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Abstract
The reduced-activation ferritic/martensitic (RAFM) steel CLF-1 has been designed as a candidate structural material for 
nuclear fusion energy reactors. For engineering mechanical design, the effects of temperature on the strain distribution of 
CLF-1 steel during uniaxial tensile tests were explored within the temperature range from room temperature to 650 °C 
using uniaxial tensile tests combined with in situ digital image correlation analysis. Strain-concentrated regions alternately 
distributed ± 45° along the tensile direction could be attributed to the shear stress having the maximum value at ± 45° along 
the tensile direction and the coordinated deformation of the microstructure. The total strain distribution changed from a 
normal distribution to a lognormal distribution with increasing deformation owing to the competition between the elastic and 
plastic strains at all test temperatures. Strain localization has a strong relationship with temperature at the same engineering 
strain because of the temperature effects on dynamic strain aging (DSA). The stronger the DSA effect, the stronger the strain 
localization. With increasing temperature, the stronger the strain localization at the same strain, the weaker the plasticity, 
that is, DSA-induced embrittlement, and the slower the strength decline, that is, DSA-induced hardening.
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1 Introduction

Currently, more than 80% of energy [1] is produced from 
non-renewable resources, such as gas, coal, and oil. Energy 
shortages and environmental pollution are two major prob-
lems in social development. Increasing attention has been 
given to nuclear fusion energy because of its advantages 

such as cleanliness and abundant raw materials. Nuclear 
fusion power reactors can potentially produce large 
amounts of clean energy [2], which can solve the energy 
shortage problem faced by humans. However, harness-
ing fusion energy is difficult [3]. The behavior of materi-
als inside the reactor determines the success or failure of 
nuclear technology [4]. Reduced-activation ferritic/marten-
sitic (RAFM) steels are promising structural materials for 
fusion power reactor blanket modules because of their high 
creep resistance, high fatigue resistance, good weldability, 
high strength, high toughness, low activation, high swell-
ing resistance, and high neutron irradiation embrittlement 
resistance [5–9]. Considering the design and function of test 
blanket modules (TBMs) of a clear fusion energy reactor, 
structural steels will function at 300–550 °C for a long time 
[10–12]. Therefore, when a nuclear fusion energy reactor 
begins operation, the structural steels will operate at a range 
of temperatures (25–650 °C). The anisotropy of polycrystal-
line materials can create inhomogeneities at the grain scale 
(mesoscale), even under the same deformation conditions 
[13]. Thus, exploring the deformation behavior at different 
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temperatures of RAFM steels at the grain scale (mesoscale) 
is very important for engineering mechanical design.

The crystal plasticity finite element method (CPFEM) 
can reflect the microstructure of polycrystalline materials by 
combining the finite element and crystal plasticity theories 
[14, 15]. It can consider various deformation mechanisms 
at the grain scale (mesoscale), such as deformation twin-
ning, dislocation slip, and phase transition [16–18]. More-
over, it can explore the plastic deformation mechanisms 
of polycrystalline materials at the microstructural level . 
Recently, the relationships between the non-uniform evo-
lution of microstructures and macroscopic homogenization 
mechanical properties have been widely explored using the 
CPFEM [19–23]. Tasan et al. [24] explored strain localiza-
tion and damage by combining the CPFEM and deformation 
experiments on dual-phase steel. Zhao et al. [22] investi-
gated the evolution of face-centered-cubic polycrystalline 
plastic anisotropy during biaxial loading using the CPFEM. 
Abdolvand et al. [21] developed a crystal plasticity finite ele-
ment code to explore the deformation behavior of hexagonal 
close packed materials. Modeling is a very important task 
when using the CPFEM for simulation. To the best of our 
knowledge, every material has a critical window, that is, a 
minimum statistical representative window (MSRW) that 
can be used as the lowest limit of a representative volume 
element (RVE) [25, 26]. At the MSRW, a material exhibits 
macroscopic homogeneity during deformation experiments. 
Thus, the “average” properties of a material can be studied 
only if a sufficiently large model is built. Thus, the rela-
tionship between the microstructure (at the mesoscale) and 
mechanical properties (at the macroscale) can be explored. 
However, determining the MSRW is a difficult task [27–29]. 
Koohbor et al. [28] used an experimental method to deter-
mine the RVE size in woven composites, observing that if 
the average local strain of the selected window is the same 
as the global strain, the size of the selected window is identi-
fied as the MSRW, that is, the RVE size. Using numerical 
experiments and statistical analyses, Mirkhalaf et al. [29] 
developed a method for determining the RVE size in het-
erogeneous amorphous materials. Although methods for 
determining the RVE size have been proposed in the above-
mentioned studies, they are difficult to use in practice. For-
tunately, Tang et al. [30] proposed a universal law for plastic 
deformation, that is, the lognormal strain distribution dur-
ing plastic deformation. Macroscopic homogeneity during 
deformation experiments in the sample window of interest 
can be quantitatively measured using lognormal distribu-
tion statistics. The larger the coefficients of determination, 
the better the macroscopic homogeneity during deformation. 
Thus, the strain distribution in the deformation process of 
a material should be studied to establish the finite element 
model using the CPFEM. The macroscopic homogeneity on 
the sample window scale has been discussed by Zhi et al. 

[31], Chen et al. [32], Dhekne et al. [33], and Peng et al. 
[34] using strain distribution during deformation. Although 
the strain distribution during deformation has been studied 
both through experiments and simulations, the temperature 
has been limited to room temperature (R.T.), and the effect 
of temperature on the strain distribution during deformation 
has not been studied so far. Moreover, no study has been 
conducted on the strain distribution of RAFM steel, either 
through experiments or simulations. Thus, the effect of tem-
perature on the strain distribution of RAFM steel during 
deformation should be explored to establish a finite element 
model using the CPFEM in future research.

In this study, uniaxial tensile tests combined with digital 
image correlation (DIC) were used to explore the effect of 
the test temperature on the strain ( eyy ) distribution of CLF-1 
steel during deformation. The evolution of the strain sta-
tistics and strain localization with increasing temperature 
was analyzed in detail. These results provide a significant 
reference for the mechanical engineering design of fusion 
energy reactors.

2  Material and method

2.1  Material

The CLF-1 steel used in this study was produced using a 
vacuum induction method. The studied steel was manufac-
tured from a 5-t ingot. The measured chemical composi-
tion of the steel was 8.49 Cr-1.50 W-0.22 V-0.09 Ta-0.50 
Mn-0.13 C-Fe in wt%. Finally, the steel was supplied as 
plates that were hot-rolled to a thickness of 30 mm. The as-
received (AR) steel was heat-treated via normalization and 
tempering (NT). The normalization process was performed 
at 980 ℃ for 3.6 ks, and the cooling method was water cool-
ing; subsequently, the tempering process was performed at 
740 ℃ for 7.2 ks, and the cooling method was air cooling. 
The microstructure revealed equiaxed grains, and the prior 
austenite grain size was approximately 14 μ m (Fig. 1a, b). 
The studied steel had an all martensitic structure, as depicted 
in Fig. 1a–c. The elemental distributions are presented in 
Fig. 1d.

2.2  Uniaxial tensile test

Typically, tensile tests of irradiated specimens use small 
tensile specimens. For further comparison with the tensile 
test data of irradiated specimens, miniature flat tensile speci-
mens, which were consistent with “small tensile materials” 
in the SINQ Target Irradiation Program (STIP) [35–39], 
were fabricated from plate as shown in Fig. 2. The speci-
mens had a geometry of 5.0 mm gauge length, 0.40 mm 
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thickness, and 1.00 mm width. Before the tensile tests, the 
dimensions of each specimen were measured precisely.

Uniaxial tensile tests were performed on an MTS mechan-
ical testing machine with a capacity of 10-kN force, which 
was equipped with a video extensometer. The experiments 
were conducted in a vacuum, the strain rate was set to 1 
×  10−3  s−1, and the test temperature range was 25–650 ℃. 
Before the tensile test, the specimens were maintained at a 
set temperature for 3.6 ks. The accuracy of the force meas-
urements was within ±0.1%. DIC [40, 41] was used to meas-
ure the full-field displacement (or full-field strain). The DIC 
system, as depicted in Fig. 3a, b, consisted of one LED light 
and one FLIR camera with a resolution of 0.006 mm/pixel 
equipped with a lens (Schneider-KREUZNACH). The speck-
les shown in Fig. 3c were formed using spray painting [42]. 
The image acquisition rate was 1 Hz. A schematic of the 
full-field strain in the form of a contour plot during tensile 
testing is shown in Fig. 3d. The strain ( eyy ) discussed in this 

paper was along the tensile direction. Experiments were per-
formed twice at each temperature to ensure reproducibility.

2.3  Strain error evaluation

The specimen surface under zero-strain conditions was 
photographed twice to evaluate the errors. Ideally, displace-
ment should be null under zero-strain conditions. However, 
inevitable micro-movements of the experimental compo-
nents would result in micro-displacement during an actual 
experiment. The micro-strain generated by this micro-dis-
placement is considered an error. This error consists of sys-
tematic and random errors. “Accuracy” reflects systematic 
errors, whereas “precision” reflects random errors [43]. The 
mean absolute error (MAER) and standard deviation of error 
(SDER) are computed using Eqs. (1) and (2) [44] to repre-
sent systematic and random errors, respectively.

Fig. 1  (Color online) a Photomicrograph, b SEM/EBSD images, c phase mapping, and d corresponding EDX mapping of CLF-1 steel

Fig. 2  Dimensions of miniature flat tensile specimens of RAFM steel CLF-1. (in mm)



 S.-M. Chen et al.99 Page 4 of 14

where � , n, m, and N represent the strain, three strain com-
ponents, measurement point, and number of measurement 
points, respectively. The MAER and SDER were 75.983 
micro-strain and 67.719 micro-strain, respectively, which 
was lower than 150 micro-strain [45]. Because the algorithm 
causes a relatively large strain error at the edge of the region 
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of interest (ROI), this study used a cropped edge approach 
to further reduce the error. Thus, the SDER should be lower 
than 67.179 micro-strain. This demonstrates that the DIC 
system used in this study has high measurement accuracy 
and precision.

3  Results and discussion

3.1  Tensile property

The engineering stress–strain curves in the uniaxial tensile 
tests are shown in Fig. 4. The documentation revealed a 
narrow scattering in the repeated uniaxial tensile tests. The 
ultimate tensile strength (UTS), 0.2% yield strength (YS), 

Fig. 3  (Color online) a Diagram of the DIC system, b experimental platform of the DIC system, c speckle pattern after spraying, d full-field 
strain distribution
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uniform elongation (UE), and total elongation (TE) of the 
studied steel at 25–650 ℃ are shown in Fig. 5. As the test 
temperature increased, the UTS, YS, and UE decreased, 
whereas the trend of the TE was different. The TE curve 
reached its lowest level when the temperature was approxi-
mately 450 ℃. This trend was consistent with other previous 
findings [46–48]. Notably, the YS and UTS changed with 
increasing temperature and had plateaus, whereas the TE 
changed with increasing temperature to a minimum value. 
This phenomenon was attributed to dynamic strain aging 
(DSA) [49–51]. DSA, which can be attributed to the interac-
tion between mobile dislocations and diffusing solute atoms 
[50, 52], depends on the temperature and strain rate during 
uniaxial tensile tests, which control the diffusion of solute 
atoms and mobile dislocations, respectively. At 200–450 ℃, 
the reduction in the YS and UTS with increasing test temper-
ature was retarded, namely the above-mentioned plateaus, 
which could be attributed to DSA-induced hardening. The 
reason for the existence of the minimum TE was DSA-
induced embrittlement.

Fig. 4  (Color online) Engineering stress–strain curves in uniaxial 
tensile tests of CLF-1 steel measured at different tensile test tempera-
tures

Fig. 5  (Color online) YS, UTS, UE, and TE of the studied steel at different test temperatures
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3.2  Strain distribution evolution 
during deformation

A schematic of the engineering stress–strain curve is shown in 
Fig. 6. The curve was divided into three regions: the elastic-
dominant region (region I), elastic–plastic transition region 
(region II), and plastic-dominant region (region III). The sta-
tistics of the normalized strain ( eyy ) distribution at points A, B, 
C, D, and E are shown in Fig. 7. Points A, B, C, D, and E were 
before the elastic limit, near the YS, between the YS and UTS, 
and after the UTS, respectively. The normalized methods were 
the strain at each point divided by the maximum strain, and 
the count at each strain interval divided by the total count. The 
mean strain ( eyy ) values and variances at the different strain 
points are shown in Figs. 6 and 7 at different test temperatures 
which are presented in Fig. 8. The mean strain ( eyy ) gradually 
increased as the tensile tests progressed, as shown in Fig. 8a, 
which was consistent with common sense. The variance also 
increased gradually as the tensile tests progressed, particularly 
after reaching the UTS, as depicted in Fig. 8b, which indi-
cated that the strain localization was enhanced as the tensile 

test progressed. Additionally, the strain localization was also 
reflected in the strain distribution statistics, which are elabo-
rated on in the next section.

It is widely known that the total strain ( �total ) con-
sists of elastic strain ( �elastic ) and plastic strain ( �plastic ), 
�
total = �

elastic + �
plastic . In this study, the total strain ( �total ) was 

incorporated into the elastic strain ( �elastic ) and plastic strain 
( �plastic ). We observed that the strain distribution followed a 
normal distribution in region I, when the strain distribution 
followed a lognormal distribution in region III. However, the 
strain distribution conformed to both the normal and lognor-
mal distributions in region II. The normal distribution and 
lognormal distribution are represented by Eqs. (3) and (4), 
respectively.

(3)y =y0 +
2A

√
2�w

e
−

2(x−xc)
2

w2

Fig. 6  (Color online) Different regions of the engineering stress–strain curve. Region I: elastic strain dominant region, region II: elastic strain 
comparable to the plastic strain region, region III: plastic strain dominant region
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where y represents the probability density, w represents the 
standard deviation, xc represents the mean value, x represents 
the median of each strain interval, and y0 and A represent the 
fitting parameters. Most of the coefficients of determination 
were greater than 0.850, as shown in Fig. 7a–f, representing 
a good fit. Additionally, this meant that the strain distribu-
tion region studied in this study was larger than the MSRW 
of the studied steel and had statistical significance.

These findings held true for all the test temperatures in 
this study. To the best of our knowledge, this is the first 
study to report the statistics of the strain distribution during 
deformation at different temperatures. At point A, as shown 
in Fig. 6, the deformation could be considered purely elastic. 
Thus, the elastic strain obeyed a normal distribution [53] as 
shown in Fig. 7. At point B, which was in the elastic–plastic 
transition region, the numerical value of the plastic strain 

(4)y =y0 +
A

√
2�wx

e
−

�
ln

x
xc

�2

2w2

was comparable to the numerical value of the elastic strain. 
The strain distribution could be fitted using both normal 
and lognormal distributions owing to the strong interac-
tion between the elastic strain and the occurrence of plastic 
strain, as depicted in Fig. 7b,c. Here, the strain accumula-
tion process changed from following additive to following 
multiplicative. At point C, the numerical value of the elastic 
strain could not be compared with the numerical value of the 
plastic strain, that is, the plastic strain dominated; therefore, 
the strain distribution obeyed a lognormal distribution, as 
depicted in Fig. 7d. This was also why previous studies [30, 
54] reported that the total strain conforms to a lognormal 
distribution during deformation. Additionally, the long “tail” 
in Fig. 7d–f corresponds to strong strain localization, which 
could be used to predict damage initiation [55, 56]. At points 
D and E, the strain distribution obeyed a lognormal distri-
bution because the plastic strain dominated, as depicted in 
Fig. 7e, f.

Fig. 7  (Color online) Normalized strain ( eyy ) distribution at different test temperatures at (a) Point A (before the elastic limit), b Point B (near 
the YS), c Point B (near the YS), d Point C (between the YS and UTS), e Point D (at the UTS), and f Point E (after the UTS), respectively
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Strain ( eyy ) maps at points A, B, C, D, and E are shown 
in Fig. 9. Strain ( eyy ) maps were cropped to eliminate the 
edge effect produced during the calculation. Typically, an 
uneven strain distribution occurs primarily during plastic 
deformation. However, a significantly uneven strain distri-
bution appeared in the elastic stage (Point A), as shown in 
Fig. 9. This phenomenon can be attributed to the difference 
in the soft- and hard-phase deformations of the studied steel, 
as reported by Li et al. [57]. Significant strain concentration 
was observed, and strain-concentrated regions were approxi-
mately oriented at ±45° along the tensile direction at point B 
and point C, as shown in Fig. 9. This may be because shear 
stress had the maximum value at ±45° along the tensile 
direction. It was consistent with the results reported by Lind-
feldt et al. [58], Gong et.al. [59], Wu et al. [60], and Tanaka 
et al. [54]. However, the strain-concentrated regions were not 
strict at ±45° along the tensile direction. The reason for this 
phenomenon may be the effects of the microstructure, such 
as the grain boundaries [61–65] and grain orientation [66, 
67], which require further exploration. The alternating dis-
tributions of the high- and low-strain-concentrated regions 

in Fig. 9 were caused by the coordinated deformation of the 
microstructure during the initial stage of plastic deforma-
tion. Meanwhile, the strain in each region increased steadily, 
and the strain-concentrated regions did not expand signifi-
cantly during uniform plastic deformation compared with 
those during elastic deformation. This can be attributed to 
strain-concentrated regions driving the entire uniform plastic 
deformation of the other regions. Necking occurred in the 
local strain-concentrated regions during non-uniform plastic 
deformation at points D and E. The strain was concentrated 
in the necking region, and the strain in the remaining parts 
gradually reduced until deformation stopped.

The strain ( eyy ) distributions at points A, B, C, D, and E 
at different test temperatures are shown in Fig. 10. The strain 
( eyy ) distribution shifted to the right, the peak value of the 
strain value of the strain distribution gradually decreased, 
and the distribution gradually widened with the progress of 
the tensile tests at all test temperatures, as shown in Fig. 8a, 
b. The strain variances in the seven deformation states at 
25–650 °C are shown in Fig. 11. To the best of our knowl-
edge, the variance and strain localization were positively 

Fig. 8  (Color online) a Mean strain ( eyy ) value and b strain ( eyy ) variance at points A, B, C, D, and E at different test temperatures
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correlated; that is, the greater the variance, the stronger the 
strain localization. The strain variance first increased and 
then decreased with increasing test temperature, reaching 

a maximum value of approximately 450 °C in all deforma-
tion states, as shown in Fig. 11. Interestingly, the analysis 
in Sect. 3.1. A has shown that the decline rate of the YS 

Fig. 9  (Color online) Equiva-
lent strain ( eyy ) maps from the 
uniaxial tensile tests using the 
DIC image of the ROI at differ-
ent temperatures and stresses. 
a R.T., b 100 ℃, c 200 ℃, d 
300 ℃, e 400 ℃, f 450 ℃, g 
500 ℃, h 600 ℃, and i 650 ℃.
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Fig. 10  (Color online) Normalized strain ( eyy ) distribution at different deformations and temperatures. a R.T., b 100 ℃, c 200 ℃, d 300 ℃, e 
400 ℃, f 450 ℃, g 500 ℃, h 600 ℃, i 650 ℃.
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and UTS increased, and the TE reached the lowest value 
at approximately 450 °C with increasing test temperature 
owing to the effect of DSA as depicted in Fig. 5. With 
increasing test temperature, the variance increased; that is, 
the strain localization was enhanced, whereas the tempera-
ture was lower than 450 °C, possibly because the effect of 
DSA was enhanced with increasing test temperature. The 
interaction between the solute atoms and dislocations was 
enhanced. In contrast, with increasing test temperature, the 
variance decreased when the temperature was higher than 
450 °C, possibly because the effect of DSA weakened with 
increasing temperature. The interaction between the sol-
ute atoms and dislocations was weakened. We believe that 
this discovery has general applicability to polycrystalline 
materials.

4  Conclusion

The effect of temperature on the strain distribution in the 
RAFM steel CLF-1 during deformation was explored using a 
uniaxial tensile test combined with DIC. The results provide 
a significant reference for mechanical engineering designs. 
The conclusions are as follows:

Strain localization region is alternately distributed in the 
direction of ± 45° along the tensile direction during plas-
tic deformation because shear stress has a maximum value 
in the same direction and the coordinated deformation of 
microstructure within the temperature range from R.T. to 
650 ℃.

A universal law of strain distribution exists because of 
the competition between plastic strain and elastic strain at 
all temperatures. The total strain obeys a normal distribu-
tion because the elastic strain dominates in region I. The 
total strain obeys both normal and lognormal distributions 
because the numerical value of the plastic strain is compa-
rable to the numerical value of the elastic strain in region II. 

Fig. 11  (Color online) Relationship between variance of the fitted curves and test temperature
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The total strain obeys a lognormal distribution because the 
plastic strain dominates in the region III.

Strain localization has a strong relationship with tempera-
ture at the same engineering strain because of the effect of 
temperature on DSA. The stronger the effect of DSA, the 
stronger the strain localization. With increasing temperature, 
the stronger the strain localization at the same strain, the 
weaker the plasticity, that is, DSA-induced embrittlement, 
and the slower the strength decline, that is, DSA-induced 
hardening.
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