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Abstract
Superconducting radio-frequency (SRF) cavities are the core components of SRF linear accelerators, making their stable 
operation considerably important. However, the operational experience from different accelerator laboratories has revealed 
that SRF faults are the leading cause of short machine downtime trips. When a cavity fault occurs, system experts analyze 
the time-series data recorded by low-level RF systems and identify the fault type. However, this requires expertise and 
intuition, posing a major challenge for control-room operators. Here, we propose an expert feature-based machine learning 
model for automating SRF cavity fault recognition. The main challenge in converting the “expert reasoning" process for SRF 
faults into a “model inference" process lies in feature extraction, which is attributed to the associated multidimensional and 
complex time-series waveforms. Existing autoregression-based feature-extraction methods require the signal to be stable and 
autocorrelated, resulting in difficulty in capturing the abrupt features that exist in several SRF failure patterns. To address 
these issues, we introduce expertise into the classification model through reasonable feature engineering. We demonstrate the 
feasibility of this method using the SRF cavity of the China accelerator facility for superheavy elements (CAFE2). Although 
specific faults in SRF cavities may vary across different accelerators, similarities exist in the RF signals. Therefore, this study 
provides valuable guidance for fault analysis of the entire SRF community.

Keywords Superconducting radio-frequency cavity · Fault recognition · Machine learning · Feature engineering · Particle 
accelerator

1 Introduction

The China initiative accelerator driven system (CiADS) [1], 
currently under construction, employs a high-power linear 
accelerator at its front-end to generate a 500 MeV proton 
beam with an intensity of 5 mA [2–4]. To verify the feasibil-
ity of a continuous wave (CW) proton beam with a current 
of 10 mA, the China ADS front-end demo linac (CAFe) was 
built. In March 2021, CAFe achieved its design goal with the 
successful commissioning of a 10 mA, 205 kW CW proton 
beam at an energy of 20 MeV [5].

The synthesis and property study of superheavy nuclei 
is an important frontier and one of the difficulties in cur-
rent nuclear physics [6–10]. Since 2021, the CAFe facility 
had been upgraded to CAFE2 (China accelerator facility 
for superheavy elements) for the exploration of new iso-
topes with an operating beam intensity of approximately 
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10 p�A [11, 12]. The layout of CAFE2, as shown in Fig. 1, 
includes both normal conducting and superconducting (SC) 
sections, and a new gas-filled recoil separator, SHANS2 
(spectrometer for heavy atoms and nuclear structure-2), was 
constructed at the end of the beam line [13].

The SC section contains a total of 23 SC half-wave 
resonator (HWR) cavities assembled in four cryomodules 
(CM1–CM4) and regulated with an individual digital low-
level radio-frequency (LLRF) system, in which CM1 to 
CM3 are each equipped with six HWR010 cavities, while 
CM4 is equipped with five HWR015 cavities [5, 14–16]. 
HWR010 and HWR015 are two cavity types named accord-
ing to their optimal � value, with their operational param-
eters are shown in Table 1.

To meet the high demand for beam availability in the 
future CiADS, the research team at the Institute of Mod-
ern Physics is working diligently to enhance the reliability 
of various subsystems of the CAFE2. However, owing to 
the stringent operating conditions of the SC cavities (high 
power, electric field, and frequency) and the extremely nar-
row operating bandwidth [17], cavity failures easily occur 
when subjected to disturbances (e.g., mechanical vibra-
tions). The operational experiences from different accelera-
tor laboratories have revealed that the leading causes of short 
machine downtime trips are SRF faults [18–20]. Rapidly 
identifying the causes of faults and reducing the SC cav-
ity failure rate for stable operation of the accelerator are 
imperative.

When an RF fault occurs, the LLRF’s data acquisition 
(DAQ) system simultaneously records 16 RF signals from 
each cavity, providing comprehensive fault information. This 
process is triggered when the LLRF system for any cavity 
in a cryomodule detects a fault condition (e.g., field fluctua-
tion beyond the tolerance limit). Based on this data, system 
experts can analyze the fault types and causes to compre-
hend the underlying physical mechanisms. To implement 

appropriate measures for fault handling, the accurate and 
swift identification of fault patterns is essential. However, 
the diversity of fault modes and the similarity of fault char-
acteristics complicate fault analysis. Although control-room 
operators have access to raw waveform data captured during 
fault occurrences, correctly interpreting the signals requires 
expertise. Additionally, a fault in one pattern can trigger a 
different pattern through several physics effects, and a fault 
in a single SC cavity may propagate to the adjacent cavi-
ties, leading to group faults in a cryomodule. In such cases, 
providing near real-time fault feedback is rather crucial for 
control-room operators.

Identifying the offending cavity with existing software 
and hardware is difficult to do automatically. Traditional 
methods are generally limited by the requirement of exper-
tise and cannot quickly process large amounts of fault data. 
In recent years, machine learning (ML) methods have made 
remarkable progress in pattern recognition tasks and are 
widely used in various fields [21]. As a data-driven algo-
rithm, ML shows potential applications in particle accelera-
tors, such as beam optimization, intelligent control system, 

Fig. 1  (Color online) Layout 
of the CAFE2 facility. Two 
types of half-wave resona-
tor superconducting cavities 
(HWR010 and HWR015) are 
implemented. Note that for 
cavity CMm−n , subscripts m and 
n represent the mth cryomodule 
and the nth cavity, respectively

Table 1  Operating parameters of the CAFE2 superconducting cavity

Cavity HWR010 
(CM1 ∼ CM3)

HWR015 (CM4)

Q
L
 (arb.units) 3 × 105 ∼ 10 × 105 6 × 105 ∼ 8 × 105

f0.5 (Hz) 81.25 ∼ 270.0 101.5 ∼ 135.4

fRF (MHz) 162.5 162.5
Norm. shunt impedance 

( Ω)
225 382

Vc∕ Epeak (m) 0.038 0.066
Epeak (MV/m) 25 ∼ 35 ∼ 30

Opt. β (v/c) (arb.units) 0.10 0.15
KLFD (Hz/(MV/m)2) −0.4 ∼ −0.2 ∼ −0.2
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anomaly detection, and fault diagnosis [22–27]. For fault-
pattern recognition of SC cavities, the challenge lies in solv-
ing a multidimensional time-series classification problem. 
SC cavity faults occur in milliseconds or microseconds; 
therefore, a high sampling rate is required to capture the sig-
nal features when the fault occurs. However, existing time-
series feature-extraction models, such as long short-term 
memory (LSTM) and gated recurrent units (GRU), cannot 
process such a long sequence, and the fault information is 
lost in the data after downsampling [28]. Therefore, imple-
menting feature engineering is vital for fault identification. 
At the Jefferson laboratory (JLab), the continuous electron 
beam accelerator facility (CEBAF) uses the autoregression 
(AR) method to extract features from the cavity voltage and 
the incident and reflected voltages, and builds an ML-based 
fault classification model [18]. Compared to expert results, 
the method achieves a classification accuracy of 82%. 
Research results from CEBAF indicate that the performance 
of the ML method in identifying abrupt faults (e.g., LLRF 
control trips and E-quench faults) is unsatisfactory [18, 29]. 
This may be primarily attributed to the limitations of AR 
methods in extracting non-stationary signals.

In this work, we introduce an expert knowledge-driven 
approach to feature engineering construction, aiming to 
address the limitations of existing methods in automated 
fault identification. We analyzed the historical data gener-
ated via the operation of the CAFE2 and categorized the 
SC cavity faults into eight types. Based on the formation 
mechanism and waveform characteristics of different faults, 
we designed reasonable feature engineering to transform raw 
data into an intermediate representation that expresses the 
underlying data patterns. Subsequently, we evaluated the 
effect of feature engineering on CAFE2 through two aspects: 
confusion matrix and information gain, to obtain a compre-
hensive understanding of its impact on model performance. 
Finally, fault analysis was conducted on the historical data 
of CAFE2 operation, tallying the most prevalent fault types 
for each cavity. This analysis provides valuable guidance for 
the future maintenance and upgrade of SC cavities, enabling 
the development of preventive measures against common 
faults as well as the optimization of maintenance strategies 
to ensure system stability and sustained high-efficiency 
operation.

The remainder of this paper is organized as follows. In 
Sect. 2, the method for acquiring offline fault data of the SC 
cavity is introduced and the criteria for labeling fault types 
are discussed. In Sect. 3, the development of ML models 
is discussed, including the calibration of the raw data, the 
implementation of feature engineering, and the theory of 
ensemble learning methods. Finally, the performance evalu-
ation of the aforementioned method based on 2023 opera-
tional data is presented, followed by a discussion regarding 
future research.

2  Data analysis and labeling

2.1  Data acquisition

For each cavity fault, the newly developed DAQ system 
synchronously captures timestamps and saves waveform 
records of 16 RF signals from each of the cavities in 
the cryomodule. The DAQ system comprises LLRF and 
EPICS (experimental physics and industrial control sys-
tems) components along with various high-level applica-
tions that collaborate to collect and store data for subse-
quent offline analyses and inspections.

A waveform capture module was developed to gather 
RF time-series signals after a fault occurrence and write 
them to a file for later analysis. Each of the 16 harvested 
waveform signals comprises 50000 points. The trigger is 
configured such that approximately 80% of the recorded 
data precede the fault, whereas 20 % follow the fault. 
Subsequently, the collected waveform data are written to 
network storage and uploaded to a data server via a wave-
form-specific web service. Finally, all waveform-related 
data are backed up online indefinitely to tape daily and 
compressed monthly to reduce online storage (Fig. 2).

According to the different research requirements of 
CAFE2, the sampling rate is typically adjusted within the 
range of 10 kHz to 100 kHz (based on the dominant fault 
pattern of the specific cavity), resulting in approximately 
0.5 − 5 s of fault data. As the feature engineering method 
proposed in this study is not affected by the sampling rate, 
we extract 0.5 s segments from all fault waveforms as the 
raw data for feature engineering, of which 80 % is pre-fault 
information and 20 % is post-fault information.

2.2  Data labeling

We analyzed the fault data generated by the 23 SC cavi-
ties of the CAFE2 accelerator between January 2023 and 
November 2023 and labeled 1932 typical samples for 
supervised learning. When a fault is triggered in the SC 
cavity, the low-level system sends 16 channels of the RF 
signals to the data server. Notably, these 16 channel sig-
nals include 6 real measurement signals extracted using 
a pickup coupler and directional coupler, as well as 10 
control signals generated internally within the FPGA (e.g., 
feedforward signals for pulse beam compensation or cali-
bration signals). In this work, the cavity voltage ( V∗

c
 ), inci-

dent voltage ( V∗
f
 ), and reflected voltage ( V∗

r
 ) from the six 

measurement signals and the LLRF output signal ( VLLRF ) 
from the 10 FPGA signals were selected for fault analy-
sis, as shown in Fig. 2b. Generally, the other signals can 
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be obtained by linearly transforming these four signals. 
Table 2 lists key signals and parameters.

Based on these signals, we summarize eight fault modes: 
thermal quench (quench), helium pressure fluctuations (helium 
fluc), electrical quench (E-quench), flashover, microphonics, 
ponderomotive, LLRF trip, and single-cavity off (cavity off), 
as shown in Fig. 3. Notably, during the commissioning phase 
of CAFe, faults induced by transient beam-loading effects with 
a beam current of 10 mA are common; however, with CAFE2 
operating in the CW mode at microampere-level beam cur-
rents, this fault pattern is essentially absent [30, 31]. We briefly 
describe the process of fault-signal analysis and labeling from 
the perspective of system experts.

Quenching refers to the localized overheating of the SC 
cavity wall, which results in the premature breakdown of 
superconductivity (thermal breakdown). A quench typically 
manifests as a rapid drop in the unloaded quality factor ( Q0 ) 
and the loaded quality factor ( QL ). When a fault occurs, the 
cavity’s QL and detuning can be solved according to Vc and Vf , 
respectively, as shown in Eq. (1) [32].

(1)

⎧⎪⎨⎪⎩

�0.5 =

d�Vc�
dt

2�Vf� cos(�−�)−�Vc� , QL =
�RF

2�0.5

Δ� =
d�

dt
−

�0.5(�2Vf�) sin(�−�)
�Vc�

where � and � represent the phases of Vc and Vf , respectively; 
and �0.5 and Δ� represent the half-bandwidth and detun-
ing, respectively. Figure 4a shows the calculated QL and the 
detuning based on the waveforms of the four fault modes in 
Fig. 3: quenching, helium fluc, E-quench, and flashover [33, 
34]. A considerable change in the cavity QL was observed 
only for the quench patterns, whereas no change in the cavity 
QL was observed for other fault patterns.

Quenches induce changes in the heat load of the cryosys-
tem, resulting in rapid fluctuations in helium pressure over 
a short period, ultimately causing the SC cavities within the 
cryomodule to undergo considerable detuning on the milli-
second scale. When detuning exceeds the cavity bandwidth, 
the power source output reaches saturation and eventually 
triggers multiple cavity faults (Fig. 5a). Typically, helium 
pressure fluctuations (helium flucs) are secondary faults that 
are induced by quenching. However, in a few cases (e.g., SC 
magnet quenching or cryogenic system control logic faults), 
we observed simultaneous helium pressure changes in the 
four cryosystems without any cavities experiencing quench-
ing (Fig. 4b). In this study, we labeled these fault patterns 
as helium flucs.

E-quench typically manifests as a sudden and com-
plete loss of stored energy in the cavity. JLAB interpreted 
this loss as the effect of the release of numerous elec-
trons inside the cavity, which absorbed the cavity energy. 

Fig. 2  (Color online) a Schematic showing the data generation and storage systems. b Simplified diagram of LLRF control system

Table 2  Definition of key signals and parameters

Name Definition

Vc Maximum accelerating voltage acting on the beam.
Vf Forward wave sent from the RF generator (e.g., SSA).
Vr Backward wave reflected from the cavity input coupler back to the RF generator.
f0.5 Frequency bandwidth where the voltage drops to 1√

2
 (–3 dB) of its maximum value on the resonance curve.

Δf Frequency difference between the RF generator frequency ( fRF ) and the cavity resonance frequency ( f0 ), 
expressed as Δf = f0 − fRF.
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Fig. 3  (Color online) Waveforms for eight different patterns of faults. 
The plots display the normalized amplitude and phase of cavity volt-
age ( Vc ), incident voltage ( Vf ), and reflected voltage ( Vr ), with the 

normalization method described in Sect. 3. The scale of the horizon-
tal axis has been modified to reflect the time of the fault

Fig. 4  (Color online) a The calculated QL and detuning based on the 
waveforms of four fault modes: quench, helium fluc, E-quench, and 
flashover. b Helium pressure fluctuates simultaneously in four differ-

ent cryomodules without any cavity undergoing quench. c LLRF trip: 
The DAC output suddenly drops to zero around 0 ms
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A flashover involves an FE-initiated discharge on an RF 
ceramic window surface [18, 33]. It typically does not 
cause any Vc degradation but can result in burst noise in 
the cavity’s pickup signal. Notably, E-quench can also be 
accompanied by burst noise events. The main difference 
between the two is that E-quench can cause total or par-
tial gradient loss, whereas flashover does not cause such 
a loss [34]. Experience from CAFE2 operations suggests 
that when the gradient loss exceeds 30 %, E-quench may 
further trigger a quench fault and cause multiple cavity 
failures within the same cryomodule (Fig. 5b). Conversely, 
when the gradient loss is less than 30 %, multiple cavity 
failures generally do not occur. Therefore, in this work, we 
categorize E-quench events with gradient loss less than 

30% as “flashover” faults, and those with gradient loss 
greater than 30% as “E-quench” faults.

Ponderomotive oscillatory instabilities result from the 
nonlinear coupling between the electrical and mechanical 
modes of the cavity, which is accompanied by an acceler-
ating gradient and detuning that begins to oscillate with 
increasing amplitude [35]. Based on measurements of the 
cavity mechanical mode transfer function, most cavities 
exhibit a significant mechanical mode around 125 Hz [36]. 
As shown in Fig. 5c, when a cavity undergoes oscillations 
due to the ponderomotive effect, the oscillations in the 
cavity can be transmitted to other cavities, resulting in 
a multicavity fault. Notably, the formation of pondero-
motive oscillations depends on factors such as feedback 

Fig. 5  (Color online) a CM4−4 experienced a quench fault, leading to 
the SC cavity in the cryomodule being detuned by hundreds of Hertz 
in the millisecond order. b The total gradient loss caused by E-quench 
led to multicavity faults within cryomodule. c and d are multicavity 

resonances caused by ponderomotive and microphonics, respectively. 
(In all the above subgraphs, for each cryomodule, only the cavities 
where the Vc signal showed significant changes were retained for clar-
ity.)
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parameters, Lorentz detuning coefficient, and cavity detun-
ing [37, 38]. In this example, no ponderomotive oscilla-
tions are observed in CM2−5.

Microphonics are changes in the cavity frequency 
caused by connections to the external world, such as vac-
uum pump vibrations, at a frequency generally less than 
50 Hz. Compared with ponderomotive instability, cavity 
detuning induced by microphonics is determined by exter-
nal vibration sources, with the oscillation energy typically 
not exhibiting divergent growth. As shown in Fig. 5d, 
microphonics typically occur in multiple cavities. Nota-
bly, microphonics and helium flucs are commonly grouped 
as microphonic faults [35]. In this study, we specifically 
distinguished between vibration-dominated and non-vibra-
tion-dominated (e.g., cryogenic system-dominated) cases. 
Therefore, we categorized these into two fault modes.

There are many possible causes of LLRF faults, such 
as electronics being affected by radiation showers in the 
tunnel, leading to single-event upsets that flip a bit in the 
digital data stream [39]. In CAFE2, the most common type 
of LLRF fault is triggered by the control logic inside the 
FPGA. As shown in Fig. 4c, around 0 ms, the DAC output 
suddenly drops to zero, causing a transient fluctuation in 
Vc and triggering a fault. We carefully checked the inter-
nal logic of the LLRF but found no issues. One possible 
reason is that clock glitches disturb the accumulator of the 
proportional–integral (PI) controller. The yellow curve in 
Fig. 4c shows the PI output obtained from the simulation 
based on the input of the PI controller, which differs from 
the DAC output by a fixed constant. LLRF faults are gen-
erally single-issue faults, implying that they do not cause 
further faults in multiple cavities. Similar to the case in 
the CEBAF [18], we classify “cavity turn off" events trig-
gered by external machine interlock signals as “cavity off" 
modes, including arc interlock or RF source interlock.

Based on the above steps, we completed data annotation 
and labeled a total of 1932 fault events. The distribution 
of sample counts for each fault type is shown in Fig. 6. 
Because the first cavity to trigger a fault can usually be 
determined based on the time of the fault occurrence, in 
this study, we focused on identifying the fault type of the 
source cavity.

3  Machine learning method

For fault-pattern recognition in an SC cavity, the challenge 
lies in solving a multidimensional time-series classifica-
tion problem. In this section, we introduce how to extract 
fault-related features from raw RF signals and construct a 
machine learning model.

3.1  Data preprocessing

The cavity voltage ( V∗
c
 ), incident voltage ( V∗

f
 ), and reflected 

voltage ( V∗
r
 ) were selected for the feature extraction and 

analysis (* represents the raw measurement data). Previous 
studies demonstrated the superior predictive capability of 
these three signals for fault classification and fault warn-
ing [18, 23]. Before feature extraction, it is imperative to 
perform calibration and normalization procedures on the 
raw signals. The calibration of the actual Uf and Ur is given 
by [40, 41]

where X and Y are complex coefficients obtained by solving 
the linear regression equations [42].

Subsequently, the three signals were normalized relative 
to V∗

c
 using the following formula:

Note that S = V∗
c

 represents the mean value of V∗
c
 in the 

steady state.

3.2  Feature engineering

The success of ML methods often depends on data and fea-
tures, with feature engineering playing a crucial role and 
directly affecting the performance, generalization, and inter-
pretability of the models. Figure 3 shows the amplitude and 

(2)
{

Vf−cali
= XV∗

f

Vr−cali
= YV∗

r

(3)

⎧⎪⎨⎪⎩

Vc =
V∗
c

S

Vf =
Vf−cali

S

Vr =
Vr−cali

S

.

Fig. 6  (Color online) Histogram showing the distribution of fault 
events by type. There are a total of 1932 unique fault events
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phase changes in Vc , Vf , and Vr recorded by the LLRF system 
when a fault occurs in the SC cavity. Based on the experience 
of experts in inferring fault types, we extracted eight features 
related to fault types, which were calculated from the ampli-
tudes and phases of Vc , Vf , and Vr . These features serve as 
intermediate representations of the raw data and are employed 
as model inputs. The following section introduces the calcula-
tion methods for the eight features.

First, we introduce the thermal quenching (quenching) rec-
ognition feature Qid . When a cavity quenches, its QL decreases 
rapidly [43]. Although QL serves as a hallmark for distinguish-
ing quench faults from other modes, its computational process 
requires solving the Vc differential equation (Eq. (1)), which 
is highly time consuming, whereas fault identification must 
be accomplished within milliseconds. Next, we introduce the 
quench identification features based on the cavity coefficient 
difference equation. Let Vc = rei� and Vf =

1

2
�ei� . Based on the 

differential equation of the cavity without a beam and separat-
ing its real and imaginary parts, Eq. (4) can be obtained from 
[40, 42, 44]

where rc denotes the amplitude of Vc predicted using the 
differential equation of the cavity. Let Δ� = � − � ; we 

(4)
{

ṙc + rc𝜔0.5 = 𝜔0.5𝜌 cos(𝜃 − 𝜑)

rc�̇� − rΔ𝜔 = 𝜔0.5𝜌 sin(𝜃 − 𝜑)
.

construct a new signal � = � cosΔ� . The real parts of Eq. 
(4) can be expressed as

where Ts is the sampling period. Based on Eq. (5), we solved 
the values of rc for the eight fault patterns, as depicted in 
Fig. 3 ( each subplot in Fig. 7, which corresponds to Fig. 3).

Let e = rc − r . When cavity quenching does not occur, 
the differential equation of the cavity can effectively 
describe its dynamic behavior. Therefore, the predicted 
amplitude value, rc , should be consistent with the meas-
ured value, r; that is, the error e → 0 . When cavity quench 
occurs, QL and �0.5 change by approximately one order of 
magnitude, as shown in Figs. 5. In this case, the dynamic 
behavior of Vc no longer satisfies the coefficient difference 
equation above. Therefore, the predicted value rc does not 
agree with the measured value r, and the error e increases 
sharply, as shown in Fig. 7a. In addition, some strong tran-
sient disturbances on the order of microseconds, such as 
the dark current triggered by the E-quench fault, can lead 
to large transient spikes in the error signal e, as shown in 
Fig. 7c. Therefore, we employed the area under the curve 
e as the quench fault-recognition feature, which is given by

(5)rc(n) = Ts�0.5�(n − 1) +
(
1 − Ts�0.5

)
rc(n − 1),

Fig. 7  (Color online) The variations of r, rc , r − rc , and Qid in the 
8 different types of faults (note that each subplot in this figure cor-
responds to one in Fig.  3). Among them, during quench fault, the 

shaded area increases continuously; in the case of E-quench fault, 
although there is a transient spike signal, the area under the curve is 
relatively small
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where TQ = 100 ms, as indicated by the shaded area in 
Fig. 7a. We calculated Qid for each of the labeled 1932 sam-
ples. Figure 9a shows that Qid of the quench fault is signifi-
cantly greater than that of the other faults.

Helium fluc and ponderomotive faults are prone to cavity 
phase detuning. We utilized a quantity related to the detun-
ing angle, the mean phase difference between Vc and Vf , as 
a learning feature to identify these two fault types, which is 
expressed as follows:

As shown in Fig. 9b, the phase difference between the 
helium fluc and ponderomotive faults is approximately 40◦.

Both ponderomotive and microphonics are related to 
mechanical vibrations, as shown in Fig. 3e and Fig. 3f, where 
Vc exhibits significant oscillatory characteristics. Given this, 
we apply fast Fourier transforms (FFT) to convert the detun-
ing signal ( Δ� = � − � ) from the time domain to the fre-
quency domain to obtain frequency-domain representations 
for the analysis of frequency components and spectral char-
acteristics. Subsequently, as illustrated in Fig. 8b, the main 
frequency of this signal, Fmax , and the ratio of the energy of 
the main frequency to the total energy, Fratio , are extracted as 
features for classifying such faults. As shown in Fig. 9c, the 

(6)Qi d =
∫

t=TQ

t=0
edt

TQ
,

(7)ΔΘ = |mean(Δ�)|.

main frequency of the ponderomotive fault is concentrated 
around 130 Hz, and the main frequency of microphonics 
faults is in the range of 25 Hz–50 Hz. The quantity Fratio was 
calculated as follows:

where Fs is the sampling frequency of the waveform data, 
yFFT is the normalized power spectral density, and ΔF is 
5–10 Hz.

The flashover, E-quench, and LLRF trip faults induced a 
rapid change in the amplitude of Vc on the submillisecond 
timescale, exhibiting significant gradients at the transition 
points. We extracted the relative change in the amplitude 
of Vc as a learnable feature, denoted by Eid , to quantify the 
deviation of the transient signal from the baseline. The cal-
culation is as follows:

where Δr = r(n + 1) − r(n) is the first-order difference in Vc 
amplitude. From the analysis of Fig. 8c and Fig. 9e, it can 
be observed that flashover and E-quench exhibited signifi-
cantly large values of Eid . Simultaneously, the amplitudes 
of Vf for the three faults mentioned above exhibited sud-
den changes. We measured this change process using the 

(8)F ratio =
∫ Fmax+ΔF

Fmax−ΔF
||yFFT||2

∫ FS∕2

0
||yFFT||2

,

(9)Eid = max

{ |Δr|
max(r) −min(r)

}
,

Fig. 8  (Color online) a and b are the result of transforming the detun-
ing angle (between Vc and Vf ) from the time domain to the frequency 
domain using the FFT method (taking ponderomotive and micro-
phonics fault event as examples), where the shaded area shows the 

frequency range over which Fratio is calculated. c and d represent the 
Eid and Δ�max values in different faults, respectively, which are very 
significant in E-quench and flashover
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first-order difference in the amplitude of Vf and extracted the 
position with the maximum difference as a learnable feature 
for the ML model. This is calculated as follows:

where Δ� = �(n + 1) − �(n) . From the statistical results in 
Fig. 9e and 9f, it is evident that the Eid and Δ�max values for 
the flashover, E-quench, and LLRF faults are significantly 
larger than those for the other faults, and the distributions 
of Eid and Δ�max vary among the three faults. In addition to 
the above expert features, the following statistical features 
are included: changes in the rms radius of the Vc amplitude 
before and after the fault, noting the rms radius before the 
fault as rrms1 and that after the fault as rrms2.

In the preceding section, we systematically clarified the 
theory and calculation methods of the designed expert fea-
tures, from complex physical attributes to basic statistical 

(10)Δ�max = max(|Δ�∕2|),

features, which are of great significance to the analysis and 
decision-making processes as intermediate representations 
of the raw data. Table 3 lists simple definitions of the eight 
expert features. The distribution results for each feature in 
the 1932 labeled samples are shown in Fig. 9. As can be 
observed, except for the quench fault, it is challenging to 
distinguish other faults based on a single feature. There-
fore, it is necessary to explore complex combinations of 
features.

In addition to the aforementioned eight expert features, 
we employed the AR method to explore the autocorrelations 
within sequential data, capturing the trends and periodici-
ties in the signal. In the AR method, it is assumed that the 
current value of a time series is correlated with several past 
values; that is, past observations impact the current value. 
This autocorrelation can be controlled by the order (p) of 
the AR model, where p indicates the extent to which past 
observations affect the current values. By linearly combining 

Fig. 9  (Color online) The distribution of expert features in different 
fault types. a The Qid in quench is significantly greater than that of 
other faults. b The mean detuning for both helium flucs and pondero-
motive faults is approximately 40◦. c The main frequency of pondero-
motive fault is concentrated around 130 Hz, and the main frequency 

of microphonics fault is in the range of 25 Hz–50 Hz. e and f show 
that the abrupt changes in flashover, E-quench, and LLRF faults are 
significantly larger than those for other faults, and the distribution of 
Eid and Δ�max varies among these three faults
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past observations to predict future values, a mathematical 
expression for AR can be obtained as follows [18]:

where �1 and �p are the weight parameters of the model and 
c is a constant term. The temporal features of the signal can 
be obtained using the above formula to fit the amplitude 
and phase of Vc , amplitude of Vf , and detuning angle ( Δ� ), 
while extracting the weight parameters obtained after fit-
ting. Different fault types exhibited significant differences 
in the distribution ranges of the weight parameters. These 
differences can be exploited to distinguish various SC cav-
ity faults. Subsequently, we will discuss the performance 
of the expert and AR features for the identification of SC 
cavity faults.

3.3  Ensemble learning models

Ensemble learning, an ML technique that combines the 
predictions of multiple models to improve overall perfor-
mance, is widely used in various data-driven scenarios [45]. 
Ensemble models mitigate the weaknesses inherent in a sin-
gle algorithm by aggregating diverse predictions, resulting 
in improved accuracy and robustness. Moreover, ensemble 
learning excels in handling complex and high-dimensional 
data, where individual models may struggle. The diversity 
introduced through different learning approaches or models 
helps reduce overfitting and provides a more generalized and 
reliable solution. Furthermore, ensemble methods, such as 
bagging and boosting, offer versatility across a spectrum of 
tasks, making them adaptable to different types of datasets 
and problems. Overall, exploiting the collective intelligence 
of multiple-model position ensemble learning is a power-
ful technique for optimizing the predictive outcomes of ML 
models.

Random forest (RFs) is a model based on decision tree 
classifiers, using an ensemble approach that utilizes bagging 
among multiple decision trees [46]. The core idea behind 
bagging is to create multiple subsets of the original training 

(11)Xt = c + �1Xt−1 + �2Xt−2 +⋯ + �pXt−p,

dataset using random sampling with replacement. Each sub-
set is used to train a separate base model. The final predic-
tion is obtained by aggregating the predictions of all the 
individual base models, thereby reducing the risk of bias 
and variance associated with individual trees. For regression 
tasks, this aggregation is usually performed by averaging 
the predictions, whereas for classification tasks, a major-
ity voting mechanism is often employed. The “random” in 
RFs stems from the introduction of randomness in two key 
aspects: bootstrap sampling and feature selection. Bootstrap 
sampling can generate multiple differentiated subsets to train 
a range of base models and is fundamental in ensemble 
learning methods such as bagging [47]. Feature selection 
refers to the process of selecting a subset of relevant features 
to construct individual decision trees within a forest. Instead 
of considering all available features to determine the best 
split at each node, only a randomly chosen subset of features 
is evaluated. This random selection of features introduces 
variability among trees because different trees may consider 
different features for splits, even if they are trained on the 
same data, which contributes to the robustness and gener-
alization ability of the model. In RFs, the feature selection 
process is controlled by the key parameter “max_features”. 
Besides that, the “n_estimators” parameter specifies the 
number of trees in the forest; more trees generally improve 
accuracy but increase computational cost. The “max_depth” 
parameter controls the maximum depth of each tree; deeper 
trees capture more complex patterns but may overfit the data.

eXtreme Gradient Boosting (XGBoost) is a gradient 
boosting algorithm known for its efficiency and excellent 
predictive performance [48]. Unlike bagging methods that 
train models independently in parallel, boosting sequen-
tially trains boosters (such as gbtree or gblinear), with 
each tree attempting to correct the errors of the previous 
tree with the aim of incrementally improving accuracy. 
The final prediction is the weighted sum of the predictions 
from all the individual trees. During the iterative training 
process, observations are assigned different weights based 
on their classification; misclassified observations are given 
more weight, whereas correctly classified observations are 

Table 3  Summary of expert features

Feature Definition

Qid A quantity related to QL , mainly used to assess the physical properties of the cavity when a quench occurs.
ΔΘ The average cavity detuning angle for determining if a significant cavity detuning occurred after the fault.
Fmax The dominant frequency component in the cavity detuning angle spectrum (FFT result).
Fratio The proportion of the energy of Fmax to the total energy, primarily used to determine if the cavity is undergoing vibration.
Eid The relative change in the first-order difference of the Vc amplitude for detecting if the pickup signal has undergone an abrupt change.
Δ�max The maximum of the first-order difference of the Vf amplitude for checking whether the forward signal drops in a short time
rrms1 rms radius of the amplitude in Vc before the fault occurs
rrms2 rms radius of the amplitude in Vc after the fault occurs
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given less weight. This process is achieved by focusing on 
the model residuals, which directs the subsequent models 
to focus more on hard-to-predict cases. To prevent overfit-
ting, XGBoost applies “shrinkage” during training, meaning 
it does not fully trust the residuals learned by each weak 
learner. This is achieved by multiplying the residual value 
that each weak learner fits by a “learning_rate” in the range 
of (0, 1]. A lower “learning_rate” makes the model more 
robust to overfitting by ensuring that each tree makes only a 
small adjustment to the model. This typically requires more 
trees to reach the same level of performance as a model 
with a higher “learning_rate”. Therefore, there is a trade-
off between “learning_rate” and “n_estimators”. Addition-
ally, XGBoost combines parameters such as “max_depth”, 
“gamma”, and regularization parameters ( L1 and L2 ) to fur-
ther reduce overfitting. It also uses “subsample” and “col-
sample_bytree” to introduce randomness by specifying the 
fraction of the training data and features used for each tree, 
respectively. A robust model can be achieved by coordinated 
optimization of these parameters.

Next, we separately evaluated the performances of the 
two ensemble learning methods in identifying SC cavity 
faults.

4  Results and discussion

4.1  Data visualization

Before model training, we applied principal component 
analysis (PCA) to perform dimensionality reduction and 
visualized all samples in 2D coordinates. The results are 

shown in Fig. 10, where the clustering, distribution, and 
correlations within the data are clearly observed. This visu-
alization aids experts in better understanding the data and 
uncovering potential relationships, thereby facilitating a 
more detailed categorization of the original dataset. Another 
important aspect of dimensionality-reduction visualization 
is the identification of outliers or anomalous points in each 
class to check for errors in the manual labeling process. 
Manual labeling requires a system expert to have consider-
able experience and intuition regarding SRF cavities oper-
ating with beams and to understand the complex physical 
mechanisms underlying the faults, for which PCA serves as 
a valuable auxiliary tool. Figure 10 indicates the presence 
of several outliers. After verification with domain experts, 
corrections were made to several erroneously labeled sam-
ples. For instance, a cavity off fault was mislabeled as an 
LLRF trip, a helium fault was mislabeled as a microphonics 
fault, another helium fault was mislabeled as a quench fault, 
and several helium faults were mislabeled as ponderomotive 
faults. Through the aforementioned scrutiny, rectifications 
were made to human-labeled errors, and the mislabeled sam-
ples were relabeled and used for subsequent model training.

4.2  Model performance evaluation

A class imbalance problem exists in the collected fault data. 
Random splitting (or k-fold) methods may be used when 
samples of a category are rare or missing from the test 
set. Therefore, we used stratified k-fold cross-validation to 
ensure that each fold maintained the same class distribution 
as the original dataset. This method can be imported from 
the sklearn library and provides a more reliable estimate of 

Fig. 10  (Color online) Two-
dimensional visualization of 
dataset using principal compo-
nent analysis
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model performance across different subsets of data. Subse-
quently, two ensemble learning models, RFs and XGBoost, 
were selected for fault-type identification.

RFs and XGBoost contain numerous hyperparameter set-
tings that are typically optimized using the GridSearchCV 
method, which automatically scans the specified parameter 
range and returns the best hyperparameter combination. The 
GridSearchCV method has a high computational overhead 
because of the need to test all the parameter combinations. 
Herein, we experimented with heuristic search algorithms, 
such as particle swarm optimization (PSO) and genetic algo-
rithms (GA), to determine the optimal parameters. Although 
the PSO method converges quickly, the performance of the 
model is slightly better than that obtained using the Grid-
SearchCV method with a larger step, which may be because 
RFs and XGBoost are relatively tolerant to variations in cer-
tain hyperparameters. Finally, employing the hyperparam-
eter combinations searched by GridSearchCV, XGBClassi-
fier (learning_rate = 0.05, n_estimators = 250, max_depth 
= 5, min_child_weight = 5, gamma = 0.2, subsample = 
0.7, colsample_bytree = 0.6) and RandomForestClassifier 
(n_estimators = 200, max_depth = 17, max_features = 3) 
are utilized to build the final models. These models were 
evaluated using stratified fivefold cross-validation, and the 
results are presented in Table 4 as the mean and variance of 
the F1 scores.

Different feature combinations are tested in Table 4, 
including the use of AR features, expert features, and a 
combination of both in the three scenarios. The expert fea-
tures comprise the previously mentioned Qid , Fmax , Fratio , 
Eid , Δ�max , ΔΘ , rrms1 , and rrms2 values. The AR features are 

the weight coefficients obtained by fitting the amplitude and 
phase of Vc , amplitude of Vf , and detuning ( ΔΘ ) using the 
third-order AR method. As shown in Table 4, the ensemble 
learning method using AR features achieved an accuracy 
of 90% for the multiple-fault classification tasks. The cor-
responding accuracy using expert features was 95 %, and the 
accuracy using a combination of the two was greater than 
96 %. Both ensemble learning models exhibited comparable 
performance while significantly outperforming the support 
vector machine (SVM) method. Notably, in our experiments, 
AR models with orders higher than three did not show sig-
nificant performance improvements, and even ensemble 
models led to a slight decrease in classification ability. 
Therefore, the third-order AR coefficients were determined 
to be the best-performing features for the AR-based method. 
In addition, we considered the computational cost and found 
that the feature-extraction time per sample using expert 
engineering was 0.0266 s, whereas for the third-order AR 
model it was 0.0378 s under the same test conditions. Thus, 
expert engineering was approximately 30 % faster than the 
third-order AR model. In conclusion, our feature engineer-
ing scheme demonstrated significant advantages in terms 
of both model performance and computational efficiency.

Further analyses were performed using the XGBoost 
model. We conducted a comprehensive analysis of the clas-
sification accuracy of the model for different categories 
using a confusion matrix. Confusion matrix analysis identi-
fies a model’s weaknesses, enabling targeted adjustments to 
parameters, feature engineering, and other aspects of model 
optimization. Figure 11 (left) shows that the XGBoost model 
based on AR features has a lower accuracy for faults such as 

Fig. 11  (Color online) Confusion matrix showing performance of the XGBoost model on 606 test fault events compared to the labels provided 
by a subject-matter expert (left: AR features; right: expert features)
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E-quench, flashover, and microphonics, which may be attrib-
uted to the difficulty of the AR method in capturing the sig-
nal features of these three fault types. As shown in Fig. 12, 
the amplitude of Vc for E-quench exhibits significant abrupt 
changes, leading to substantial errors at the mutation posi-
tions when the AR method is employed to fit these signals. 
For continuously changing signals, such as microphonics, 
the AR method can capture data trends. However, this trend 
may be insufficient to describe microphonics fault features, 
thereby reducing the accuracy of the model in identifying 
microphonics faults.

As displayed in Fig. 11 (right), the expert feature-based 
XGBoost model effectively addresses the challenges associ-
ated with the AR method. The introduction of expert features 
increases the accuracy of the model in capturing essential 
task-related features, thereby enhancing its applicability and 
performance. Subsequently, we interpreted the reasons for 
the improvement in the performance of the model from the 
perspective of feature importance analysis.

First, the multiclass problem was transformed into a 
binary classification problem, after which the information 
gain was utilized as a measure of the contribution of each 
feature to the model’s predictions. As shown in Fig. 13, 
during the identification of the quench fault, the Qid feature 
exhibits the highest contribution. For the recognition of pon-
deromotive and helium faults, the Fmax feature was the most 
influential. For E-quench fault identification, the Eid feature 
exhibits the highest contribution. This indicates that the opti-
mal segmentation features selected by the XGBoost model 
based on information gain align with the reasoning process 
adopted by experts during the fault analysis. Furthermore, 

various feature combinations have been used in the identifi-
cation process for each fault, particularly for microphonics 
faults, which pose a major challenge for control-room opera-
tors. The significance of this study is substantiated in terms 
of rational feature engineering and model interpretability.

4.3  Big data analysis of cavity faults

Algorithm 1 Machine learning for offline fault recognition

The trained XGBoost model was employed to analyze the 
historical data generated by CAFE2 during its operation. The 
fault data for CAFE2’s daily operations are packaged into zip 
files, each containing four folders that store the RF signals of 
the fault cavities in the four cryomodules (CM1–CM4). Each 
fault event is named as “cavity name” + “fault time” (accu-
rate to microseconds). Algorithm 1 summarizes the work-
flow of the ML method for classifying offline fault events. 
Notably, the output fault time, cavity name, and fault type 
can be used in future collective fault analyses.

Using the ML model based on fault data from the second 
half of 2023, the probability of faults for a given pattern 
occurring in each cavity was calculated, as shown in Fig. 14, 
where the cavities prone to faults in this particular pattern 
are highlighted. The histograms reveal that the results of 
the AR-based and expert feature-based models were gener-
ally consistent when analyzing historical big data. Notably, 
the statistical results for E-quench (Fig. 14c) and micro-
phonics (Fig. 14f) faults, the AR model identified CM3−5 
as prone to E-quench and CM4−1 as prone to microphonics. 
After verification, the expert feature-based method classi-
fied these faults as flashover or helium, with subtle differ-
ences observed in the corresponding cavities in Fig. 14d and 
14b. Subsequently, we consulted the fault data with subject-
matter experts, and their assessments concurred with the 
inferences made by the expert feature-based model. These 
findings further substantiate the generalization capability of 
the proposed method. Moreover, the statistical results of the 
AR feature-based model serve as a comparative baseline, 

Fig. 12  (Color online) The error of the autoregressive method in fit-
ting the amplitude of Vc for different types of faults ( Vc,meas is exactly 
the same as Vc , this distinction is made only to correspond with Vc,ar)
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offering an alternative perspective that reinforces the robust-
ness of our conclusions.

As shown in Fig. 14e and 14f, CM2−2 and CM2−3 are sus-
ceptible to vibration-induced microphonics and ponderomo-
tive faults. In the subsequent operations, we increased the 
loop gain of the low-level system corresponding to CM2−2 
and CM2−3 . CM1−5 , CM3−1 , and CM1−2 were identified as 
the primary sources of E-quench and quench faults; we will 
reduce the acceleration gradient of these cavities in subse-
quent operations. In conclusion, employing ML for big data 

Fig. 13  (Color online) Feature importance analysis: contribution of each expert feature to the XGBoost model’s predictions. The multiclass 
problem is transformed into a binary classification problem, and the information gain is used as a measure of the contribution for each feature

Table 4  Model accuracies when using different features as inputs

SVM ( one Vs 
one )

XGB RFs

AR (3) 0.860 ± 0.0108 0.895 ± 0.0129 0.900 ± 0.0101

AR (4) 0.862 ± 0.00980 0.884 ± 0.00711 0.891 ± 0.0115

AR (5) 0.862 ± 0.00970 0.885 ± 0.00729 0.886 ± 0.00829

Expert 0.918 ± 0.0124 0.947 ± 0.0105 0.945 ± 0.00802

AR + Expert 0.949 ± 0.00701 0.959 ± 0.00408 0.959 ± 0.00612
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analysis is of great significance for enabling system experts to quickly identify the sources of faults and ensure the stable 

Fig. 14  (Color online) Big data analysis results: the percentage of faults for a given pattern occurring in each cavity (the upward bars represent 
the expert feature approach, while the downward bars represent the AR method)
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operation of accelerators.

4.4  Experience for feature engineering

This study provides a summary of fault types occurring in 
SRF cavities operating in the CW mode, along with discus-
sions on fault mechanisms and feature engineering meth-
ods. Although the specific faults in SRF cavities may vary 
across different accelerators, there are similarities in the 
waveforms. Therefore, the feature engineering techniques 
proposed in this study offer valuable insights into the detec-
tion of faults in the SRF community.

1. For quench and helium faults, quantities such as Qid and 
ΔΘ can be used for identification.

2. For vibration-related faults, such as ponderomotive 
and microphonics faults, methods such as FFT and wavelet 
transforms can be employed to extract the main vibration 
frequency and its corresponding energy.

3. For faults involving transient changes, such as 
E-quench, flashover, and LLRF trips, the first-order differ-
ence can be utilized to extract abrupt change values.

4. Some statistical features, such as the root-mean-square 
radius (e.g., rrms1 and rrms2 ), peak-to-peak value, and wave-
form factor, can be used to describe the shape features of 
the waveforms.

These insights are valuable for the SRF community and 
aid in the development of fault detection and analysis tech-
niques across various accelerators.

5  Future work

Based on our expertise and ML methods, we successfully 
classified the SC cavity faults. The next step in this study 
involves several potential expansions.

1. Use of deep learning (DL) methods instead of ML 
methods for fault classification. ML methods rely on feature 
engineering, encompassing both expert and AR features that 
are fixed and cannot be tuned during training. Therefore, 
we will explore DL models to build an end-to-end model 
structure that combines inference and feature representa-
tion learning, using raw waveform signals as inputs with 
simultaneous optimization via gradient backpropagation. DL 
requires numerous training samples. Nevertheless, the ML 
model and PCA method proposed in this study can provide 
ample and reliable labeled samples for DL, thereby reducing 
manual costs.

2. Research on fault prediction algorithms. In previous 
studies, we found that an SC cavity experiences an unhealthy 
state when transitioning from a healthy to a fault state. If 
anomalous states can be predicted in advance and inhibi-
tory measures can be implemented, fault-induced accelerator 
downtime can be avoided. Therefore, another extension of 

this study involves exploiting DL algorithms for the early 
prediction of failures.

6  Summary and conclusion

We proposed an expert feature-based automatic recognition 
method for CAFE2 SRF cavity faults. The confusion matrix 
and feature importance analyses indicated that the imple-
mented feature engineering technique was reasonable and 
successful. Moreover, this method is not restricted by the 
sampling rate and performs excellently with data collected 
at sampling rates of 10–100 kHz.

ML, as a data-driven method, cannot be sufficiently 
emphasized because of its reliance on data. Each step is 
crucial, from data collection and labeling to feature extrac-
tion. Based on our experience, we suggest combining vari-
ous data visualization methods, such as feature distribution 
analysis, PCA/TSNE analysis, unsupervised clustering, and 
information gain, to improve the quality of data labeling and 
the understanding of underlying patterns, thus increasing 
the accuracy of the ML model. Currently, this method only 
works offline; therefore, its importance lies in data analy-
sis. During the beam commissioning process, the model 
can serve as a good assistant for controlling room opera-
tors. During the annual maintenance, the historical opera-
tion data analysis results provide valuable guidance for the 
maintenance and upgrading of SRF cavities.
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