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Abstract
Artificial intelligence has potential for forecasting reactor conditions in the nuclear industry. Owing to economic and secu-
rity concerns, a common method is to train data generated by simulators. However, achieving a satisfactory performance 
in practical applications is difficult because simulators imperfectly emulate reality. To bridge this gap, we propose a novel 
framework called simulation-to-reality domain adaptation (SRDA) for forecasting the operating parameters of nuclear 
reactors. The SRDA model employs a transformer-based feature extractor to capture dynamic characteristics and temporal 
dependencies. A parameter predictor with an improved logarithmic loss function is specifically designed to adapt to varying 
reactor powers. To fuse prior reactor knowledge from simulations with reality, the domain discriminator utilizes an adver-
sarial strategy to ensure the learning of deep domain-invariant features, and the multiple kernel maximum mean discrepancy 
minimizes their discrepancies. Experiments on neutron fluxes and temperatures from a pressurized water reactor illustrate 
that the SRDA model surpasses various advanced methods in terms of predictive performance. This study is the first to use 
domain adaptation for real-world reactor prediction and presents a feasible solution for enhancing the transferability and 
generalizability of simulated data.

Keywords Nuclear power plant (NPP) · Pressurized water reactor (PWR) · Domain adaptation · Knowledge transfer · 
Transformer · Forecasting

1 Introduction

The advancement of nuclear energy and its safe use can pro-
vide an impetus for human progress and support the produc-
tion of high-end equipment, energy security, a reduction of 

climate change, and a shift to greener energy sources [1, 
2]. Increasing the autonomous operation of nuclear power 
plants (NPPs) through digitalization and intellectualization 
is crucial for enhancing the efficiency and safety of nuclear 
energy, as well as for lowering operation and maintenance 
costs [3, 4]. The phrase "unmanned surveillance, few people 
on duty" describes the automation activities of NPPs in the 
future [5].

One of the pivotal technologies required to fulfill this 
desire is the prediction of key parameters in NPPs, especially 
under transient conditions, to perform timely decision-mak-
ing and ensure early warning [6, 7]. The precise forecasting 
of key parameters in reactors is a well-established challenge. 
In recent years, considerable efforts have been made to pre-
dict various operating parameters in reactor transient condi-
tions, including in-core power [8], outlet temperature [9], 
coolant leakage [10], and pressure [11]. Typical artificial 
intelligence (AI) models with multidimensional mappability, 
support vector regression (SVR), artificial neural networks 
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(ANNs), and long short-term memory (LSTM) are fre-
quently utilized in operating-parameter forecasting [12–14]. 
For example, Zeng et al. [15] combined SVR with particle 
filtering to predict the core power and coolant temperature 
of a reactor and achieved satisfactory accuracy for reac-
tor reactivity insertion events. Lu et al. [16] developed an 
ANN-based model for forecasting the thermal–hydraulic 
parameters in a KLT-40 S nuclear reactor under steady-state 
operation, and their results were in good agreement with the 
RELAP5 simulation.

For economic and security purposes, frequently conduct-
ing trials in real-world NPPs may trigger uncontrollable 
events and equipment damage. Therefore, obtaining a large 
number of transient samples is extremely challenging. A 
viable alternative for addressing the scarcity of real data is 
to apply numerical simulations to address class imbalance 
problems [17]. For example, Xiang et al. [18] proposed a 
gear-oriented fault detection method to enlarge fault sam-
ples by integrating a finite element method simulation 
and generative adversarial network, achieving satisfactory 
results. This idea is suitable for a mechanical system with 
a corresponding well-constructed simulation. Additionally, 
studies have utilized various programs that can perform sys-
tem-level simulations (such as RELAP5 [19], TRACE [20], 
PCTRAN [21], CASMO5 [22], and PANGU [23]) to pro-
duce simulated data for AI model training and verifica-
tion based on nuclear engineering experience and physi-
cal knowledge. Li et al. [24] conducted a study using data 
from the Qinshan 300 MWe NPP full-scope simulator. They 
combined an automated feed-forward neural network with 
optimization algorithms, which could effectively forecast 
the steam mass flow rate and water temperature during tran-
sient reactor operation for up to 5 seconds in advance. Tan 
et al. [25] established a mathematical model to prove the 
equivalence of simulated and operation data when the mean 
noise distribution is zero. This indicates that the simulated 
data can provide a supplemental dataset for the AI model 
in the initial training and theoretical analysis. Although 
various simulators have been designed to closely mimic the 
operations of actual reactors, the simulated and real data 
still exhibit certain domain discrepancies in terms of noise, 
numerical distributions, and dynamic characteristics for the 
following reasons: 

(1) The mathematical models in simulators are simplified 
from real complex nuclear power systems and cannot 
fully capture the nuanced physical processes.

(2) The operating parameters and states of simulators grad-
ually differ from actual reactors, especially the changes 
in burnup caused by reactor-lifespan variation.

(3) In certain transient or extreme conditions, the dynamic 
response of simulators may marginally differ from the 
operations of actual reactors.

Even if real data accurately capture the intricate features of 
environmental interactions in NPPs, the difficulty of data 
collection leads to an inability to encompass all possible 
scenarios. Data derived from theoretical models and com-
putational simulations of nuclear systems are readily avail-
able and inherently safer to obtain. Both the simulated and 
real data have unique state characteristics. Consequently, 
AI models trained solely on simulated or real data may be 
inaccurate and difficult to apply in NPPs with high safety 
and reliability standards [26]. Thus, investigating the trans-
fer of prior knowledge from sufficiently simulated data to 
scarce actual data is essential for enhancing the precision of 
operating-parameter forecasts in NPPs.

However, this scheme raises an open issue: how well do 
simulated data generalize to real data? Transfer learning, a 
deep learning technique that aims to leverage pre-existing 
knowledge to improve the performance in a new task or 
domain, has become a feasible solution [27]. Lin et al. [28] 
proposed a transfer learning model using maximum mean 
discrepancy (MMD) and a convolutional neural network 
(CNN). The experimental results demonstrated that transfer-
ring prior diagnostic knowledge is conducive to expanding 
the scope of nuclear accident diagnosis in NPPs. Domain 
adaptation, which is a subset of transfer learning, specifi-
cally focuses on addressing domain discrepancies between 
the source and target domains in scenarios of the same 
task [29]. For insufficiently learnable samples, numerous 
domain-adaptation methods have been developed to address 
situations in mechanical fault diagnosis [30], medical image 
analysis [31], and robot control [32]. Xiang et al. [33] estab-
lished a fault diagnosis method using simulations to obtain 
sufficient faults and domain adaptation to transfer the simu-
lated knowledge to a real-world diagnosis. This approach 
not only supplements scarce fault samples but also mitigates 
the gap between simulation and reality. Inspired by their 
work, domain adaptation theoretically has the potential to 
transfer knowledge from simulation to reality and learn the 
common feature subspace for parameter prediction, wherein 
simulated and real data are considered as the source and 
target domains, respectively. Thus, the effectiveness of 
domain-adaptation techniques in bridging the gap between 
simulation and reality should be investigated, particularly for 
accurately forecasting critical parameters in nuclear reactors.

Based on the aforementioned discussion, this study aims 
to devise a transferability architecture for forecasting oper-
ating parameters in nuclear reactors using a simulation-to-
reality domain adaptation (SRDA) model. Specifically, the 
SRDA model comprises four components: a feature extrac-
tor, parameter predictor, domain discriminator, and multiple 
kernel maximum mean discrepancy (MK-MMD). The fea-
ture extractor, as the backbone network within the SRDA 
model, is established using transformers that can capture 
dynamic characteristics and temporal dependencies from 
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simulated and real data. A parameter predictor containing an 
improved logarithmic loss function can perform precise fore-
casting tasks under distinct reactor power levels. The domain 
discriminator utilizes an adversarial strategy that forces the 
feature extractor to learn deep domain-invariant features. 
MK-MMD quantifies the discrepancies between simulated 
and real data through sophisticated high-dimensional map-
ping. The key contributions of this study are summarized 
as follows: 

(1) Unlike conventional methods solely using simulated 
data modeling, the simulation-to-reality transferability 
model is pioneered by a novel technique in the domain 
adaptation of computer vision to precisely forecast 
critical parameters in nuclear reactors.

(2) The transformer uses a multi-head attention mechanism 
and is embedded as a feature extractor in the SRDA 
framework to capture both dynamic characteristics and 
temporal dependencies from simulated and real data. 
The improved logarithmic loss function in the predictor 
is refined to adapt varied power levels in reactors.

(3) The SRDA framework is expertly developed to bridge 
the gap between the simulated and real data and harness 

the strengths of adversarial strategy (i.e., the extraction 
of deep domain-invariant features) with the MK-MMD 
(i.e., the minimization of domain distribution discrep-
ancies) simultaneously.

The remainder of this article is organized as follows. Sec-
tion 2 analyzes the differences between the simulated and 
real data. Section 3 introduces the proposed SRDA frame-
work in detail. In Sect. 4, we validate the precision and supe-
riority of the proposed method through comparative experi-
ments. Finally, Sect. 5 concludes the paper.

2  Preliminary analysis

To visualize the differences between the simulated and real 
data, neutron fluxes at the same height in each of the four 
reactor channels are shown in Fig. 1. The four simulated 
curves of the height coincidence exhibited smooth tenden-
cies over a narrower range, whereas the actual curves exhib-
ited obvious noise over a wider range. Discrepancies arise 
primarily from model simplifications and potential errors in 
the parameter estimation. For example, in simulating reactor 

Fig. 1  (Color online) Numerical distributions of the simulated and real data. a Neutron fluxes from real-world reactor; b neutron fluxes from a 
full-scope simulator; c numerical distributions of real neutron fluxes; and d numerical distributions of simulated neutron fluxes
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dynamics, certain assumptions must be made for compu-
tational feasibility, which can lead to deviations from the 
actual reactor responses. The dynamic characteristics of an 
NPP, such as its thermal–hydraulic behavior and neutron 
kinetics, were approximated in the simulations. However, 
these approximations can oversimplify real phenomena. 
In real-world reactors, neutron-flux signals are collected 
by ex-core detectors, whose signals are primarily induced 
by neutrons and gamma rays, along with a component of 
electrical noise [34]. In addition, burnup changes caused by 
reactor-lifespan variations cause the numerical distributions 
of the simulation and reality to shift progressively. These 
observations underscore the limitations of simulations and 
the complexities of real-world nuclear reactors, which fur-
ther demonstrate the discrepancies in noise, numerical dis-
tributions, and dynamic characteristics between simulations 
and reality.

3  Methodology

3.1  Problem formulation

The operating-parameter data X = {x1, x2,⋯ , xT} ∈ ℝ
T 

are given hypothetically, where T denotes the length of 
the time series. In the prediction task in nuclear reac-
tors, a sliding window is applied to construct the dataset 
D = {(Xt,Yt)} ∈ ℝ

t×n , where t and n represent the t-th tem-
poral window and total number of windows, respectively. 
More specifically, Xt = {xt−�−1,⋯ , xt−1, xt} represents the 
input window of length � , and Yt = {xt+1, xt+2,⋯ , xt+�} 
represents the forecasting window in the future � steps ( � ≥

1). The process can be viewed as a function FP as follows:

The prediction task involves transferring knowledge from 
ample simulated data (source domain) to scarce actual data 
(target domain) in NPPs. The simulated data represent the 
source domain DS = {(XS

t
,YS

t
)} ( XS

t
∈ X

S,YS
t
∈ Y

S ), and 
the real data represent the target domain DT = {(XT

t
,YT

t
)} 

( XT
t
∈ X

T,YT
t
∈ Y

T ). They share a common feature sub-
space, that is, XS = X

T and YS = Y
T . Owing to the different 

actuation modes and system dynamics, the source and target 
domains have different marginal probability distributions, 
that is, P(XS) ≠ P(XT) . Thus, we design a transformation 
function FDA to fulfill P(FDA(X

S)) = P(FDA(X
T)) . Function 

FDA is combined with function FP to establish the transfer-
ability prediction framework FP = FDA(FP(⋅)) , which per-
forms forecasting missions in real-world nuclear reactors.

3.2  Overview of SRDA

The proposed SRDA framework aims to predict real data in 
nuclear reactors precisely over time by learning and trans-
ferring prior knowledge from simulations to reality. As pre-
sented in Fig. 2, the architecture of SRDA resembles that of 
conventional neural networks and possesses two output mod-
ules instead of one. The SRDA model comprises four mod-
ules. The blue module is the feature extractor Gf and serves 
as the backbone network that directly affects the transfer 
effect. We use a transformer as the feature extractor, which 
is described in detail in Sect. 3.4. The orange module, rep-
resenting the parameter predictor Gp , is constructed using an 
improved logarithmic loss, a fully connected (FC) layer, and 
a prediction output layer, which forecasts the future variation 

(1){xt+1, xt+2,⋯ , xt+�} = FP({xt−�−1,⋯ , xt−1, xt}).

Fig. 2  (Color online) Schematic of the simulation-to-reality domain adaptation (SRDA) framework
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of operating parameters in the reactors. The purple module 
represents the domain discriminator Gd and comprises two 
FC layers and a classification output layer. The purpose of Gd 
is to classify the training data from each domain and estab-
lish an adversarial learning strategy with feature extractor 
Gf . In addition, the green module represents the multiple 
kernel maximum mean discrepancy (MK-MMD) used to 
estimate the discrepancies between the simulated and real 
reactor data after the feature extraction.

3.3  Principles of domain adversarial strategy

In the training phase, the samples Xt from DS and DT are 
fed into the feature extractor Gf to extract temporal features. 
Then, the obtained features Xf

t
 are forwarded to both the 

parameter predictor Gp and domain discriminator Gd to fore-
cast the operating parameters Ỹt and generate the domain 
label d̃t . This process is expressed as follows:

where �f , �p , and �d represent the trainable weight matrices 
in Gf , Gp , and Gd , respectively.

This framework mitigates domain differences and makes 
precise parameter predictions by jointly training Gf , Gp , and 
Gd . More specifically, training has two goals: (1) minimizing 
the prediction loss for Gp and (2) maximizing the domain 
loss for Gd simultaneously, such that the domain discrimina-
tor cannot distinguish the domain from which the obtained 
features originate [35]. Feature extractor Gf and domain 
discriminator Gd are trained adversarially to ensure that Gf 
maps the simulated and real data into a common subspace 
and generates domain-invariant features. Consequently, the 
training convergence learns deep domain-invariant features 
in the feature extractor, which refers to temporal depend-
encies or generic patterns that do not significantly change 
between the simulated and real data. To perform adversarial 
training, the feature extractor Gf and domain discriminator 
Gd are interconnected by a gradient reversal layer to achieve 
optimal results. For efficient backpropagation, the trade-off 
loss function ( L total ) in the framework is built and formal-
ized as follows:

(2)

⎧⎪⎨⎪⎩

Xf
t
= Gf

�
Xt;𝜽f

�
Ỹt = Gp

�
Xf
t
;𝜽p

�
d̃t = Gd

�
Xf
t
;𝜽d

�
,

where � denotes the weight coefficient that adjusts the trade-
off between the predictor, discriminator, and MK-MMD 
losses. nS and nT are the numbers of samples for training 
from DS and DT , respectively. Lp , Ld , and LMK-MMD denote 
the loss functions of the predictor, discriminator, and MK-
MMD. When the reactor operates at low-power levels, the 
magnitudes of certain operating parameters vary considera-
bly; thus, the model cannot accurately fit smaller values. The 
improved logarithmic function is specifically designed as a 
predictor loss function Lp , and its formula is defined by Eq. 
(4). The cross-entropy function is used as the discriminator 
loss function L d . LMK-MMD is described in detail in Sect. 3.5.

where � is a small constant that ensures that the predictions 
inside the logarithmic function are always positive and is 
set to 0.01.

Lp , Ld , and LMK-MMD have different scales correspond-
ing to the losses in prediction, classification, and statistics, 
respectively. Thus, a trade-off learning strategy is developed 
for joint training, in which the weight � is adjusted dynami-
cally and gradually increase from an initial small weight dur-
ing training. A formal definition of dynamic �i is expressed 
as follows:

where pi represents the learning progress, which increases 
linearly from zero to one. i and E denote the i-th epoch being 
processed and the maximum number of epochs, respectively. 
This strategy ensures that the domain discrimination is less 
affected by noisy data in the initial stages of training.

In the testing phase, the trained SRDA model utilizes a 
feature extractor (i.e., the transformer) to capture temporal 
characteristics from real data, which are then fed into the 
predictor to forecast the operating-parameter variations in a 

(3)

L total =
1

nS

nS∑
t=1

Lp

({
Gp

[
Gf

(
Xt;𝜽f

)
;𝜽p

]}
,Yt

)

−
�

nS + nT

nS+nT∑
t=1

Ld

({
Gd

[
Gf

(
Xt;𝜽f

)
;𝜽d

]}
, dt

)

+ LMK-MMD

=
1

nS

nS∑
t=1

Lp

(
Ỹt,Yt

)
−

�

nS + nT

nS+nT∑
t=1

Ld

(
d̃t, dt

)

+ LMK-MMD ,

(4)Lp =
1

nS

nS∑
t=1

||||log
(
Ỹt + �

)
− log

(
Yt + �

)||||,

(5)pi =
i

E

(6)�i =
2

1 + exp
(
−10 × pi

) − 1,
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real-world reactor. The domain discriminator and MK-MMD 
modules are not involved in the testing phase because their 
purpose is solely to assist the feature extractor in learning 
domain-invariant features during training.

3.4  Principles of transformer

A transformer [36] has an excellent capacity for handling 
time series and is utilized as the feature extractor within 
the SRDA model. A standard transformer has a sequence-
to-sequence structure that incorporates an encoder and a 
decoder. To capture the dynamic characteristics and tem-
poral dependencies from the simulated and real data, the 
encoder in the transformer is utilized to map the inputs into 
a high-dimensional domain-invariant feature matrix.

As presented in Fig. 3, the encoder comprises positional 
coding, multi-head attention, layer normalization, and a 
feed-forward neural network. The positional information is 
calculated using sine and cosine functions [37]. Multi-head 
attention aims to capture the dynamic characteristics of spe-
cial events that can enhance the sensitivity of the model to 
critical moments or transient scenarios in reactors. As shown 
in Fig. 4, multi-head attention, as the basic module in the 
transformer, first expands the input Xt into a new embedding 
X′
t
 by an FC layer, which is described as follows:

where W I is the weight of the input FC layer. k and d are 
the head numbers of the attention mechanism and feature 
dimension, respectively.

(7)X�
t
= XtW

I,X�
t
∈ ℝ

k×d×3,

Embedding X′
t
 is further propagated to multiple heads 

where the weights are not shared among them. Each head has 
three FC layers and a scaled dot-product attention. The FC 
layers are employed to map X′

t
 into a query ( Q ∈ ℝ

k×d ), key 
( K ∈ ℝ

k×d ), and value ( V ∈ ℝ
k×d ), which are expressed as 

follows:

where WQ , WK , and WV are the weights of the FC layers.
The scaled dot-product attention can calculate the correla-

tion between Q and K to produce an attention map, which 
is employed as the weight of V ; the calculation of which is 
described formulas follows:

where FS is the mapping function of the scaled dot-product 
attention. �(⋅) denotes a Softmax activation function.

The output of each head is concatenated and calculated 
using an output FC layer. This process can be simplified as 
follows:

where FA denotes the mapping function of multi-head atten-
tion. WQ

i
 , WK

i
 , and WV

i
 represent the weights of the FC layers 

in the i-th head, whereas WO represents the weight of the 
final FC layer. � denotes the concatenated operation.

(8)Q,K,V = X�
t
WQ,X�

t
WK,X�

t
WV,

(9)FS(Q,K,V) = �

�
QKT

√
d

�
V,

(10)Si = FS

(
X�
t
W

Q

i
,X�

t
WK

i
,X�

t
WV

i

)
, i ∈ (0, k]

(11)FA(Q,K,V) = �
(
S1,… , Sk

)
WO,

Fig. 3  Structure of transformer

Fig. 4  Structure of multi-head attention
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The feed-forward neural network, consisting of two FC 
layers and a rectified linear unit activation function, primar-
ily boosts the nonlinear fitting capability of feature extrac-
tion, which is utilized separately for each position.

3.5  Principles of MK‑MMD

A standalone domain adversarial strategy may have subop-
timal effects or instability in simulation-to-reality knowl-
edge transfer. Combining the adversarial strategy with 
MK-MMD can compensate for these shortcomings while 
promoting the stability and robustness of the model. In the 
SRDA framework, the dimensionality of the feature matrix 
Xf obtained by the feature extractor is reduced to eigenvec-
tors Xf S

t  and Xf T

t  , whose MK-MMD is then calculated using 
Eq. (12). LMK-MMD can quantify the distribution discrep-
ancies between simulated and real data using sophisticated 
high-dimensional mapping. Compared to traditional MMD, 
MK-MMD employs a set of kernel functions to fully analyze 
data across different scales and dimensions, which enhances 
the ability to identify distributional discrepancies [38].

�(⋅) denotes the function that maps the feature to the repro-
ducing kernel Hilbert space. A kernel function K, which is a 
convex combination of m positive semi-definite kernels Ku , 
is defined to avoid a complicated mapping.

where Ku and �u represent the u-th kernel function defined 
by the Gaussian kernel and its coefficient, respectively. u 
denotes the number of kernels, which is set to five.

4  Experiments

In this section, the proposed SRDA model is evaluated using 
two types of data (simulated and real), which are regarded as 
the source and target domains. Typical operating parameters 
are selected for forecasting, including twenty-four neutron 
fluxes ( N1,⋯ ,N24 ) and six temperatures ( T1,⋯ , T6 ) at dif-
ferent locations in the reactor. Neutron fluxes and tempera-
tures play critical roles in reactors, as they are essential for 
monitoring the power distributions and levels of the reactor. 
As presented in Fig. 5, the neutron fluxes are gathered by ex-
core neutron detectors (i.e., uncompensated ion chambers) 
to generate channel currents at six distinct heights in the 
four channels. The currents are amplified and converted into 

(12)LMK-MMD =

‖‖‖‖‖‖
1

nS

nS∑
t=1

�

(
X
f S

t

)
−

1

nT

nT∑
t=1

�

(
X
f T

t

)‖‖‖‖‖‖

2

H

.

(13)K =

{
K =

�∑
u=1

�uKu ∶

�∑
u=1

�u = 1, �u ≥ 0,∀u

}
,

voltage signals. The temperatures recorded by the resistance 
thermometers correspond to the inlet and outlet temperatures 
in the three primary loops.

The simulated data with a 1-second sampling interval are 
produced by the full-scope simulator of a pressurized water 
reactor (PWR), which is meticulously designed to match 
the actual control station of an NPP, ensuring that every 
component and system are precisely simulated. All critical 
nuclear reactor systems such as the reactor core, cooling 
systems, control systems, and emergency response systems 
are integrated into the simulator to provide a comprehensive 
simulation environment. To extract abundant information 
and transfer knowledge, a full-scope simulator produces 
various transitory data under varying power. The actual data 
originate from a real-world digital instrumentation and the 
control system in a PWR.

Nuclear reactors mostly operate in a steady state, owing 
to their operating characteristics. Transient operation rarely 
occurs, except when it is caused by external factors such 
as grid peaking, shutdowns, and faults. To demonstrate the 
reliability of the results, the target-domain data contain two 
sets: 37,000 samples of shutdown data and 60,000 samples 
of power variation with 1-second and 10-second sampling 
intervals, respectively. In the two transient scenarios, the 
control rods are manipulated to induce perturbations in the 
three-dimensional power distribution, which characterizes 
the different degrees of change in the reactor. In the joint 
training phase, the training set is composed of all source 
data and the first 5% of the target-domain data (only steady-
state operation). The remaining target-domain data are used 
as the test set. For the two test sets with different sampling 
intervals, the past 180 steps (3 and 30 min) of the historical 

Fig. 5  Monitoring devices for neutron fluxes and temperatures
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data are applied to recursively predict the data of the next 
60 steps (1 and 10 min, respectively).

4.1  Experimental setup

Examining the effects of various feature extractors on the 
SRDA model can provide valuable insights. Six representa-
tive deep learning networks are applied to explore the gen-
eralizability of the proposed framework: autoencoder (AE), 
CNN, recurrent neural network (RNN), LSTM, gated recur-
rent unit (GRU), and temporal convolutional network (TCN). 
The key parameters of each model are listed in Table  1.

In addition to comparing different feature extractors, the 
SRDA model is compared with six advanced domain-adap-
tation methods in parallel to prove its superiority. Owing 
to the limited domain-adaptation methods available for 
forecasting tasks, we modified the existing methods pro-
posed for time-series or visual classification. Comparison 
methods include deep domain confusion (DDC) [39], cor-
relation alignment via domain adaptation (CA-DA) [40], 
minimum discrepancy estimation for domain adaptation 
(MDE-DA) [41], a DIRT-T approach to domain-adversarial 
adaptation (DIRT-T) [42], an adaptive domain-adversarial 
neural network (ADANN) [43], and adversarial spectral-
kernel matching for domain adaptation (ASKM-DA) [44]. 
The hyperparameters of the aforementioned approaches are 
rationally set in accordance with corresponding studies to 
ensure fairness. In the training phase, the learning rate and 
batch size in all models are critical parameters adjusted by 
grid optimization. For the proposed SRDA, the parameter 
settings are listed in Tab. 2. All the AI models are developed 
using PyTorch 2.0.1 in Python version 3.8.

Three precision metrics, namely, the root mean square 
error ( �RMSE ), mean absolute error ( �MAE ), and symmetric 

mean absolute percentage error ( �SMAPE ), are adopted to 
evaluate the forecasting performance. The smaller the �RMSE , 
�MAE , and �SMAPE metrics, the higher the prediction accuracy. 
These can be calculated as follows:

where n is the total number of test samples. yt and ỹt are the 
actual and predicted values at time t, resepctively.

4.2  Forecasting results

Experiments on forecasting tasks are conducted using 
source-only, target-only, and source-target models as base-
lines to validate the effectiveness of the proposed SRDA 
model for knowledge transfer from simulation to real-
ity in nuclear reactors. The source-only model is trained 
exclusively on the source-domain training set and directly 
tested on the target-domain test set. Similarly, the target-
only model is trained on the target-domain training set and 
directly tested on the target-domain test set. The source-
target model is trained on the source-domain data using 
conventional transfer learning, and it fine-tunes the weights 
of its final layer on the target-domain data. Furthermore, 
a transformer and improved logarithmic loss are used to 

(14)𝛿RMSE =

�∑n

t=1

�
yt − ỹt

�2
n

,

(15)𝛿MAE =
1

n

n∑
t=1

||yt − ỹt
||,

(16)𝛿SMAPE =
1

n

n∑
t=1

||yt − ỹt
||[

yt + ỹt
]
∕2

× 100,

Table 1  Parameter settings of various feature extractors

Model Parameter Value

AE Neurons of encoder 64
Neurons of decoder 64

CNN Number of filters 32
Filter size 3

RNN Bi-direction structure True
Neurons of hidden layer [32,32]

LSTM Bi-direction structure True
Neurons of hidden layer [32,32]

GRU Bi-direction structure True
Neurons of hidden layer [32,32]

TCN Number of filters 32
Number of residual layer 2
Filter size 13
Dilated factor [1,2]

Table 2  Parameter settings of the SRDA model

Module Parameter Value

SRDA 
(transfer-
ability 
frame-
work)

Input length 180
Output length 60
Neurons of predictor [32, 64, 60]
Neurons of discriminator [32, 16, 16, 2]
Number of kernels in MK-MMD 5
Optimizer Adam
Epoch 200
Learning rate 0.001
Batch size 32

Trans-
former 
(feature 
extractor)

Number of multi-head 2
Feature dimension 32
Number of encoder layers 4
Neurons of feed-forward neural network [32, 128, 32]
Dropout 0.1
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construct the three baselines mentioned above. Domain 
adaptation is not employed in this process. Forecasting of the 
neutron flux N1 and hot-leg temperature T1 are performed as 
examples. As shown in Fig. 6, the target-only model trained 
using the first 5% of the steady-operation data exhibits the 
largest predictive deviation. After learning a sufficient num-
ber of simulated samples, the trained source-only model can 
adapt to the basic variational trend of real neutron fluxes and 
temperatures, resulting in suboptimal effects attributable to 
the difference between the simulation and reality. Although 
the source-target model outperforms the above two models, 
it exhibits a certain deviation in the local area. Compared 
with the three baselines, the predictive trend obtained by the 
SRDA model with domain adaptation is generally closer to 
the real curves and free from the interference of operational 
noise in complex nuclear systems.

Table 3 provides the specific average and standard devia-
tion of the errors ( �RMSE , �MAE , and �SMAPE ) for all the mod-
els in the two test sets. For neutron-flux forecasts, the SRDA 
model demonstrates superior performance during shutdown, 
with a remarkably low �RMSE of 0.010 V and �MAE of 0.012 
V. Moreover, �SMAPE is an order of magnitude lower than 
that of its counterparts, at 1.248%. This precision is also 
reflected in the power-variation scenarios, where the SRDA 
model achieves an �RMSE of 0.008 V and �MAE of 0.009 V, 
along with a notably low �SMAPE of 0.636%. For the inlet 
and outlet temperature forecasts, the SRDA model achieves 
excellent results, with the lowest �RMSE , �MAE , and �SMAPE 
under the shutdown and power-variation conditions. In addi-
tion, the low standard deviation further highlights the stabil-
ity of the SRDA model. Case experiments demonstrate the 

Fig. 6  (Color online) Forecast curves of the SRDA model compared 
with various baselines. a Forecast curves for neutron flux N1 in shut-
down; b forecast curves for outlet temperature T1 in shutdown; c 

forecast curves for neutron flux N1 in power variation; and d forecast 
curves for outlet temperature T1 in power variation
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effectiveness of domain adaptation in transferring knowl-
edge from simulation to reality in a practical reactor.

4.3  Forecasting comparison and analysis

Temporal feature extraction within the SRDA model is 
interlinked with the operating-parameter prediction per-
formance. To analyze the impact of various feature extrac-
tors, experiments are conducted to replace the transformer 
in the SRDA framework with the six representative neural 
networks specified in Sect. 4.1: AE, CNN, RNN, LSTM, 
GRU, and TCN. As depicted in Fig. 7, the SRDA frame-
work consistently achieves favorable outcomes across vari-
ous feature extractors, demonstrating its broad versatility. 
However, different backbone networks moderately affect the 
prediction accuracy for neutron fluxes and temperatures dur-
ing the shutdown and power-variation phases. Owing to the 
lack of inherent architecture in AE and CNN for recording 
temporal dependencies, the SRDA (AE) and SRDA (CNN) 
models exhibit insufficient feature-extraction capabilities. 
The SRDA (RNN) makes unstable predictions, as reflected 
in its �SMAPE , owing to the absence of effective memory 
mechanisms. The SRDA (LSTM) and SRDA (GRU) models 

incorporate memory cells and gating mechanisms to mitigate 
issues, such as vanishing gradients, thereby bolstering the 
temporal feature-extraction process. SRDA (TCN), which 
incorporates dilated causal convolutions with a larger recep-
tive field to capture long-term characteristics, exhibits pre-
cision comparable to that of SRDA (Trans) and is a robust 
contender. The multi-head attention block of the proposed 
SRDA (Trans) allows it to capture both subtle long- and 
short-term dependencies, which makes it superior to other 
feature extractors in adapting to complex variations. The 
experimental results are demonstrated by the steady �SMAPE 
in the forecasting under reactor-shutdown and power-vari-
ation conditions.

Table 4 presents a detailed comparison of the predic-
tive precision across various feature extractors for the two 
test sets. In summary, the models intricately designed for 
time-series analysis, such as TCN and the transformer 
within the SRDA framework, possess advanced temporal 
feature-extraction capabilities. This facilitates more effective 
domain adaptation, resulting in enhanced predictive perfor-
mance. Although SRDA (TCN) yields formidable and com-
petitive results, SRDA (Trans) demonstrates unparalleled 
performance for both neutron fluxes and temperatures. For 

Table 3  Forecast errors of the SRDA model compared with various baselines

Forecasting target Model Shutdown Power variation

�RMSE (V/◦C) �MAE (V/◦C) �SMAPE (%) �RMSE (V/◦C) �MAE (V/◦C) �SMAPE (%)

Neutron flux Target-only 0.902±0.688 0.903±0.689 61.549 ± 23.977 0.107±0.051 0.105±0.049 8.710±4.543
Source-only 0.034±0.011 0.041±0.011 6.615±1.639 0.035±0.014 0.036±0.014 3.083±1.733
Source-target 0.028±0.005 0.030±0.005 5.587±1.277 0.026±0.035 0.027±0.035 2.192±3.081
SRDA* 0.010±0.002 0.012±0.003 1.248±0.287 0.008±0.003 0.009±0.003 0.636±0.178

Temperature Target-only 4.918±4.379 4.914±4.377 1.653±1.482 1.246±1.092 1.252±1.096 0.393±0.331
Source-only 0.825±0.697 0.825±0.696 0.280±0.239 0.357±0.134 0.369±0.123 0.118±0.049
Source-target 0.777±0.749 0.778±0.748 0.264±0.256 0.351±0.140 0.363±0.130 0.116±0.051
SRDA* 0.113±0.079 0.118±0.085 0.037±0.026 0.223±0.111 0.231±0.110 0.073±0.038

Fig. 7  (Color online) Comparison of �SMAPE by various feature extractors in the SRDA model. a Prediction errors in shutdown and b prediction 
errors in power variation
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example, in inlet and outlet temperature prediction, com-
pared with the average errors ( �RMSE , �MAE , and �SMAPE ) 
of SRDA (TCN), SRDA (Trans) is improved by 36.158%, 
34.807%, and 36.207% in shutdown, as well as by 12.205%, 
14.444%, and 12.048% during power variation, respectively, 
further showcasing the superiority of the transformer for 
capturing temporal dependencies in complex, dynamic 
nuclear reactor systems.

To demonstrate the knowledge transfer superiority of 
the proposed method from simulation to reality, the SRDA 
model is compared with the six advanced domain-adaptation 
methods specified in Sect. 4.1, namely, the DDC, CA-DA, 
MDE-DA, DIRT-T, ADANN, and ASKM-DA models. To 
ensure a fair evaluation, the transformer and improved loga-
rithm losses are applied in the aforementioned methods. As 
presented in Fig. 8, the DDC and CA-DA models are statis-
tic-based domain adaptations, and are designed to mitigate 
the distribution discrepancies between the simulated and real 
features. Their knowledge transfer ability for neutron fluxes 
and temperatures during shutdown is inadequate, leading to 
larger errors. MDE-DA is a composite method that improves 
the predictive stability on the two test sets by fusing second-
order statistics in CA-DA with MMD in DDC. With the 
incorporation of conditional entropy and a teacher model, 
the adversarial-based DIRT-T approach effectively forces 
the feature extractor to align domain-invariant features. 
This methodology demonstrates moderate performance in 
terms of inlet and outlet temperature predictions. In con-
trast, ADANN and ASKM-DA, specially designed for time-
series analysis tasks, exhibit more refined accuracy because 
of their marginally smaller errors compared to DIRT-T. 
Based on Fig. 8, adversarial-based methods tend to perform 
consistently better, thereby enhancing the generalization 

from simulation to reality. The finesse of the SRDA model 
involves adopting a domain adversarial strategy to extract 
deep domain-invariant features between the simulated and 
real data, in addition to utilizing MK-MMD to mitigate their 
distribution discrepancies. This dual approach guarantees 
that the model maintains the essential characteristics of the 
simulation while adjusting to the distribution and fluctua-
tions that exist in a real-world reactor, which considerably 
improves its forecast precision.

4.4  Model interpretation

The proposed trade-off loss function includes the predic-
tor Lp , discriminator Ld , and MK-MMD losses LMK-MMD . 
Because Ld and LMK-MMD have been proven to enhance 
performance in Sect. 4.3, we focus on investigating the 
contribution of Lp to the prediction precision. Lp acts as an 
improved logarithmic loss and is responsible for adapting the 
predictor losses under different power levels in nuclear reac-
tors. We compared the logarithmic loss with conventional 
mean square error (MSE) loss. An example (only six layers 
of neutron flux in one channel are shown) of the results for 
the neutron-flux forecasting task is shown in Fig. 9. The 
SRDA model using the MSE loss achieves qualified predic-
tions for the SRDA model, with only a marginal divergence 
from the actual values observed at lower reactor power lev-
els. This deviation can be attributed to situations in which 
the MSE loss changes significantly with data scaling, mak-
ing the model less sensitive at low powers, and the value is 
close to zero. The proposed SRDA model exhibits superior 
predictive accuracy for different power operations by balanc-
ing different numerical scales. Enhanced precision is critical 

Table 4  Comparison of forecast errors by various feature extractors in the SRDA model

Forecasting target Feature extractor Shutdown Power variation

�RMSE (V/◦C) �MAE (V/◦C) �SMAPE (%) �RMSE (V/◦C) �MAE (V/◦C) �SMAPE (%)

Neutron flux SRDA (AE) 0.023±0.013 0.038±0.044 3.496±1.791 0.022±0.009 0.028±0.011 1.817±0.942
SRDA (CNN) 0.026±0.007 0.030±0.010 3.525±1.344 0.019±0.015 0.020±0.015 1.464±1.176
SRDA (RNN) 0.044±0.035 0.048±0.036 4.902±3.013 0.014±0.012 0.015±0.013 1.077±0.829
SRDA (LSTM) 0.021±0.013 0.024±0.015 2.563±1.410 0.014±0.008 0.015±0.008 1.076±0.589
SRDA (GRU) 0.024±0.009 0.026±0.009 3.375±1.065 0.013±0.006 0.015±0.006 1.076±0.577
SRDA (TCN) 0.010±0.003 0.013±0.003 1.365±0.280 0.009±0.002 0.010±0.003 0.686±0.198
SRDA (Trans)* 0.010±0.002 0.012±0.003 1.248±0.287 0.008±0.003 0.009±0.003 0.636±0.178

Temperature SRDA (AE) 0.376±0.148 0.497±0.239 0.123±0.047 0.707±0.365 1.050±0.583 0.226±0.115
SRDA (CNN) 1.276±0.730 1.628±0.977 0.419±0.238 0.429±0.468 0.513±0.514 0.135±0.143
SRDA (RNN) 0.300±0.195 0.339±0.264 0.098±0.062 1.074±0.982 1.120±0.981 0.345±0.305
SRDA (LSTM) 0.241±0.094 0.252±0.093 0.079±0.030 0.379±0.197 0.397±0.206 0.122±0.063
SRDA (GRU) 0.256±0.153 0.271±0.154 0.084±0.047 0.241±0.048 0.258±0.048 0.078±0.015
SRDA (TCN) 0.177±0.131 0.181±0.133 0.058±0.043 0.254±0.179 0.270±0.180 0.083±0.056
SRDA (Trans)* 0.113±0.079 0.118±0.085 0.037±0.026 0.223±0.111 0.231±0.110 0.073±0.038
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for fine-tuned applications in nuclear reactor operations, 
where minute deviations can have significant implications.

To present the transferability effect of the domain 
adaptation intuitively, feature distributions are visualized 
using t-distributed stochastic embedding (t-SNE). t-SNE 

is a nonlinear dimensionality reduction algorithm that can 
transform a high-dimensional feature matrix into a two-
dimensional eigenvector for visualization. As depicted in 
Fig. 10, the two domains are color-coded, with red denot-
ing the simulated data and blue denoting the real data. In 

Fig. 8  (Color online) Comparison of forecast errors by various 
domain-adaptation methods. a Forecast errors for neutron fluxes in 
shutdown; b forecast errors for inlet and outlet temperatures in shut-

down; c forecast errors for neutron fluxes in power variation; and d 
forecast errors for inlet and outlet temperatures in power variation

Fig. 9  (Color online) Forecast curves of different predictor loss functions in the SRDA model. a Forecast curves of the proposed SRDA model. 
b Forecast curves of the SRDA model using MSE loss
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detail, Fig. 10a and c shows the feature distributions without 
domain adaptation for both datasets. The features of the two 
domains only overlap locally, illustrating the similarities and 
discrepancies that commonly exist between simulation and 
reality. Thus, directly applying a model trained on simu-
lated data to real data results in unsatisfactory forecasting 
results owing to a domain shift. In contrast, Fig. 10b and d 
shows the feature distribution after the feature extraction in 
the SRDA model. Notably, after the domain adaptation, the 
distributions of the extracted features from the simulation 
and reality are uniformly mixed, illustrating that the SRDA 
model can mitigate the domain discrepancies effectively to 
enhance the operating-parameter prediction in reactors.

5  Conclusion

Simulators imperfectly emulate reality in NPPs due to 
their different actuation modes and system dynamics. 
This study aimed to mitigate the discrepancies in noise, 
numerical distributions, and dynamic characteristics 
between simulated and real data. A novel transferability 
framework, called the SRDA model, was proposed for 
forecasting critical parameters in nuclear reactors. The 
SRDA framework comprised a feature extractor, param-
eter predictor, domain discriminator, and MK-MMD. Rela-
tive to several advanced domain-adaptation methods, the 
results indicated that the SRDA model demonstrates supe-
rior knowledge transfer by leveraging ample simulated and 
finite real data. The transformer-based feature extractor 
adeptly captured the dynamic characteristics and temporal 
dependencies in transient conditions, such as reactor shut-
down and power variation, as evidenced by comparisons 
with various feature extractors. The improved logarithmic 
loss within the predictor was conducive to enhancing fore-
casting precision at various power levels. Furthermore, the 
integration of the domain adversarial strategy and MK-
MMD effectively adapted to the distributions and fluctua-
tions in real-world reactors while retaining the essential 
characteristics in the simulation. Considering the signifi-
cant impact of different feature extractors, the versatility 

of the SRDA model enables the substitution of backbone 
networks tailored to specific scenarios in NPPs, which is 
another intriguing problem.
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