGA. e Improvements of the optimized objectives with CD-
MOABC
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