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Abstract
Industrial linear accelerators often contain many bunches when their pulse widths are extended to microseconds. As they 
typically operate at low electron energies and high currents, the interactions among bunches cannot be neglected. In this 
study, an algorithm is introduced for calculating the space charge force of a train with infinite bunches. By utilizing the ring 
charge model and the particle-in-cell (PIC) method and combining analytical and numerical methods, the proposed algorithm 
efficiently calculates the space charge force of infinite bunches, enabling the accurate design of accelerator parameters and 
a comprehensive understanding of the space charge force. This is a significant improvement on existing simulation software 
such as ASTRA and PARMELA that can only handle a single bunch or a small number of bunches. The PIC algorithm is 
validated in long drift space transport by comparing it with existing models, such as the infinite-bunch, ASTRA single-bunch, 
and PARMELA several-bunch algorithms. The space charge force calculation results for the external acceleration field are 
also verified. The reliability of the proposed algorithm provides a foundation for the design and optimization of industrial 
accelerators.
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1 Introduction

Linear accelerators have gained significant attention in 
industry [1–7] owing to their diverse applications, including 
radiation sterilization [8, 9], FLASH radiotherapy [10–17], 
and neutron generation [18–20]. In high-current electron 
linear accelerators, where pulse currents often reach 300 
mA or higher  [21], the space charge force exerted by the 
beam significantly affects its transport [22, 23]. An accurate 
calculation of the space charge force is essential, particularly 

for effectively designing linac RF accelerators, enabling the 
precise determination of the capture rate and beam spot 
size [24, 25].

Current electromagnetic field simulation software 
typically focuses on calculating a single bunch [26–29]. 
However, in industrial accelerators, where the pulse 
width reaches microseconds, thousands of bunches can 
interact  [30]. This interaction becomes more significant 
for electrons with lower energies, which is often the case 
for industrial accelerators. Ignoring these effects can lead to 
inaccurate results [31]. For example, the space charge forces 
of adjacent bunches can intensify the radial expansion of the 
central bunch and suppress its longitudinal length, which 
may affect the calculation of capture rates.

Software such as PARMELA provides methods for 
calculating several bunches [26]. Alternatively, a multi-
bunch particle distribution file can be manually generated, 
and a single-bunch algorithm, such as ASTRA, can be 
utilized for calculation [27]. However, it is important to note 
that using a large grid to cover all bunches can significantly 
reduce the calculation speed.
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Under the assumption of infinite bunches with 
uniform spacing, it is possible to calculate the effects of 
multi-bunch accumulation using an analytical method. 
Furthermore, exploiting axisymmetric symmetry allows 
for a significant simplification of the problem, reducing it 
to a two-dimensional issue and significantly accelerating 
calculations  [32]. Industrial accelerators often exhibit 
this characteristic when represented using cylindrical 
coordinate systems  [33]. This symmetry extends to various 
components, such as acceleration structures and solenoids.

This study proposes an algorithm for handling infinite 
bunches. By employing analytical methods and considering 
the axisymmetric nature of industrial accelerators, this study 
aims to provide efficient calculations of multi-bunch effects.

2  Principles

2.1  Calculation process

For infinite bunches, the space charge forces on each bunch 
can be calculated based on the reference bunch. Owing to the 
space symmetry, the forces on other bunches are identical 
to those on the reference bunch. In the axial direction, the 
space charge forces cancel each other. However, in the radial 
direction, the forces superimpose, leading to faster bunch 
radius growth compared with a single bunch.

First, an analytical expression was determined for the 
single-bunch space charge forces which was then solved 
for infinite bunches. Furthermore, when the bunch train 
expanded so that adjacent bunches overlapped, a mirror 
folding method was employed to confine it to the original 
spacing. To improve the computing performance, the 
macroparticle and PIC methods were used. Additionally, 
the six-dimensional phase space was simplified into a four-
dimensional phase space, according to the axial symmetry 
of the bunches. The calculation process of the algorithm is 
shown in Fig. 1.

A brief description of the calculation process is as 
follows: 

(1) Input file and reference particle Using the input ini-
tial six-dimensional phase space of N macroparticles, 
convert the x, y, z coordinates to r, z coordinates in 

the polar coordinate system, ignoring the position and 
velocity in the � direction. Define a reference particle 
at the average position of the bunch.

(2) Transport time and iteration steps As the reference par-
ticle is in the center of the bunch, it is not affected by 
space charge forces. Considering its initial speed and 
the external electromagnetic fields, solve its total trans-
port time and then divide it into iteration time steps. 
For the calculation of the entire bunch, the computing 
ends only if the total transport time is reached.

(3) First system conversion Before each iteration, convert 
the laboratory system into the bunch system, as the cal-
culation of space charge forces is easier.

(4) Grid division According to the position distribution 
of particles, determine the upper and lower bounds 
of the uniform grid by considering their maximum 
value, average value, and standard deviation. Distribute 
macroparticle charges to each lattice point of the grid 
by linear interpolation. Extreme macroparticles with 
positions exceeding the grid range are assigned to the 
nearest grid boundary point.

(5) Space charge forces calculation Calculate the total 
space charge forces on (Nr + 1) × (Nz + 1) grid points 
based on the ring charge model. Each macroparticle 
uses the value of the closest grid point.

(6) Second system conversion Convert the space charge 
forces in the bunch system back into the laboratory 
system.

(7) Iteration update Considering both the space charge 
forces and external electromagnetic fields, for each 
macroparticle, solve their acceleration and update their 
positions and velocities to obtain their new phase space 
in the laboratory system.

(8) Repeat steps (3)–(7) iteratively until the results are 
obtained.

The algorithm uses the Euler method for iterations because 
the relationship between the accelerations and positions is 
sufficiently complex that the commonly used fourth-order 
Runge–Kutta method [34, 35] is unsuitable. Although the 
Euler method is known to have relatively large errors [36], 
the overall error of the PIC algorithm was found to be 
acceptable, as shown in the results and discussion sections.

2.2  PIC method and grid division

To simplify the computational process, a macroparticle 
approach was employed in which a certain number of elec-
trons were treated as a single entity.

Owing to the interdependence between the positions and 
the resulting space charge forces, ordinary differential equa-
tions (ODEs) could not be used directly. Numerical calcula-
tions and time-based iterations are typically used to address Fig. 1  Calculation process
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this issue. Within each iteration, a single macroparticle 
receives space charge forces from the other (N − 1) macro-
particles. Consequently, the complexity of the algorithm for 
each iteration is approximately N2.

The PIC method was utilized to effectively reduce algo-
rithm complexity [37, 38]. It divides the spatial region into 
a grid and allocates the quantities of particles, such as the 
charge and force, to the grid points for calculation. This 
reduces the computational complexity of each iteration from 
N2 to N2

1
N2
2
 , where N1 and N2 represent the number of grids 

in both directions.
In the multi-bunch model, a key assumption is that the 

bunch exhibits angular symmetry, allowing the velocity of 
the bunch in the azimuthal direction ( � ) to be neglected. 
This simplification enables the establishment of an r − z grid 
in a cylindrical coordinate system. The radial direction (r) 
represents the transverse dimensions of the bunch, and the 
vertical axis (z) represents the longitudinal dimensions. The 
radial grid starts at r = 0 and does not include negative parts.

In this study, uniform grid division was employed. When 
a macroparticle charged q fell within the grid region, its 
charge was linearly distributed to four nearby lattice points, 
and the space charge forces were calculated using only the 
parameters on the grid. Note that as the bunches expanded 
over time, it was necessary to update the grid.

2.3  Analytical calculation of a single bunch

In this section, analytical expressions are obtained for the 
space charge forces of a single bunch. Each point in the r − z 
grid represents a ring charge (except r = 0 , which is a point 
charge). In this model, the Coulomb repulsion of the ring 
charge q2 toward the point particle q1 is solved, as shown in 
Fig. 2. The left side shows the projection on the plane z = 0 , 
and the right side shows the relationship in space.

Taking r1 as the positive direction of the axis x, the cylin-
drical coordinate system can be transformed into a spatial 
rectangular coordinate system. In Fig. 2, the microele-
ment dq2 = q2dl∕2�r2 = q2d�∕2� , where dl is the length 
of the microelement. The coordinate of the microelement 
is (r2 cos �, r2 sin �, z2) , whereas the coordinate of the point 
particle is (r1, 0, z1) . The distance between them is:

The Coulomb repulsions in the r and z directions, respec-
tively, are as follows: 

By integrating along the ring, the forces in both directions 
are obtained as follows: 

where

 The integrations are used in the subsequent calculation of 
infinite bunches. The results are as follows:

where

(1)d =

√
(r1 − r2 cos �)2 + (r2 sin �)2 + (z1 − z2 )

2

(2a)dFr =
q1dq2

4��0

1

d2
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)
d

(2b)dFz =
q1dq2

4��0
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d2

(
z1 − z2

)
d

(3a)F�
r
=

q1q2

4��0
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(3b)F�
z
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q1q2
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I2
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[
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(
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)
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2
(
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)
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(
A1

)
�A4
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4r1r2(

r1 + r2
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+
(
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2 −
(
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+
(
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Fig. 2  (Color online) Repulsion between the microelement dq

2
 and 

particle q
1
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ellipticE and ellipticK are elliptic integral functions which 
are time-consuming to calculate. The approximation 
methods are discussed subsequently in this paper.

2.4  Analytical calculation of infinite bunches

To calculate the space charge forces in the radial direc-
tion for infinite bunches, the ring charges are divided into 
groups. In each group, the r coordinates of the ring charges 
are the same, whereas their z coordinates differ by distance 
D, which is equal to the spacing between adjacent bunches.

By replacing Δz = z1 − z2 in Eq. (3c) and (d) with 
Δz = z1 − z2 + kD (k = 0, 1, 2,…) , the space charge force 
of any ring charge group toward the point charge in the 
reference bunch can be obtained. By adding the forces of 
each group, the following expression for the radical force 
is obtained:

This expression can be simplified as follows:

where

The sum of the infinite series is calculated as follows:

where a > 0, b ∈ [−1, 1] . This summation can be proven to 
converge using the following method:

where {b} denotes the fractional proportion of b.
Equation (8) does not have an analytical solution. How-

ever, if this summation is approximated as its corresponding 
integral, the following simple solution can be obtained:

(6)Er,k =

+∞∑
k=−∞

q1q2

4��0

2

2�∫
�

0

(
r1 − r2 cos �

)
[
Ar + Δzk

2
]3∕2 d�

(7)Er,k =
q1q2

4�2�0 ∫
�

0

+∞∑
k=−∞

c
[
a + (k − b)2

] 3

2

d�

a = Ar∕D
2 ≥ 0

b =
(
z2 − z1

)
∕D ∈ [−1, 1]

c =
(
r1 − r2 cos �

)
∕D3

z1, z2 ∈
[
−D∕2,D∕2

]

(8)Stotal =

+∞∑
k=−∞

c
[
a + (k − b)2

] 3

2

||||
Stotal

c

|||| =
+∞∑

k=−∞

1
[
a + (k − b)2

] 3

2

≤
+∞∑

k=−∞

1

(k − b)3

≤ 1

{b}3
+

+∞∑
k=1

2

k3
<

1

{b}3
+

5

2

When |k| is small, the relative error between the series and 
integral is large. Therefore, rather than directly using the 
entire integral for the approximation, it is only used when 
|k| is large. For |k| ≤ k0 , the original series is used. The final 
expression of the approximation is:

where k0 is a half integer. For example, when k0 = 2.5 , the 
interval to be eliminated by the integral approximation is 
[−2.5, 2.5] , which is replaced by the original series of the 
region k ∈ [−2, 2].

The approximation error is determined using the follow-
ing method. In the bunch system, the bunch shape factor 
A = R∕�Llab . Suppose that the radius and length of a sin-
gle bunch are comparable; A is close to 1 thus, in Eq. (7), 
a ∈ [0, 1] and b ∈ [−1, 1] . Under such circumstances, when 
k0 = 1.5 , the maximum relative error between Sap and Stotal 
is 3% ; when k0 = 2.5 , it is reduced to 0.5% . It is important to 
note that when � varies from 0 to � , a and b change within their 
respective ranges and the average relative error is significantly 
smaller than the maximum error. Therefore, after integrating 
� into [0,�] , the relative error in the integral approximation 
is small. As k0 increases, the relative error of the algorithm 
decreases significantly. However, the computational workload 
for series summation increases. For example, when k0 = 2.5 , 
the computational workload of the multi-bunch PIC algorithm 
is approximately 2k0 + 2 = 7 times that of the single-bunch 
algorithm.

In Eq. (10), Sint is a simple expression derived from Eq. (9), 
and the series part of 

[
−k0 + 0.5, k0 − 0.5

]
 can be obtained by 

applying the single-bunch algorithm 2k0 times. Thus, the focus 
of the calculation is the integration of the last term. Integrat-
ing � yields:

Substituting a, b, c yields:

(9)
Sint =∫

+∞

−∞

c
[
a + (k − b)2

] 3

2

dk

=
2c

a

(10)
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c
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] 3
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c
[
a + (k − b)2

] 3

2

dk
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c
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The calculation result of the integral is:

where Δz1 = z1 − z2 + k0D,Δz2 = z1 − z2 − k0D.
Utilizing Eqs. (7)–(11), the radial analytical expressions 

of the space charge forces are obtained for infinite bunches 
in the bunch system.

In the radial direction, the space charge forces from dif-
ferent bunches are in the same orientation, so each term in 
the sum of the series is positive, which would be suitable for 
approximation by integration. However, in the longitudinal 
direction, these forces cancel. Consequently, this integration 
is zero, which may lead to unacceptable errors. Therefore, an 
alternative method was used to approximate the summation. 
In the longitudinal direction, Eq. (8) becomes:

where a > 0, b ∈ [−1, 1] . When k ≥ 2 , Eq. (12) is expanded 
based on 1/k as follows:

where a =
(
r2
1
+ r2

2
− 2r1r2cos �

)
∕D2 ≥ 0 . As a only 

appears in the numerators, after substituting a and b, Eq. 
(13) can be simply integrated with � on [0,�] . Similar to the 
previous section, the original series is used when |k| < k0 
and its Taylor expansions are used for the remaining part. 

Ik =
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∫
�

0

(
r1 − r2 cos �

)
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2
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i
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�
4r2

4r2+Δz2
i

�

r
, r1 = r2 = r;

1

D

2∑
i=1

Δzi

(r1+r2)ellipicK
�

4r1r2

(r1+r2)
2
+Δz2

i

�
+(r1−r2)ellipicPi

�
4r1r2

(r1+r2)
2
,

4r1r2

(r1+r2)
2
+Δz2

i
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,

r1 ≠ r2

(12)Stotal−z =

+∞∑
k=−∞
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2

Sk =
1
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k
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b

k
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+
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1
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(
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k
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(13)
S±k =Sk + S−k =

4b

k3
+

4
(
−3ab + 3b3

)
k5

+
3

2

(
15a2b − 4ab3 + 8b5

)
k7

+ O
(
1

k9

)

Considering that 
∑+∞

k=1

1

ki
, i = 3, 5, 7 are mathematically 

known constants, after summing k on [k0,+∞) for Eq. (13), 
the approximate expression of Eq. (12) is obtained.

Calculations are conducted in the bunch system, where 

Dbunch = �Dlab , such that amax =
(

R

�Dlab

)2

= A2
D

 . When 
a ∈ [0, 1], b ∈ [−1, 1] , a uniform sample is taken to evaluate 
the approximation effect, and the results validate the approx-
imation method. When k0 = 2.5 , rms

(
Ikz

)
= 35.72 whereas 

rms
(
ΔIkz

)
= 0.0035 , where Ikz is the value after integrating 

Eq. (12) with � , summed by k cutting at |k| = 100 . ΔIkz is the 
error between Ikz and its approximation. When k0 becomes 
3.5, rms

(
ΔIkz

)
 decreases to 0.00048. However, by analyzing 

quation (13), such an approximation is sensitive to a and k0 . 
A large a may significantly reduce the accuracy. Conse-
quently, k0 ≥

√
2AD to maintain the approximation effect.

When calculating the space charge forces, k0 is taken as 
k0x and k0z , respectively, in different directions to balance the 
accuracy and efficiency of the algorithm.

2.5  Acceleration in a laboratory system with space 
charge forces and external fields

Thus far, the radial and longitudinal space charge forces 
have been determined in the bunch system. Before convert-
ing from a bunch to a laboratory system, the infinite-bunch 
model is considered, in which the Lorentz force in the radial 
direction is opposite to the Coulomb repulsion and differs 
in size by a factor �2 . Therefore, the total radial force in the 
laboratory system is 1∕�2 times the Coulomb repulsion in 
the bunch system [39]. The expression for the radial force is:

This result is used in the subsequent Results and Discussion 
sections. It is assumed that the laboratory system is a S sys-
tem, whereas the bunch system is a S′ system, which moves 
at a speed u = �c in direction z. According to the relativistic 
transformation, the forces in the laboratory system are as 
follows:

where Fr,ex, Fz,ex are the external electromagnetic field 
forces; F′

r
, F′

z
 are the space charge forces in the bunch sys-

tem; and Fr, Fz are the total forces in the laboratory system.
The expression for the acceleration in the case of relativ-

ity is:

(14)
Fr =

qIr

2��0�ca
2

(
1 − �2

)

=
qIr

2��0�ca
2

1

�2

(15)

{
Fr =

F�
r

�
+ Fr,ex

Fz = F�
z
+ Fz,ex
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Using the acceleration in Eq. (16), the particle phase space 
is updated after each iteration.

2.6  Mirror method for overlapping bunches

As the bunches expand such that adjacent bunches overlap, 
a mirroring technique is used, as shown in Fig. 3. The 
overflowing part outside the bunch interval is folded back 
into the original bunch range using mirror symmetry. 
This ensures consistency in the grid and the algorithm 
used in the previous sections. The mirroring process 
involves reflecting macroparticle positions longitudinally 
and reversing their longitudinal velocities, while keeping 
their transverse positions and velocities constant. After 
updating the phase spaces of macroparticles in each 
iteration, a mirror operation is performed.

This operation serves two purposes. First, it restricts 
the longitudinal length of the bunches to the bunch inter-
val D, simplifying the longitudinal grid update. Second, 
it focuses on the calculation of a single reference bunch 
rather than computing the complex effects of overlapping 
bunches.

2.7  Approximation of elliptic integral functions

The analytical expressions for the space charge 
forces involve three elliptic integral functions: 
ellipticE(x), ellipticK(x) , and ellipticPi(x, y) . However, their 
computational complexity is high, and existing approxima-
tions often rely on iterative methods, resulting in a signifi-
cant computation time [40, 41]. This section introduces 

(16)→

a =

→

F

�m0

−

→

v

(
→

v ⋅

→

F

)

�m0c
2

simple and fast approximation methods for elliptical inte-
grals with improved accuracy.

For convenience:

where x is the argument of the functions ellipticE and 
ellipticK. Note that when calculating the space charge 
forces on the grid points, the macroparticle under the forces 
is treated as a point charge. Therefore, the self-force of 
one grid point is neglected, which means that in Eq. (17), (
r1 − r2

)2
+
(
z1 − z2

)2 ≠ 0.
The function ellipticE is a complete elliptic integral of the 

second type, which is smooth when x ∈ [0, 1] . Consequently, 
a fourth-order polynomial can be used to approximate the 
function. As shown in Fig. 4a, the blue line depicts the func-
tion ellipticE in its defined domain. The orange line describes 
the relative error of the polynomial approximation and origi-
nal function, which mainly ranges from 0.2% . Only when x is 
close to 1, the relative error increases to 1% . The approxima-
tion has a root mean square error (RMSE) of 0.0012.

The function ellipticK cannot be directly approximated by 
polynomials, because when x → 1, ellipticK(x) → +∞ . Thus, 
a sixth-order polynomial is used to fit it when x ∈ [0, 0.9] , 
which has a RMSE of 0.00089. As shown in Fig. 4b, the blue 
line represents the value of the function on [0, 0.9] , whereas 
the orange line represents the relative error of the approxi-
mation, which varies within 0.2% . Subsequently, a separate 
method is used for the function ellipticK when x ∈ [0.9, 1].

In Eq. (17), x cannot reach the upper limit 1. Deriving the 
maximum value of x is conducive to constructing an approxi-
mation. When calculating the space charge forces on uniform 
grid points:

where Nr, Nz are the number of grids in both directions, Δr 
and Δz are their unit lengths, m = Δr∕Δz . To estimate the 
maximum value of x, k = 0 is included in Eq. (17):

Variable substitution is then performed as follows:

(17)x =
4r1r2(

r1 + r2
)2

+
(
z1 − z2 + kD

)2

r1 = N1Δr, r2 = N2Δr, N1,N2 = 0, 1, 2,… ,Nr

z1 = N3Δz, z2 = N4Δz, N3,N4 = 0, 1, 2,… ,Nz

(18)x =
4N1N2

(
N1 + N2

)2
+

(N3−N4)
2

m2

(19)

x1 =
1

1 − x

=

(
N1 + N2

)2
+

(N3−N4)
2

m2

(
N1 − N2

)2
+

(N3−N4)
2

m2

Fig. 3  (Color online) Mirror Method
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When x → 1, x1 → ∞, ellipticK(x) → ∞ , the variable can be 
changed from x to x1 and the function K(x) can be constructed 
for approximation. Note that 

(
N1 − N2

)2
+
(
N3 − N4

)2 ≠ 0 . 
To let x1 reach its maximum value, there are only two pos-
sible situations: 

(a) N1 = N2 = Nr , |

|

N3 − N4
|

|

= 1 ⇒ x1 =
1

1−x
=
(

2Nrm
)2 + 1

(b) N3 = N4, |

|

N1 − N2
|

|

= 1,min
(

N1,N2
)

= Nr ⇒ x1 =
1

1−x
=
(

2Nr − 1
)2 + 1

For simplicity, m = 1 is considered when:

Taking Nr = 30 , max
(
x1
)
≈ 3600 . If max

(
x1
)
≈ 106 , 

then Nr can be set to 500, which is sufficient for most PIC 
algorithms.

After converting the variable from x to x1 , the function 
ellipticK(x) − x1 is fitted well with the power function. It 
follows that:

C o n s e q u e n t l y,  x ∈
[
1 − 10a, 1 − 10b

]
⇒ x2 ∈ [a, b] . 

x2 ∈ [1, 9] is used with evenly spaced x2 sequences as inde-
pendent variables. Although the function ellipticK(x) − x 
is difficult to approximate directly, the function 
ellipticK(x) − x2 is close to a straight line, as shown by the 
blue line in Fig. 4c. Therefore, a second-order polynomial 
is used for the approximation, which has a RMSE of 0.0041. 
The orange line indicates the relative error.

The total expression of this approximation is:

(20)max
(
x1
)
=
(
2Nr

)2
+ 1 ≈ 4N2

r

(21)x2 = lg
(
x1
)
= lg

[
1∕(1 − x)

]

If a finer grid is required, a further approximation can be 
achieved by involving a larger x2 using the same method.

The third function ellipticPi is approximated in a manner 
similar to that for ellipticK. ellipticPi is the complete elliptic 
integral of the third type, which is expressed as:

The function Pi(x, y) is constructed to approximate 
ellipticPi(x, y) . After converting the parameters from 
x, y,Pi(x, y) to x2, y2, Z , the function Z(x, y) − x2, y2 can be 
fitted well with the following polynomials:

Considering that k0D in the denominator restricts the maxi-
mum value of y, max

(
x2
)
= 6 and max

(
y2
)
= 2 are used, 

when the function Z(x, y) − x2, y2 is close to a flat surface, 
as shown in Fig. 4d. This can be fitted well by a third-order 
polynomial with a RMSE of 0.0021.

K(x) =

3∑
i=1

pi ∗ lg
[
1∕(1 − x)

]3−i

ellipticPi(x, y) = Pi(x, y) = Pi
(
x,
�

2

|||y
)

= ∫
�∕2

0

1

(
1 − x sin2 �

)√
1 − y sin2 �

d�

(22)

x2 = lg
(
x1
)
= lg

[
1∕(1 − x)

]
y2 = lg

(
y1
)
= lg

[
1∕(1 − y)

]
Z = lg

[
Pi(x, y)

]
x =

4r1r2

(r1+r2)
2 , r1 ≠ r2

y =
4r1r2

(r1+r2)
2
+(z1−z2+k0D)

2 < x < 1

Fig. 4  (Color online) Fit of elliptic integrals
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By replacing the time-consuming calculations of the 
three elliptic integrals with simpler and faster approximation 
computations, the algorithm significantly improves the 
computational efficiency while providing reasonably 
accurate results. Before the approximation, the algorithm 
has an excessive computational time, which is significantly 
shortened by the approximation, although it remains slower 
than that of ASTRA. The accuracy and calculation time of 
the algorithm are presented in the Results section.

3  Results and discussion

After approximating the elliptic integrals and other analytic 
calculations, an algorithm was constructed to calculate the 
space charge forces for infinite bunches. In the subsequent 
analysis, the results of the algorithm under special circum-
stances are compared with those of existing algorithms to 
confirm its accuracy. These algorithms include the infinite 
bunch, ASTRA single bunch, and PARMELA several bunch 
algorithms. In the first three parts, different models are used 
to compare these algorithms in a long drift space; includ-
ing an infinite–bunch model, different numbers of bunches, 
and bunches with different spacings. In the last section, the 
results of the PIC algorithm and ASTRA are compared in 
an external electromagnetic field. For simplicity, bunches 
with an initially uniform transverse distribution are used in 
all sections.

3.1  Comparison with infinite‑bunch model results

The proposed algorithm is designed to calculate the space 
charge forces exerted by infinite bunches with uniform 
spacing. First, a special situation is considered. When the 
bunches are simplified uniform cylinders, and the distance 
between them is equal to their length, the adjacent bunches 
are connected end-to-end, forming a uniform, infinite-bunch, 
as shown in Fig. 5a. In this section, the bunch spacing D 
of the proposed algorithm is equal to the bunch length L0 , 

and its results are compared with the infinite uniform bunch 
model.

The analytical expression of the space charge forces 
for this model is shown in Eq. (14). As the bunch length 
of this model is infinite, the bunch does not expand lon-
gitudinally because of the symmetry. Thus, its equivalent 
current can be used as a constant parameter to describe the 
space charge forces. During the transverse expansion, the 
particle accelerations are proportional to their radii. If the 
particles in the bunch have no initial transverse velocities, 
the ratio of radii among the particles remains constant and 
the bunch remains uniform after the action of space charge 

Table 1  Multi-bunch algorithm compared with an infinite uniform bunch

A Nr Nz R
0
 (mm) L

0
 (mm) � L (m) R

0
 (mm) RE(R

1
) (%) RE(R

2
) (%) L

0
 (mm) RE(L

1
) (%)

0.0125 10 160 5 20 20 50 50.83 −0.10 +0.61 5.774 −0.59
0.025 20 80 5 20 10 10 24.62 +1.46 +0.93 5.774 −0.33
0.067 20 80 20 30 10 50 101.3 +0.59 +0.69 8.662 +0.58
0.067 20 80 20 60 5 10 32.82 +0.64 +0.98 17.32 −0.06
0.167 25 30 50 60 5 50 194.2 +0.46 +0.41 17.33 +0.69
0.167 25 30 50 30 10 50 80.82 +0.54 +0.68 8.662 −0.51
0.167 25 30 50 6 50 300 99.65 +0.45 +0.65 1.732 −0.35
0.167 25 30 10 6 10 10 43.86 +0.78 +0.59 1.733 +2.48

Fig. 5  (Color online) Comparison between multi-bunch and single-
bunch algorithms
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forces. Therefore, the calculation results of this model can 
be simply verified.

The results for an infinite uniform bunch can also be 
obtained by utilizing the ASTRA single-bunch algorithm. 
In the proposed algorithm, a case in which infinite bunches 
are concatenated is calculated. In ASTRA, the number of 
bunches can be reduced from infinity to 100 and spliced into 
a long bunch. When the length of the entire bunch is such 
that its longitudinal expansion under space charge forces 
can be neglected, the equivalent current remains constant 
during transport. Under these circumstances, the transverse 
expansion is approximately equal to that of an infinite uni-
form bunch model.

The proposed algorithm took 380  s to calculate 
6000 macroparticles, with iteration steps of 4000 and 
k0r = 2.5, k0z = 3.5,Nr = 25,Nz = 30 . When the same 
parameters were used, including macroparticle numbers 
for each single bunch, iteration steps, and mesh density, the 
calculation of a long bunch containing 100 single bunches 
using ASTRA would take 2460 s. However, such a long 
uniform bunch would have limited longitudinal expansion, 
making longitudinal calculations unimportant. Finally, 6000 
macroparticles and 30 longitudinal meshes were used for the 
entire long bunch in ASTRA, which shortened the calcula-
tion time to 17 s.

The comparison results are summarized in Table 1, where 
R0 and L0 are the initial radius and length of a single bunch, 
respectively, and � is the Lorentz factor. The charge within 
the length L0 is q0 = − 5 nC. The distance D between differ-
ent bunches is equal to L0 , such that AD = R0∕(�D) = A . 
Nr and Nz are the numbers of grids and A is the shape fac-
tor of the bunch in the bunch system. For convenience of 
comparison, the algorithm takes k0z = 3.5 in all calcula-
tions. If A is larger, then k0z must be increased to satisfy 
k0z >

√
2AD =

√
2A.

A is related to the grid division. For example, a large A 
indicates that the transverse length of the bunch is greater 
than its longitudinal length. Therefore, the grid in the r 
direction should be divided finer than that in the z direction 
to increase the accuracy of the PIC algorithm. Considering 
that the space charge forces were calculated in the bunch 
system, � is also included in the expression for A. L is the 
transport distance of the bunch. R0 is the root mean square 
(RMS) radius of the final bunch, which is calculated using 
the ASTRA long bunch. RE(R1) and RE(R2) are the rela-
tive errors with R0 from the multi-bunch PIC algorithm and 
infinite uniform bunch model, respectively. L0 is the ASTRA 
RMS length result and RE(L1) is the multi-bunch PIC algo-
rithm relative error. The analytical model only calculates 
transversely; therefore, there is no length result. As shown 
in Table 1, although the PIC algorithm adopts a rough mesh 
division because Nr and Nz are small, most relative errors 

with an infinite uniform bunch model are approximately 1% , 
validating the PIC algorithm.

3.2  Comparison with ASTRA single‑bunch model 
results

The PIC algorithm was further validated by varying the spac-
ing of the bunches while maintaining the constant param-
eters of a single bunch. By gradually expanding the spacing 
of the bunches, the behavior of the multi-bunch algorithm is 
compared with the results obtained from ASTRA’s single-
bunch method. As the spacing of the bunches increases, the 
infinite-bunch model gradually degenerates into a single-
bunch model. Hence, if the PIC algorithm results ultimately 
converge with those of ASTRA, this provides further evi-
dence for the validity and rationality of the PIC algorithm.

Using the same parameters as in Sect. 3.1, the multi-
bunch calculation time of the proposed algorithm is 380 s, 
whereas that of the ASTRA single-bunch model is 20 s.

The comparison results between ASTRA and the multi-
bunch algorithm with different bunch spacings are presented 
and discussed in Fig. 5.

The initial parameters of the single-bunch algorithm are 
q0 = −5 nC,R0 = 50 mm,L0 = 60 mm, and � = 5, L = 50 m. 
D represents the spacing between bunches used in the multi-
bunch algorithm, and R represents the RMS value of the 
radius of the bunches. As shown in Fig. 5a, when the spacing 
between the bunches is equal to the length of the bunches, 
the multi-bunch algorithm result is equal to that of the 
infinite-bunch model, as shown by the blue line in Fig. 5b, 
c. The results of different D values from the multi-bunch 
algorithm are shown as purple points, where R decreases as 
D increases, whereas Lz increases. When D reaches double 
that of L0 , the transverse expansion of the bunches due to 
space charge forces is reduced by approximately 20% com-
pared to the infinite-bunch model. When D reaches triple 
that of L0 , the result of the multi-bunch algorithm is suffi-
ciently close to that of the ASTRA single-bunch algorithm, 
as shown by the yellow line. The orange line shows the fitted 
trend as D increases. The position relationship of the three 
lines indicates that the multi-bunch algorithm and ASTRA 
single-bunch algorithm agree well. Moreover, it should be 
noted that if another set of parameters is used, when the 
results of the multi-bunch algorithm are close to those of 
the single-bunch algorithm, the requirement for D∕L0 may 
be different. One purpose of the PIC algorithm is to estimate 
such differences.

3.3  Comparison with PARMELA and ASTRA 
several‑bunch results

PARMELA can calculate the space charge forces for several 
bunches, whereas ASTRA can only handle a single bunch. 



 S.-H. Ren et al.96 Page 10 of 13

However, if a file is input with an initial phase space of sev-
eral bunches, ASTRA can also calculate their space charge 
forces, even though they are treated as a long bunch. Conse-
quently, the mesh division of ASTRA is relatively approxi-
mate, which may result in slightly larger errors.

By utilizing ASTRA and PARMELA, the space charge 
forces of several bunches can be calculated. As the num-
ber of bunches gradually increases, their results gradually 
approach those of infinite bunches. This confirms the reli-
ability of the PIC algorithm.

Using the same parameters as in Sect. 3.1, the multi-
bunch calculation time of the proposed algorithm is 380s. 
When keeping the macroparticle numbers for each bunch 
and the mesh density constant, as the number of bunches 
increases from 1 to 19, the calculation times of ASTRA are 
14, 36, 57, 79, 102, 125, 149, 173, 213, 241s.

The results obtained using the three algorithms are shown 
in Fig. 6. The initial parameters of a single bunch were 
q0 = –2 nC,R0 = 50 mm,L0 = 10 mm,� = 8, L = 50 m, and 
D = 15 mm. R represents the final RMS value of the radius 
of the bunches, and N represents the number of bunches 
used in the PARMELA and ASTRA simulations. For exam-
ple, N = 5 indicates the existence 2 bunches on each side of 
the reference bunch. To ensure symmetry, N = 1, 3, 5, … 
Fig. 6a shows the ASTRA results for N = 5 . As indicated by 
the green points, the longitudinal expansion of the central 
bunch is suppressed compared to that of the bunches at the 

edge. Therefore, to unify the standards, the ASTRA RMS 
results used subsequently were all obtained from the central 
bunch, rather than the entire bunch train.

As the number of bunches (N) increases, the results of 
ASTRA and PARMELA are indicated by green and red 
points, respectively, as shown in Fig. 6b, c. The trends are 
represented by the curves of the corresponding colors. When 
N = 1 , both results fit well with the single-bunch results of 
the proposed algorithm by setting D to be sufficiently large, 
as indicated by the pink line. When the number of bunches 
N ≥ 9 , both results approach those obtained from the PIC 
algorithm, which sets the number of bunches to infinity ( ∞ ), 
as shown by the blue line.

The overall convergence between the finite- and infinite-
bunch models validates the capability of the latter algorithm 
to predict space charge forces for industrial accelerator 
systems.

3.4  Comparison with ASTRA external field results

In this section, by setting D to be sufficiently large, the PIC 
multi-bunch algorithm is degraded to a single-bunch algo-
rithm. Subsequently, the single- and multi-bunch results of 
the PIC algorithm are compared with those of ASTRA in 
the field of an S-band standing wave accelerator, with an 
axial electric field as shown in Fig. 7a. The field has a fre-
quency of 2856 MHz and its maximum electric field strength 
is 18.087 MV/m.

A uniform bunch was used to calculate the transport pro-
cess. When a low energy bunch was used in the S-band field, 
its length increased so much that it exceeded the range of 
the accelerating tube, which caused significant problems in 
the longitudinal calculation. Hence, a higher energy bunch 
was used to validate the calculation capabilities of the pro-
posed algorithm in an external field. The initial parameters 
of the single bunch were q0 = −4 pC,R0 =0.1 mm,L0 =0.5 
mm, and � = 1.3, L = Lcell =0.5255 m. D =1×103 m was 
used to degrade the bunch train with infinite bunches into a 
single bunch. In this section, the number of iteration steps 
was 4000, the number of macroparticles was 10000, and 
k0r = 2.5, k0z = 5.5,Nr = 30,Nz = 40 . It took the proposed 
algorithm 780 s and ASTRA 42 s to complete the single-
bunch calculations.

For the multi-bunch calculations of the standing wave 
accelerating field, a bunch train with a spacing equal to its 
RF period should be used, which is 67.1 mm for 2856 MHz 
and � = 1.3 . However, such a bunch train is not suitable 
for validation because the RF period is too long compared 
with the bunch length. Considering the same mesh density 
as a single bunch, calculating 11 bunches in ASTRA would 
require more than 50000 meshes longitudinally, which is 
unrealistic. Experimentally, ASTRA was used to calculate 
11 bunches with 5000 longitudinal meshes, which required 

Fig. 6  (Color online) Comparison between infinite-bunch and finite-
bunch models
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more than 14 h. The results showed that the bunch train 
expands to over 1000 mm  longitudinally, which is almost 
double the accelerating field length. Finally, a small D as 
2 times L0 was used, which indicated that the bunch spac-
ing was equal to the bunch initial length. Such a parameter 
would be convenient for validating the ability of the pro-
posed algorithm to calculate in an external field, as fewer 
longitudinal meshes are needed. For high-frequency accel-
erators, it is more practical to adopt D as the RF period.

Furthermore, the �-mode S-band field contains only 11 
cells, which is fewer than six RF periods. Consequently, 
when the number of bunches exceeds seven, some bunches 
would exit the field before others have entered. When the 
bunch train has only a few bunches, such as five bunches, 
the proposed algorithm can help provide the upper limit 
of the space charge force. When the field has an adequate 
number of cavities, such as 30, the proposed algorithm has 
additional computational advantages.

A comparison of the results of the three algorithms is 
presented in Fig. 7b–f.

Figure 7b shows the RMS values of the bunches in the 
x direction. The PIC single-bunch results agreed well with 
those of ASTRA, with a relative error of less than 0.5% . 
The blue-dashed line shows the results of the multi-bunch 
algorithm, under which circumstances the expansion of the 

bunches is more obvious because of the increased space 
charge forces.

Figure 7c shows the beam divergences of the three algo-
rithms. The two single-bunch results fit well. The multi-
bunch divergence is larger when the radius is small. When 
the multi-bunch radius is much larger than that of the single 
bunch, its divergence decreases.

Figure 7d compares the beam energies of the three algo-
rithms, all of which were accelerated from 153 keV to 
approximately 3.33 MeV. The relative error between the two 
single-bunch algorithms is less than 0.6%.

Figure 7e, f depicts the RMS length and capture rate when 
a simple circular aperture with a radius of 1.5 mm was added 
and the energy divergence of the three algorithms. The two 
single-bunch results fit well. As indicated by the solid lines 
in Fig. 7e, the bunch length exhibits a maximum relative 
error of 1% , whereas in Fig. 7f, the energy spread is 5% at 
certain points. As indicated by the dashed lines in Fig. 7e, 
the final capture rates of ASTRA and the single bunch of 
the proposed algorithm were 71.5% and 71.7% , respectively, 
whereas the multi-bunch capture rate was 59.9% . The blue 
line shows the results of the multi-bunch, where the longi-
tudinal expansion of the bunches is suppressed.

In this case, the multi-bunch space charge forces have 
a significant impact on the transverse and longitudinal 

Fig. 7  (Color online) Comparison with ASTRA in an external field. a: External electric field along the z axis; b–f: rms-x, rms-divergence, 
average kinetic energy, rms-length and capture rate, and the energy spread of the beam during transport, respectively
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evolutions of the bunches. The transverse expansion was 
intensified, whereas the longitudinal expansion was sup-
pressed. Both effects interfere with the capture rate, which 
is reduced by approximately 10% . After this comparison 
with ASTRA, the ability of the proposed algorithm to 
calculate multi-bunch space charge forces in accelerating 
fields was demonstrated.

However, it should also be noted that in this example, 
to reduce the burden of the longitudinal calculation, D was 
not considered as the S-band RF period because it was too 
long. As a result, the accelerating phase of each bunch is 
different, which is not considered in the proposed algo-
rithm; hence, the capture ratio in Fig. 7e includes only the 
loss on the aperture owing to the large beam radius. If the 
external field has higher frequency or adequate cavities, 
the proposed algorithm would be able to take D as the RF 
period and provide more valuable results. In future studies, 
work should focus on optimizing the longitudinal calcula-
tion capabilities of the algorithm until it can calculate the 
bunching process of low-energy beams more accurately.

4  Conclusion

The proposed multi-bunch algorithm, based on the ring 
charge model and the PIC method, offers a reliable 
approach for calculating the space charge forces of infi-
nite interacting bunches in industrial accelerator systems. 
A reasonable approximation of the three elliptic integrals 
effectively increases the operational speed of the algo-
rithm. By comparing the algorithm with existing mod-
els, such as infinite bunches, the ASTRA single-bunch 
algorithm, and the PARMELA several-bunch algorithm 
in both long drift spaces and accelerating fields, its accept-
able accuracy was verified and its applicability to accel-
erator design and optimization was demonstrated. This 
study provides a valuable reference for understanding the 
space charge forces in industrial accelerators, facilitating 
enhanced performance and efficiency in various applica-
tions. In the future, work should focus on optimizing the 
approximation method and computing capability, particu-
larly in the longitudinal direction.
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