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Abstract
GPU-based Monte Carlo (MC) simulations are highly valued for their potential to improve both the computational efficiency 
and accuracy of radiotherapy. However, in proton therapy, these methods often simplify human tissues as water for nuclear 
reactions, disregarding their true elemental composition and thereby potentially compromising calculation accuracy. Con-
sequently, this study developed the program gMCAP (GPU-based proton MC Algorithm for Proton therapy), incorporating 
precise discrete interactions, and established a refined nuclear reaction model (REFINED) that considers the actual materials 
of the human body. Compared to the approximate water model (APPROX), the REFINED model demonstrated an improve-
ment in calculation accuracy of 3%. In particular, in high-density tissue regions, the maximum dose deviation between the 
REFINED and APPROX models was up to 15%. In summary, the gMCAP program can efficiently simulate 1 million protons 
within 1 s while significantly enhancing dose calculation accuracy in high-density tissues, thus providing a more precise and 
efficient engine for proton radiotherapy dose calculations in clinical practice.
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1 Introduction

Dose calculation remains a significant numerical challenge 
in radiation applications [1–3], particularly in particle radi-
otherapy, which is an interesting research area, including 
proton and ion radiotherapy [4–6], involving devices [7–10], 

dose algorithm [11, 12], scanning modes [13], etc. Accu-
rate dose algorithms are essential for maximizing the effec-
tiveness of proton radiotherapy by leveraging the unique 
Bragg-peak characteristics of this approach [14]. Several 
dose algorithms have been proposed for proton radiotherapy, 
including the pencil beam algorithm [15–17], track-repeat-
ing methods [18, 19], the Boltzmann transport equation 
solver [20, 21], and full MC simulations [22, 23]. Although 
the pencil beam algorithm is widely used in clinical settings, 
there is an urgent need to improve its accuracy. The MC 
technique offers the highest accuracy, but it is hampered 
by prolonged computation times. Thus, the primary goal of 
proton dose calculation is to ensure both the precision and 
efficiency of the algorithm simultaneously.

In recent years, the integration of graphics processing 
units (GPUs) into photon dose algorithms has led to sig-
nificant advancements, providing practical solutions through 
the implementation of various balancing strategies [24–28]. 
Similarly, GPU-based MC methods have shown promising 
results for proton radiation transport [29–33].

According to data from ICRU Report 46  [34], the 
weight ratio of hydrogen (H) atoms to the combined 
weight of nitrogen (N), carbon (C), and oxygen (O) atoms 
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in human tissues is believed to mirror the proportion of 
H atoms to O atoms in water. Furthermore, as outlined 
in ICRU Report 63 [35], these atoms are arranged in the 
same order when adjusting the nuclear reaction cross sec-
tions of C, N, and O atoms to their atomic masses. This 
alignment enables human tissues to behave similarly to 
water during nuclear reactions. Consequently, many proton 
programs assume that human tissues mimic the behavior 
of water, focusing primarily on proton interactions with 
H and O atoms in the nuclear reaction model [29, 32, 36].

In contrast, according to ICRP publication 70 [37], the 
skeleton comprises approximately 20% of the average total 
body weight, excluding adipose tissue, with 5% to 20% of 
the skeleton being composed of calcium (Ca) and a small 
amount of phosphorus (P). The nuclear interaction cross 
sections of these atoms are approximately 25% lower than 
that of oxygen (O) [38]. Consequently, substituting water 
for the elements present in the human body during dose 
calculations may lead to specific discrepancies. Addition-
ally, atoms of elements such as sodium (Na), magnesium 
(Mg), phosphorus (P), sulfur (S), chloride (Cl), potassium 
(K), iron (Fe), and iodine (I) exhibit notable differences 
from O atoms. However, to date, only a few programs have 
developed extensive nuclear reaction models that consider 
interactions between protons and other constituent ele-
ments of human tissues [31].

Both types of programs have shown promising results 
and efficiency through their distinct strategies. Neverthe-
less, there is a dearth of quantitative research investigating 
the impact of the refinement level in nuclear reactions on 
dose calculations for human tissues. Given that increased 
refinement in nuclear reactions increases algorithmic effort 
and redundancy, comprehensive research into this topic is 
warranted.

This study aimed to develop an advanced proton 
transport program named gMCAP that utilizes a GPU. 
The code incorporates precise discrete interactions and 
refined nuclear reaction models. The initial implementa-
tion of gMCAP refined electromagnetic interactions using 
approaches such as the energy loss method and multiple 
scattering model. Subsequently, two nuclear reaction mod-
els were developed: simplified (APPROX) and refined 
(REFINED). The APPROX model considers proton inter-
actions with water of varying densities, encompassing p-H 
elastic nuclear reactions, p-O elastic nuclear reactions, and 
p-O inelastic nuclear reactions. In contrast, the REFINED 
model accounts for interactions between protons and spe-
cific elements present in human tissues, including H, C, 
N, O, Na, Mg, P, S, Cl, K, Ca, Fe, and I atoms. Finally, 
the entire program was ported to the CUDA platform to 
leverage parallel architecture, and the accuracy and com-
putational efficiency of the code were assessed.

2  Materials and methods

In the gMCAP code, both APPROX and REFINED mod-
els utilize the same electromagnetic interaction algorithm. 
This article focuses on modeling and correction of elec-
tromagnetic interactions in Subsections A-C. Subsection 
D introduces the nuclear reaction algorithm employed by 
the APPROX model, specifically addressing the nuclear 
interactions between protons and H and O atoms. In Sub-
section E, the nuclear reaction algorithm of the REFINED 
model is presented, encompassing elastic nuclear reactions 
and inelastic nuclear reaction processes occurring between 
protons and each element present in the human body.

2.1  Geometry and proton transport algorithm

Serial CT images are routinely used for the planning and 
optimization of clinical treatment. First, standard calibration 
methods such as the Hounsfield unit (HU) look-up table are 
utilized to transform CT images into a three-dimensional 
density matrix � , as illustrated in Fig. 1a. Subsequently, 
regions of interest (ROI) are delineated using either thresh-
old segmentation or artificial intelligence-based segmen-
tation algorithms [39] to accurately represent tissues and 
organs with distinct material compositions. Furthermore, to 
determine the energy deposition at a specific step length Δs , 
we utilized the stopping power ratio (SPR) to rescale it to a 
step length in water, referred to as Δsw , using Eq. (1). The 
SPR is related to the proton energy and material density. It 
can be determined by using a fitting formula [22], stoichio-
metric calibration [40], or artificial intelligence [41]. In this 
case, the first method was utilized, and a portion of the con-
version curve (160 MeV) is shown in Fig. 1b. The geometric 
structure and processes employed enable the transport of 
protons within voxels.

Fig. 1  (Color online) Material look-up table used in gMCAP: a 
Hounsfield value look-up table to determine density from CT images 
(for different CT machines, the curves are different), and b stopping 
power relative to water of different densities of material for 160 MeV 
protons
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The transport of protons in the medium is influenced 
by both elastic and inelastic Coulomb collisions as well 
as elastic and inelastic nuclear interactions. Among 
these, numerous elastic Coulomb collisions occur, with 
almost 1×106 instances per centimeter of the path [22]. 
Because of the impracticality of simulating these interac-
tions individually, a Class II condensed history algorithm 
was employed for proton transport. A production thresh-
old Tmin

e
 was established, which indicates the minimum 

energy required for ionization to occur and generate � 
electrons. If the energy is below Tmin

e
 , continuous energy 

loss occurs instead. Thus, reactions between protons and 
materials can be divided into two categories: continu-
ous interactions (see Sect. 2.2) and discrete interactions, 
including ionization (see Sect. 2.3), elastic nuclear reac-
tions (see Sect. 2.5.1), and inelastic nuclear reactions (see 
Sect. 2.5.2).

Protons are transported stepwise in the voxel geom-
etry. One step Δs is defined by the minimum of three step 
sizes: (1) the distance to the closest voxel boundaries; 
(2) the user-defined maximum step size, which is set to 
1 mm, or the residual range corresponding to 20% of the 
initial energy; and (3) the mean free path of each interac-
tion, including ionization, elastic nuclear interaction, and 
inelastic interaction. The mean free path � is defined by 
Eq. (2):

Here, � is a random number between 0 and 1, and Σ is the 
cross section of each discrete interaction.

(1)Δsw = SPR
�

�w
Δs

(2)� = − log(�)
1

Σ
.

2.2  Continuous interactions

2.2.1  Energy loss algorithm

According to Zhang et al. [42], the energy loss ( ΔE ) of a 
geometric step Δs in a material is equal to the energy depos-
ited in the step Δsw in water. The proton’s energy loss fluctu-
ates around its mean energy loss ΔE , and ΔE for a step is 
generally determined by integrating the restricted stopping 
power Lw , as shown in Eq. (3). Lw , which is consistent with 
Tmin
e

 , is calculated using Geant4 [43] and is dependent on 
the proton energy Tp . Nevertheless, the process of obtaining 
the integral solution typically requires a significant amount 
of time, which is contingent upon the magnitude of the dif-
ferential step size dx.

Therefore, a proton Energy Range LookUp Table (ERLUT) 
is proposed to solve this issue. Initially, the Lw values of 
protons with various energies in water are determined. Sub-
sequently, the Lw values of protons with varying energies are 
integrated to obtain their range in water. Finally, an ERLUT 
derived from the precise integration is acquired, as shown 
in Fig. 2a.

For a proton with initial energy Tp , the energy loss ΔE 
in step Δs can be obtained by interpolating the ERLUT 
twice. First, the remaining range corresponding to Tp is 
obtained via forward interpolation. The table is then 
inversely interpolated to obtain Tend

p
 at the end of the step. 

The difference between the remaining ranges correspond-
ing to Tp and Tend

p
 is the step size Δs . Using this approach 

can not only save time but also ensure precision. Fig-
ure 2b, c shows a comparison between the continuous 
slowing down approximation (CSDA) range and the cal-
culation time for 200 MeV protons. The comparisons 

(3)Δsw = −∫
Tp−ΔE

Tp

dT �
p

Lw

(
T �
p
, Tmin

e

)

Fig. 2  (Color online) a The remaining range of protons with various energies (the ERLUT), b the cost time of protons with 200 MeV under dif-
ferent integration precisions, and c the CSDA range of protons with 200 MeV under different integration precisions
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were performed under different integration precisions 
(dx) utilizing the ERLUT.

The energy straggling model was implemented to rec-
tify the exact energy deposition of the protons within 
a single step. The energy deposition exhibits a Gauss-
ian distribution with ΔE and a variation of � , which is 
defined in Eq. 4.

2.2.2  Multiple scattering model

Protons undergo elastic Coulomb collisions when they 
traverse matter, resulting in numerous small-angle deflec-
tions. These deflections can be simulated using a multiple 
scattering model. This study employs the multiple scat-
tering theory proposed by Rossi and Greisen [44], which 
states that the deflection angle on the projection plane 
containing the initial track obeys a Gaussian distribution 
with � as shown in Eqs. (5)-(6):

Here, p is the momentum of a proton, � is its velocity, Δs is 
the step length, and X0(�) is the radiation length of the mate-
rial. According to Rossi and Greisen, the mean square angle 
of scattering is independent of the atomic number, and Es is 
a constant parameter of the multiple scattering model with 
the dimension of energy, given by Eq. (7):

Here, �e is the mass of the electron. Note that the value of 
Es here differs from that of Fippel [22] because in Fippel’s 
model, electrons are considered to slow down continuously.

Within the gMCAP program of the registration-only 
electromagnetic interaction model, comparisons were 
made between the central axis depth dose (CADD) curve 
and the lateral dose distribution (LDD) at the peak posi-
tion across various Es values. The experimental results, 
illustrated in Fig. 3, were compared with Geant4 simu-
lations to identify the most appropriate Es value. After 
conducting the simulations, the energy parameter was 
refined by setting Es to 23.5 MeV. This adjustment was 
implemented to maximize the precision of the electro-
magnetic process.

(4)�2 = 2�r2
e
meneΔs

min
(
Tmin
e

, Tmax
e

)
�2

(
1 −

�2

2

)

(5)� =
1√
2
×

�
1

2
E2
s
t∕p2�2,

(6)t ≡ Δs

X0(�)
.

(7)Es = �e(4�137)
1

2 = 21MeV.

2.3  Ionization

The ionization interactions between protons and matter are 
crucial for dose estimation. The cross section for electromag-
netic interactions is approximately two orders of magnitude 
larger than that for nuclear reactions. Take G4_SKIN_ICRP 
as an example, which is composed of H (10%), C (20.4%), N 
(4.2%), O (64.5%), Na (0.2%), P (0.1%), S (0.2%), Cl (0.3%), 
K (0.1%). Figure 4 shows the cross-sectional data obtained 
from Geant4 scaled by mass density.

According to the two-body collision energy transfer rela-
tionship, the maximum energy Tmax

e
 transferred by a proton 

to a free electron is calculated using Eq. 8.

Here, me and mp are the electron and proton rest masses, 
respectively; the relativistic parameter � =

Tp+mp

mp

 ; and 

�2 = 1 −
1

�2
 . The differential macroscopic cross section for 

ionization to produce a �-electron is extracted from Geant4 
using the class G4hIonisation with Tmin

e
= 81.5 keV . This 

corresponds to a range of approximately 0.1 mm in water. 
The G4hIonisation class utilizes the following models:

• G4BetheBlochModel, valid for Tp > 2 MeV

(8)Tmax
e

=
2me�

2�2

1 + 2�me∕mp + (me∕mp)
2

Fig. 3  (Color online) a Central axis depth dose curves and b lateral 
dose curves in the peak for different Es values for a cube of water irra-
diated by 200 MeV protons

Fig. 4  (Color online) Cross-sectional data of discrete interactions in 
G4_SKIN_ICRP taken from Geant4
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• G4BraggModel, valid for Tp < 2 MeV

If an ionization event occurs during transport, a �-electron is 
produced. The energy of the �-electron is determined using 
a random sampling method with a probability distribution 
function [22]. Figure 5 shows the electron energy distribu-
tion produced by a 200 MeV proton.

The scattering angular deflection of the proton during this 
process is ignored, as the mass of the proton is much larger 
than that of an electron, and its direction hardly changes 
during a collision. The �-electrons deposit energy locally 
and cease to be transported.

2.4  Simplified nuclear reaction: APPROX model

The simplified APPROX model focuses on nuclear interac-
tions between protons and H and O atoms, including elastic 
and inelastic reactions. In the APPROX model, soft tissue 
is presumed to undergo nuclear reactions similar to those in 
water. Assuming this, all tissues consist of H and O with a 
mass ratio of 1:8. Different tissues and organs exhibit vari-
ations in density.

The cross sections of the three nuclear reactions were 
calculated using Geant4 and tabulated. The model proposed 
by Fippel and Soukup [22] was used to sample the energy 
and scattering angle of the nucleus. For the secondary par-
ticles, where secondary protons are stored in the stack for 
further transportation, other charged particles release energy 
locally, and long-range particles, such as photons and neu-
trons, deposit energy proportionally.

2.5  Refined nuclear reaction: REFINED model

Because human tissues contain atoms other than H and O, it 
is necessary to consider the nuclear reactions of these atoms. 
Particularly for middle-Z and high-Z atoms, such as P, Ca, 
Fe, and I, the normalized nuclear reaction cross section with 

protons is significantly lower than that of O. Thus, employ-
ing the APPROX model to estimate the radiation dose to the 
bone may result in inaccuracies.

Consequently, a more advanced nuclear reaction model, 
REFINED, was developed in this study. It encompasses the 
nuclear interactions between protons and elements including 
H, C, N, O, Na, Mg, P, S, Cl, K, Ca, Fe, and I. Similarly, the 
cross sections of protons with these atoms were obtained 
using Geant4. Next, the program was initialized to compute 
the cross sections for various materials and each individual 
nuclear reaction. At the post-step point, the discrete interac-
tion type was sampled and specific nuclear reaction proce-
dures were executed.

2.5.1  Elastic nuclear interactions

An elastic nuclear reaction is a two-body collision event that 
follows the laws of conservation of energy and momentum. 
The deflection angle of the recoil nuclei is sampled based on 
the differential section and calculated using Ranft’s empiri-
cal formula [45], as shown in Eq. 9:

Among them, the invariant momentum transfer 
t ≡ −2p2(1 − cos �) , the unit is (GeV∕c)2 , and p and � are 
the momentum and deflection angle of the recoil nuclei in 
the center-of-mass system, respectively. Normalization of 
the differential cross-sectional formula is not important for 
the random selection of the scattering angle. A rejection 
method [36] is used to sample t, after which the angle � 
is obtained. Subsequently, the Lorentz boost [28], which is 
used in gMCAP, is used to determine the angle and momen-
tum in the laboratory system.

Once the deflection angle � has been calculated, the ener-
gies of the incident proton and recoil nuclei can be acquired, 
and the direction of the incident proton can be updated. 
The energy of the heavy recoil nucleus is assumed to be 
deposited locally, and the updated protons continue to be 
transported.

2.5.2  Inelastic nuclear interactions

Inelastic nuclear interactions cause the proton to evaporate 
and transfer its energy to secondary particles. Similarly, dis-
tinct reaction channels are sampled depending on the cross 
section of the inelastic nuclear reactions between the protons 

(9)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

d𝜎el

dΩ
≈ A1.63 exp(14.5A0.66t) + 1.4A0.33 exp(10t)

A ≤ 62,

d𝜎el

dΩ
≈ A1.33 exp(60A0.33t) + 0.4A0.40 exp(10t)

A > 62.

Fig. 5  (Color online) The �-electron energy distribution produced by 
a 200 MeV proton
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and each atomic nucleus. This study rectifies the distribu-
tion of the scattering angles for secondary protons, consider-
ing various target nuclei. According to Qin et al. [36], the 
sample expression for the angular cosine value cos � of the 
secondary proton is given as Eq. 10:

Here, � is a random number between 0 and 1. Maneval 
et al. [31] described the parameter � as shown in Eq. 11:

Here, T denotes the energy of the secondary proton in MeV. 
Equation 12 expresses the parameter � , which represents 
the correction for the target nucleus and is dependent on the 
mass number A and Tp.

Another parameter, � , is defined as a quantity associated 
with Tp , given by Eq. 13.

(10)cos � = ln[(e� − e−� )� + e−� ]
1

�
.

(11)� =
Tp

T�
, and � = �[1 + � ln T].

(12)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜇 = 1.8 × 10−2(A − 12) − 10−3Tp + 3.69,

Tp < 100MeV,

𝜇 = 0.55 × 10−2(A − 12) + 10−3Tp + 3,

100MeV ≤ Tp ≤ 200MeV,

𝜇 = 1.1 × 10−2(A − 12) + 10−3Tp + 3,

Tp > 200MeV.

(13)
{

𝜏 = 10−3Tp − 0.28, Tp < 100MeV,

𝜏 = 0.2 × 10−3Tp − 0.203, Tp ≥ 100MeV.

In addition, the azimuth angle � is uniformly sampled 
between [0, 2�].

The approach proposed by Fippel and Soukup [22] allows 
for the classification of secondary particles into three dis-
tinct categories: secondary protons, large-range particles 
(such as photons and neutrons), and short-range particles 
(such as alpha particles and heavier nucleus fragments). 
The energy of the secondary particles is sampled from a 
uniform distribution between the minimum energy (3 MeV 
here) and the remaining energy of the system. Subsequently, 
the new remaining energy is assigned by subtracting the 
energy of the secondary particles and additional binding 
energy. The energy of the short-range particles is deposited 
locally, whereas that of the long-range particles is released 
proportionally.

2.6  GPU implementation

GPU parallel computing was implemented using CUDA 
v11.5, which supports programming in C/C++. When the 
program starts, the CPU initializes the cross-sectional data 
of the material, source information, geometric configuration, 
and random number seed. All these data are transferred from 
the CPU memory to the GPU global memory. After initiali-
zation, the primary and secondary protons are transported 
in batches, and each primary proton is transported using a 
GPU thread. Atomic addition is used to write the results to 
global memory to obtain the average dose of each voxel, 
thus avoiding memory conflicts and saving execution time.

The code employs a batch-based approach to compute 
statistical fluctuations, also known as statistical uncertainty. 
Typically, a single simulation consists of 10 batches. The 

Fig. 6  (Color online) The 
CPU-GPU coupling architecture 
diagram of the entire gMCAP
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calculation process is shown in Eq. 14, where v is the voxel, 
N is the number of batches, Xi(v) is the physical quantity 
(dose or deposited energy) recorded by voxel v in the i-th 
batch, and X̄(v) is the average physical quantity within the 
voxel.

Before the program exits, it copies the results from the GPU 
to the CPU and outputs the data. The overall program archi-
tecture is illustrated in Fig. 6.

2.7  Validation and comparison

2.7.1  Geant4 setup

Geant4 simulations were conducted using version 10.06 as a 
benchmark to compare dose distributions. The electromag-
netic model utilized was G4EmStandardPhysics_option4, 
whereas G4HadronPhysicsQGSP_BERT_HP was employed 
as the hadron physics model along with G4HadronElastic-
PhysicsHP. In addition, the physical models G4Stopping-
Physics, G4IonBinaryCascadePhysics, and G4DecayPhysics 
were included, as they are commonly used in proton radia-
tion therapy [32]. The electron production cut was set to 
0.1 mm, corresponding to an energy cutoff of 81.5 keV in 
gMCAP. The proton cutoff step size was set to 0.4 mm to 
balance accuracy and computation time. The Geant4 simu-
lation was executed using an Intel Core i7-10875 H CPU 
operating at a clock speed of 2.30 GHz.

(14)s(v) =

�∑N

i=1
(Xi(v) − X̄(v))2

N(N − 1)

2.7.2  Homogeneous and heterogeneous phantoms

An extremely small proton beam was used to evaluate the 
stability of the gMCAP. The code was tested using three 
different phantoms: a uniform water phantom (Water-
Phan), two standard heterogeneous phantoms (PhantomI 
and PhantomII) consisting of soft tissue, bone, and lung 
tissue. The voxel resolution for both the homogeneous and 
heterogeneous models was set to 1mm × 1mm × 1mm , 
and the phantom size was 300mm × 300mm × 300mm . In 
this experiment, proton beams with energies of 100 MeV, 
150 MeV, and 200 MeV were employed to examine the 
water phantom. Additionally, a monoenergetic proton 
beam of 160 MeV was used to assess the heterogeneous 
phantom. Figure 7 illustrates a schematic of the source 
and geometry, as shown by Maneval et al. [31].

Fig. 7  (Color online) The homogeneous and heterogeneous phantoms and source: a, b show the schematic diagram of water, and c–f show the 
schematic diagram of the mixed model including soft tissue, lung tissue, and bone

Fig. 8  (Color online) Schematic diagram of the treatment plan in the 
laboratory coordinate system: a top view, b 3D view
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2.7.3  Clinical cases based on patient treatment plans

T h e  s u i t a b i l i t y  o f  t h e  c l i n i c a l  c a s e  wa s 

evaluated using a dataset comprising head and neck 
CT data. The CT data were voxelized at a resolution of 
0.875mm × 0.875mm × 3.000mm , resulting in a total size 

Fig. 9  (Color online) Discrete interactions in water. The first column 
is the IDD curve, the second column is the CADD, and the third col-
umn is the LDD at depth = 100 mm and LDD at the peak. In the sub-

graph, a–d are the results of CSDA, e–h are the results of EM, i–l are 
the results of EM and elastic interactions, m–p are the results of EM 
and Inelastic interactions, and q–t are the results of all interactions
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of 512 × 512 × 79 voxels. Initially, a conversion process 
was applied to transform the HU values of the CT data into 
density values. Subsequently, the tissues were assigned. 
For the dose computation, the proton bixel width was set 
to 1 mm using the open-source treatment planning system 
matRad [46]. Information on 9651 rays from two irradiation 
fields was obtained. Figure 8 presents a schematic of the 
treatment plan in the laboratory coordinate system.

Moreover, in order to evaluate the impact of the two 
nuclear reaction models (APPROX and REFINED), proton 
beams with energies of 120 MeV, 140 MeV, and 180 MeV 
were utilized to irradiate the mandibular and tooth regions. 
These anatomical structures comprise tissues and organs 
that contain elements such as P and Ca. The dose distribu-
tion was recorded, and the relative deviations were analyzed 
using the two models.

3  Results

3.1  Validation for discrete interactions

The discrete interaction was validated by comparing the 
dose distribution of a 150 MeV proton beam interacting 
with water using different physical models. In this study, 
the refined physical model, REFINED, of gMCAP was 
employed, whereas the well-studied simplified model, 
APPROX, was omitted because it has been extensively 
examined by previous researchers. Various physical models 
were tested separately, including CSDA, Electromagnetic 
Interactions (EM, which includes CSDA, Multiple Scatter-
ing, and Energy Straggling), Elastic Nuclear Interactions 
(EM + Elastic), Inelastic Nuclear Interactions (EM + Inelas-
tic), and the complete set of physical models (All).

To verify the accuracy of the energy loss and angular 
deflection processes in each physical model, the integral 
depth dose (IDD), central axis depth dose (CADD), and 

lateral depth dose (LDD) at depth = 100 mm with LDD at 
the peak were examined and compared with the correspond-
ing Geant4 results. The results, depicted in Fig. 9, demon-
strate a strong agreement between gMCAP and Geant4, 
confirming the accuracy of the program’s physical model. 
Notably, the LDD at the peak in gMCAP is slightly higher 
than that in Geant4. This discrepancy could be attributed to 
differences in the multiple scattering model being utilized. 
Despite the corrections made to this model in the present 
study, some deviations from Geant4 still exist. This discrep-
ancy may be attributed to the exclusion of electron transport. 
However, it is important to emphasize that the level of inac-
curacy is within an acceptable level. Further research on the 
transport model of secondary electrons will be conducted 
in the future.

3.2  Quantitative analysis

A quantitative analysis was conducted to compare the dose 
distributions of protons at different energy levels. This analy-
sis involved the use of the APPROX and REFINED nuclear 
reaction models. The IDD curve was examined, as shown in 
Fig. 10. The results indicated that the disparity between the 
APPROX model and Geant4 was less than 5%. However, the 
REFINED model further reduced the overall deviation to 
2%, with only a 1% deviation observed in the region beyond 
the distal fall-off area.

The analysis of the lateral distribution is presented in 
Fig. 11. The results demonstrate that the relative deviation 
between Geant4 and 90% of the data fell within 1%, indicat-
ing that the REFINED model exhibited better performance 
than the APPROX model.

In addition, the heterogeneous model was used to evaluate 
the IDD curve and lateral dose profiles; the results are illus-
trated in Fig. 12. The results demonstrate good agreement 
between the dose distributions obtained from gMCAP and 
Geant4. Specifically, the relative deviation in the lateral dose 

Fig. 10  (Color online) Integrated depth dose in water with primary proton energy of a 100 MeV, b 150 MeV, and c 200 MeV
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profile was found to be within 3%. Notably, the REFINED 
model exhibited a reduced overall deviation compared to 
Geant4, in contrast to the APPROX model.

The gamma passing rate, defined in [47], is a widely 
employed metric in radiotherapy for assessing the similar-
ity of dose distribution maps. It considers voxels with doses 
greater than 10% of the maximal dose. The findings, pre-
sented in Table 1, indicate a high level of concurrence with 
the Geant4. The gamma passing rate of 2 mm/2% exceeds 
99%. Moreover, the REFINED model outperformed the 
APPROX model in terms of results.

3.3  Dose results of clinical cases

The dose outcomes for treatment plans targeting the head 
and neck region were compared. The dose distribution for 
the middle slice is shown in Fig. 13. The overall dose results 
closely match those of Geant4, with the relative deviation 

between gMCAP and Geant4 within 4%. Moreover, the 
gamma passing rates for both the APPROX and REFINED 
models were nearly identical at approximately 99%.

Furthermore, the dose outcomes along a line intersect-
ing both beams and parallel to the y-axis were analyzed. 
The corresponding gamma values are also presented in the 
provided figure. This analysis provides additional insight 
into the agreement between gMCAP and Geant4 in terms 
of dose accuracy and conformity.

3.4  Efficiency gain

Compared to Geant4 running on a CPU for over 5  h, 
gMCAP offers a significant reduction in runtime, com-
pleting the simulations within seconds. This translates to 
an efficiency gain of more than 1800 times in comparison 
with Geant4. The execution times for the two versions of 
gMCAP using the APPROX and REFINED models are 
summarized in Fig. 14. Using an NVIDIA GeForce RTX 
4090 GPU, gMCAP achieved the transportation of one 
million particles in less than 1 s. Note that the REFINED 
model requires approximately 1.15 times more time than 
the APPROX model, with variations depending on the 
geometry and source type used in the simulations. These 
results highlight the efficiency and speed advantages of 
gMCAP for particle transport simulations.

Fig. 11  (Color online) Lateral dose distribution in water with primary 
proton energy of a 100 MeV, b 150 MeV, and c 200 MeV. The first 
row of each subfigure shows the dose distributions of Geant4, 
APPROX, and REFINED, respectively. The second row compares the 
lateral distributions at the peak, the relative error distributions 
between APPROX and Geant4, and the relative error distributions 
between REFINED and Geant4. The relative error is calculated as 
error

i
=
(
dose

APPROX|REFINED

i
− dose

Geant4

i

)/
max

(
dose

Geant4
)

◂

Fig. 12  (Color online) Inte-
grated depth dose and lateral 
dose profile in heterogeneous 
model with primary proton 
energy of 160 MeV
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3.5  The impact of various nuclear models

Figure 15 shows the dose distribution and relative devia-
tion of the two nuclear reaction models. Deviation pri-
marily occurs in the teeth and downstream regions. The 
proton energies of 120 MeV, 140 MeV, and 180 MeV 
result in a maximum variance of approximately 15%. The 
primary explanation for this deviation is the ability of 
nuclear events to substantially alter the angular disper-
sion of secondary particles, primarily secondary protons. 
The tooth area comprises approximately 29% Ca and 14% 
P. The angular distribution of secondary protons gener-
ated through nuclear reactions differs from that produced 
by p-O nuclear reactions, leading to distinct energy and 
momentum distributions of the secondary protons down-
stream. The REFINED model incorporates the nuclear 
reactions of Z elements such as P and Ca, which rectify 
the angular distribution of secondary particles, leading to 
distinct downstream dose distributions.

4  Conclusion and discussion

We have developed a GPU-accelerated program, gMCAP, 
which accurately calculates Monte Carlo (MC) proton dose 
distributions with precise discrete interactions and refined 
nuclear reaction models. gMCAP offers two nuclear interac-
tion models: APPROX and REFINED. The APPROX model 
considers only H and O atoms, whereas the REFINED 
model considers all constituent elements of human tissues.

gMCAP with the REFINED nuclear model provides 
more accurate proton transport compared to that of certain 

programs employing simplified models. It demonstrates 
strong agreement with Geant4 and achieves a precision simi-
lar to that of current GPU-based Monte Carlo codes [29, 30] 
that utilize simplified models. For homogeneous phantoms, 
gMCAP achieved a gamma passing rate exceeding 99% for 
a 2 mm/2% criterion. Moreover, the REFINED model in 
gMCAP outperformed the APPROX codes by achieving a 
gamma passing rate exceeding 95% for all phantoms with 
a 1 mm/1% criterion. These results highlight the superior 
performance and precision of gMCAP in simulating proton 
dose distributions.

Additionally, gMCAP demonstrated favorable execution 
times. For instance, when simulating 10 million primary 
protons with an energy of 150 MeV in a water phantom 
consisting of 1 mm voxels, gMCAP required 3.7 s using 
an NVIDIA RTX 4090. In comparison, the Moqui soft-
ware [32] required 18 s on an NVIDIA GTX 2080 Ti for the 
same simulation. Similarly, when simulating 10 million pri-
mary protons with an energy of 200 MeV, gMCAP [29] took 
5.6 s on an NVIDIA RTX 4090, whereas the gPMC software 
took 21 s on a Tesla C2050. These results demonstrate that 
gMCAP offers efficient execution times, outperforms certain 
alternative software packages, and leverages the power of 
modern GPUs for accelerated Monte Carlo simulations.

Compared to the APPROX model, the REFINED model 
in gMCAP improves the gamma pass rate by 3%. This 

Table 1  Gamma passing rates for the homogeneous and heterogene-
ous phantoms

Geometry Criteria APPROX (%) REFINED (%)

WaterPhan 200 MeV 1 mm, 1% 98.39 99.26
2 mm, 2% 98.90 100
3 mm, 3% 99.94 100

PhantomI 70 MeV 1 mm, 1% 97.14 97.75
2 mm, 2% 98.97 99.31
3 mm, 3% 99.82 99.97

PhantomI 160 MeV 1 mm, 1% 97.63 98.12
2 mm, 2% 99.46 99.90
3 mm, 3% 100 100

PhantomII 70 MeV 1 mm, 1% 95.15 95.28
2 mm, 2% 98.16 99.53
3 mm, 3% 99.27 99.46

PhantomII 160 MeV 1 mm, 1% 95.33 95.73
2 mm, 2% 98.88 99.87
3 mm, 3% 99.86 99.93

Fig. 13  (Color online) Dose distribution comparison of the head 
and neck treatment plan. The first row shows the dose distributions 
of Geant4, APPROX, and REFINED, respectively. The second row 
shows the integrated lateral dose distribution, the relative error distri-
bution between APPROX and Geant4, and the relative error distribu-
tion between REFINED and Geant4. The third row shows the gamma 
index distribution of APPROX and REFINED compared to Geant4, 
respectively

Fig. 14  (Color online) Runtimes 
of gMCAP under different 
energies
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enhancement is particularly significant in tissue regions rich 
in elements such as Ca and P, which are abundant in the 
bones and teeth. In these regions, the difference between the 
REFINED and APPROX models can reach up to 15%. To 
ensure calculation accuracy, the REFINED model should be 
employed in tissue regions containing a higher proportion of 
middle-Z and high-Z components.

Despite offering a refined nuclear model for precise 
discrete proton reactions, the current implementation of 
gMCAP has certain limitations. One is that neutral particles 
are not considered, which can lead to specific discrepancies 
in dose calculations. Additionally, the absence of secondary 
electron transport may affect the evaluation of the radiation 
dose in the lungs [29].

To address these limitations, we plan to integrate our pre-
vious research on electron transport [48] into gMCAP in the 
next phase of development. Furthermore, we are exploring 
the integration of gMCAP with the open-source treatment 
planning system (TPS) matRad for dose calculation. In the 
future, we envision enhancing gMCAP as a versatile TPS cal-
culation engine. Further improvements and advancements are 
required to make this system a comprehensive and reliable 
tool for treatment planning. Please note that the gMCAP code 
is still in the development stage and is not yet open source.
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