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Abstract
Vulnerability assessment is a systematic process to identify security gaps in the design and evaluation of physical protec-
tion systems. Adversarial path planning is a widely used method for identifying potential vulnerabilities and threats to the 
security and resilience of critical infrastructures. However, achieving efficient path optimization in complex large-scale 
three-dimensional (3D) scenes remains a significant challenge for vulnerability assessment. This paper introduces a novel 
A
∗-algorithmic framework for 3D security modeling and vulnerability assessment. Within this framework, the 3D facility 

models were first developed in 3ds Max and then incorporated into Unity for A∗ heuristic pathfinding. The A∗-heuristic 
pathfinding algorithm was implemented with a geometric probability model to refine the detection and distance fields and 
achieve a rational approximation of the cost to reach the goal. An admissible heuristic is ensured by incorporating the mini-
mum probability of detection ( Pmin

D
 ) and diagonal distance to estimate the heuristic function. The 3D A∗ heuristic search was 

demonstrated using a hypothetical laboratory facility, where a comparison was also carried out between the A∗ and Dijkstra 
algorithms for optimal path identification. Comparative results indicate that the proposed A∗-heuristic algorithm effectively 
identifies the most vulnerable adversarial pathfinding with high efficiency. Finally, the paper discusses hidden phenomena 
and open issues in efficient 3D pathfinding for security applications.

Keywords Physical protection system · 3D modeling and simulation · Vulnerability assessment · A∗ Heuristic Pathfinding · 
Dijkstra algorithm

1 Introduction

The physical protection system (PPS) [1] is a critical pro-
tective barrier that plays an important role in securing 
safety–critical infrastructures such as nuclear facilities. The 
system integrates people, procedures, and equipment to 
secure facilities and assets against threats of theft, robbery, 
illegal transfer, and other potentially harmful activities [1]. 
Thus, it is crucial to establish an effective physical protec-
tion system design and an efficient evaluation mechanism 
to ensure the safety and security of critical infrastructure.

Various methods, approaches, techniques, and tools 
have been proposed to improve PPS security, including 
VideoCAD (Autodesk, USA), SketchUP (Trimble, USA), 
Scribe3D (Sandia National Laboratories, USA), SAVI/
ASSESS (Sandia National Laboratories, USA), SAPE 
(KINAC, South Korea), Sprut (ISTA, Russia), Vega-2 
(Eleron, Russia), Analizator, SATANO (University of Zilina, 
Slovakia), EMRALD (Idaho National Laboratory, USA), 
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etc., have been proposed to improve PPS security perfor-
mance [2]. Recent studies [3, 4] on the PSS vulnerability 
assessment focus on several areas, including simulation and 
three-dimensional (3D) modeling, adversary path planning 
optimization, defense models for neutralization analysis, 
overall system effectiveness, and cost-benefit analysis. For 
example, Tekinerdogan et al. [5] proposed a model-based 
systems engineering approach to account for the design basis 
threat (DBT) during the PPS design process. Andiwijay-
akusuma et al. [6] developed a multipath analysis tool to 
assess PSPS vulnerability based on an adaptive sequence 
diagram (ASD). A heuristic approach was proposed by Zou 
et al. [7] for evaluating the PPS effectiveness based on two-
dimensional (2D) engineering drawings. KINAC introduced 
a vulnerability assessment simulation program based on 
AVERT and modeling procedures to evaluate vulnerability 
to physical protection [8]. RhinoCorps [9] developed a suite 
of commercial modeling and simulation tools to support a 
reliable, realistic, and affordable vulnerability assessment 
of critical sites.

Path-based system vulnerability analysis has received 
considerable attention from researchers and practitioners. 
Path-based vulnerability analyses are mostly implemented 
based on the adversarial sequence interruption estimate 
(EASI) model and ASD models. The EASI model was first 
developed by Sandia National Laboratories in the 1970 s 
[10] and is a one-dimensional (1D) single-path analysis 
model to determine the probability of interruption ( PI ) for 
evaluating the effectiveness of PPS. Subsequently, various 
tools, including SAVI (Systematic Analysis of Intrusion 
Vulnerability) [11], ASSESS (Analytic System and 
Software to Evaluate Safeguards and Security) [12], MAPPS 
(Multipath Analysis of Physical Protection Systems) [13], 
and Multipath Analysis Tool for Vulnerability Assessment 
(MAVA) [14], were developed based on the EASI model. 
These tools expanded its application to include site 
modeling, insider threat, and neutralization analysis for 
multipath adversary analysis. Andiwijayakusuma et  al. 
[15] recently developed an EASI-based multipath analysis 
code for nuclear security systems with a variability 
extension. While 2D and 3D modeling techniques have 
been incorporated to simulate high-security facilities, the 
ASD model remains a point-to-point connection diagram 
limited to finite-path optimization. The ASD model was 
implemented by setting critical detection points based on 
the meantime delay remaining after detection (TR) and the 
response time (RFT). The distances between the security 
areas were assumed to be exactly the same for all possible 
adversary intrusion paths. To address this issue, Jang 
et al. [16] developed a systematic analysis of the (SAPE) 
code based on a two-dimensional map of a facility. Zou 
et al. [17] proposed an A∗-heuristic pathfinding algorithm 
to evaluate vulnerable intrusion paths in a 2D plane. In 

addition to the A∗ heuristic search, Zou explored the ant 
colony optimization algorithm [18], absorbing the Markov 
chain [19], and the structure-analytic hierarchy approach 
[20] to evaluate the effectiveness of the physical protection 
system. M. Saga et al. [21] used the principles of simulated 
annealing to control the parameters of local search methods 
in memetic algorithms that aim at global optimum path 
planning. The authors proposed a 2D-graph model-based 
heuristic approach to visually backtrack the most vulnerable 
paths of the PPS design in Ref. [22].

In new-generation evaluation schemes, 3D modeling is 
generally integrated into the PPS design and performance 
analysis process. Zou et al. [23] proposed an integrated 
platform for PPS design and analysis in a 3D modeling 
environment. Zollo and Assogna [24] used 3D models and 
discrete simulations for infrastructure security applications. 
Similarly, Zhang et al. [25] used 3D models and simulations 
to support the force-on-force test of a physical protection 
system. Talbot et al. [26] proposed a model accreditation and 
review process to calculate the effectiveness of a security 
system for commercial nuclear sites using 3D models, in 
which the security risk at the sites can be quantified to 
support risk-informed decision-making. Sandia National 
Laboratories developed an advanced tabletop tool called 
Scribe3D [27], which supports better visualization and 
simulation-based results with greater precision. Cohn et al. 
[28] developed a leading simulator/trailer simulator method 
as part of an integrated safety and security analysis for the 
Scribe3D model of a nuclear power plant. A summary 
of the methodologies and tools applicable to 3D security 
simulations and vulnerability analyses can also be found 
in [29]. In addition to physical vulnerability assessments, 
integrated communication and network security in physical 
protection systems, such as physical layer security, have 
aroused widespread concern in the cybersecurity community 
[30–33].

The integration of 3D models provides an intuitive 
birds-eye view of a PPS design, significantly enhancing 
visualization and optimization. The surreal feeling in 
the scene created by refined 3D models not only vividly 
illustrates adversary intrusion paths and strategies 
have also enabled precise positioning of the target 
objects. However, computationally intensive problems 
are encountered in adversary path analysis and PPS 
effectiveness evaluation when sophisticated 3D meshes 
are used to represent geographic data such as buildings, 
terrain, and other structures. This challenging problem 
is also common in heuristic searches for the optimal 
adversary path. Compared with conventional distance-
based heuristic solvers for the most optimal path 
identification, the heuristic estimation of the probability 
of interruption ( PI ) is much more complicated because of 
the unknown distribution of detection opportunities and 
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delay elements along the adversary paths. As a result, most 
current approaches and codes developed for PPS design 
and effectiveness evaluation must convert the 2D map 
or 3D scene of a facility into an ASD model to simplify 
the adversary path analysis. The existing literature 
on adversary path analysis in 3D models of critical 
infrastructure protection is scarce. Therefore, in this study, 
a novel A∗ heuristic pathfinding algorithm is proposed 
to fill the gap in identifying the most optimal adversary 
path in a 3D modeling environment. The purpose of 
this study was to build upon our previous research on a 
2D map heuristic approach [22] by extending it to 3D 
models of physical protection systems, incorporating 
vertical movements of agents. Algorithm A∗ is adopted 
to heuristically search for globally optimal solutions in 
vulnerability analysis, where the effectiveness of the PPS 
is measured with the probability of interruption ( PI ) based 
on the EASI model. The innovative contribution of this 
study is that we are making enemies or response forces 
move through space in both the horizontal and vertical 
directions. In this manner, a two-dimensional path map can 
be extended to a 3D environment. Simultaneously, search 
efficiency can be significantly improved by the A∗-heuristic 
pathfinding algorithm with rational cost estimation. The 
major contribution of this study is the proposal of a novel 
heuristic estimation scheme is proposed to enhance the 
efficiency and effectiveness of adversarial path planning 
in a 3D environment based on the EASI model. A 
waypoint navigation heuristic was developed to refine 
the detection and distance fields to obtain an accurate 
estimate of the cost of reaching the goal. A geometric 
probability model was developed to provide the best 
estimate of the likelihood of the intrusion alarm system 
detecting adversaries. The proposed heuristic solver 

is computationally efficient in evaluating 3D security 
vulnerabilities by increasing the spatial orientation and 
navigation used to position and guide agent movements 
through orthogonal space partitions.

The remainder of this paper is organized as follows: 
Sect. 2 introduces a novel framework integrating A∗-heuristic 
pathfinding algorithm with 3D modeling environment. 
The A∗-heuristic pathfinding algorithm was implemented 
based on the EASI model to calculate the probability of 
an interruption ( PI ). Section 3 presents the 3D models of a 
hypothetical laboratory facility site developed as the basis 
for 3D security modeling and vulnerability assessment. 
A comparison between the A∗ and Dijkstra algorithms 
for identifying the most vulnerable adversarial paths is 
presented in Sect. 4. The discussion and conclusions are 
presented in Sects. 5 and 6, respectively.

2  An integrated framework for vulnerability 
analysis of PPS design in 3D environment

As shown in Fig. 1, an integrated framework is presented for 
the vulnerability analysis of PPS design in a 3D environment. 
The framework consists of four parts: 3ds Max, Unity, PPS 
design, and PPS effectiveness evaluation using a heuristic 
pathfinding algorithm. Structural barriers, including fences, 
gates, walls, doors, and the architectural arrangements of 
security buildings, were first designed and implemented in 
3ds Max. The design of an effective PPS includes detection, 
delay, and response elements in layered defense-in-depth secu-
rity controls for protection against adversarial attacks. Secu-
rity design features are then incorporated into 3D architectural 
models to support the vulnerability analysis of a PPS. The 
most vulnerable adversarial path with the lowest PI can be 

Fig. 1  Framework for 3D secu-
rity modeling and vulnerability 
assessment
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determined using a heuristic pathfinding algorithm for a spe-
cific PPS in a given threat scenario. As one of the highlights 
of this study, the heuristic algorithm A∗ was implemented in 
a 3D environment with Unity to efficiently identify the most 
vulnerable path. The detection of critical path vulnerabilities in 
the evaluation of the PPS effectiveness provides insights into 
the iterative PPS design process. The functions of each module 
are described in detail in subsequent sections.

2.1  3ds max/unity

Autodesk 3ds Max [34] is a 3D content creation suite used 
to create 3D models for games and animation. Unity3D 
[35] is a real-time cross-platform initially released by Unity 
Technologies in 2005 with the goal of playing 2D and 3D 
games and interactive simulations. Unity enables users to 
immerse themselves in a scene using intuitive tools, such as 
asset tracking, rendering, and scripting. In recent years, the 
use of 3ds Max and Unity software for the development of 3D 
models and architectural visualizations in critical infrastructure 
protection has increased [36]. The 3D models and scenes 
generated in 3ds Max can be exported directly to Unity3D 
to create games and interactive experiences. In PPS design, 
tools for skinning, texturing, rigging, and animating are used 
to create 3D models of the infrastructure. The detailed design 
of the PPS elements, including CCTV cameras, perimeter 
barriers, characters, etc., can also be incorporated into the 3ds 
Max/Unity for the iterative evaluation process.

2.2  EASI model

With the integration of 3D models, a physical security 
simulation was conducted using an A∗ heuristic pathfinding 
algorithm for vulnerability assessment. The cost function used 
in the 3D A∗ heuristic pathfinding was calculated based on the 
EASI model to estimate the probability of interruption ( PI ) 
along the adversary path. The EASI model is developed by 
Sandia National Laboratories to evaluate the effectiveness of 
the PPS for nuclear facility security systems under threat from 
outsiders in the 1970 s [37]. Since then, the EASI model has 
been widely used owing to its simplicity and ease of use [38]. 
The effectiveness of a physical security system was evaluated 
using the EASI model along a specific adversary intrusion path 
in a probabilistic analysis. It uses the performance measures 
for a PPS function that include the probability of detection 
( PD ), probability of alarm communication to the response 
force, probability of deployment of the response force to the 
adversary’s location, time to deploy the response force to the 
adversary’s location, and time to complete the remaining 
adversarial attacks after detection to determine the probability 
of interruption ( PI ) as follows:

where Pn
D
 (n=1,2,...,N) represents the detection probability 

for each detection point. Pn
C
 is the probability of a successful 

alarm communication with response forces after identifying 
an adversarial attack at the nth detection point, which is 
typically set as a constant. P(R|An) is the probability that 
the response forces successfully interrupt an adversarial 
attack after receiving an alarm message at the nth detection 
point. The mean and standard deviations of the response 
time (RFT) and adversary task time (TR) were used to 
calculate the value of P(R|A). Assuming that RFT and TR are 
mutually independent and normally distributed, the random 
variable X(X = TR − RTF ≥ 0 ) for the timely detection 
characterization follows a normal distribution with mean �X 
and variance �2

X
 . The probability of P(R|A) can be calculated 

as:

where TR and RFT can be obtained from the shortest path 
search or the most vulnerable path search with the lowest PI 
value. Detailed explanations of how to calculate the TR and 
RFT values can be found in Ref. [22].

2.3  A∗Heuristic pathfinding algorithm in 3D 
environment

A∗ algorithm [39] is the best-first search algorithm that has 
been widely used for map traversal to determine the shortest 
path between the initial and final points. A∗-algorithm 
searches for the most promising path through the state space 
using a heuristic function, where an estimate of the cost 
from the current state to the target is considered as informed 
information to guide the path search process more efficiently. 
Heuristic function H(n) is given by

where H(n) is the heuristic cost and H∗
(n) is the estimated 

cost. The heuristic cost should be less than or equal to the 
estimated cost to guarantee admissibility and consistency 

(1)

PI =P
1
D
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C
⋅ P
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D

)
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∞
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−
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X

]
dX,

(3)H(n) ≤ H∗
(n),
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with respect to the heuristic function used in the A∗ search 
algorithm for optimal path identification [40].

In terms of vulnerability analysis in the design and eval-
uation of a physical protection system, the probability of 
interruption ( PI ) is used as a cost function for the most opti-
mal pathfinding. The calculation of the total cost function 
F(n) is divided into two parts: i) G(n), which indicates the 
real cost of the path from the starting point to the current 
point n and ii) H(n), which represents the estimated heuris-
tic cost from the current point n to target point Ng . In most 
cases, A∗ algorithm does not know the actual distance or 
cost until it determines a path. The A∗-algorithm is equiva-
lent to the Dijkstra algorithm when the heuristic function A∗ 
becomes zero. As the estimated heuristic cost is the exact 
cost of reaching the destination node from the current node 
n, the lowest-cost path can be found using algorithm A∗ with 
the fastest speed [41]. However, it is generally impractical to 
determine an optimal heuristic function that always matches 
the exact cost because the paths to be searched are unknown.

In this study, an innovative algorithm A∗ is proposed 
to determine the most vulnerable adversary path in a 3D 
security environment. The 3D A∗ search algorithm was 
adapted from one of our previous studies [28] which 
was carried out to simulate physical security by visual 
backtracking search on a 2D-graph model of the PPS. As 
depicted in Fig. 2, the heuristic function H∗

(n) to reach 
the destination node ( Ns ) from the current node n can be 
estimated as:

where Pn
I
 and Ps

I
 represent the cumulative probabilities 

of interruptions at the current node n and source node 
Ns , respectively. Assuming that m potential detection 
opportunities exist along the adversary’s path starting 
from the current node n to the source node ( Ns ), Ps

I
 can be 

obtained recursively using Eq. (5). It should be noted that m 
is an unknown variable that will be subsequently determined 
by Eq. (9).

(4)H∗
(n) = ΔPn

I
= Ps

I
− Pn

I

where Pn
I
 is the cumulative probability of an interruption at 

current node n. P(R|As) is the probability that the response 
forces successfully interrupt an adversarial attack after 
receiving an alarm alert at the nth detection point. Pn

I
 can 

also be expressed in the following recursive form:

To obtain a heuristic function that is sufficiently close to 
the exact cost and never overestimates the value, we use 
the conservative value of P(R|As) to replace the nested 
iterations of P(R|As)(n < i ≤ s) in an unknown estimation 
of Ps

I
 . P(R|Ai) is a monotonically increasing function 

that satisfies P(R|Ai) ≤ P
(
R ∣ Ai+1

)
 under the condition 

of timely detection, with X = TR − RFT ≥ 0 , where the 
time delay remaining for the completion of the adversarial 
task (TR) also increases monotonically ( TRi ≤ TRi+1 ) as 
the adversaries move away from the target in backward 
pathfinding. Consequently, the following inequality holds 
for H(n) ≤ H∗

(n).

(5)
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Fig. 2  Detection opportunities for cost estimation
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Fig. 3  (Color online) Waypoints 
for path navigation

Thus, the heuristic function H(n) can be rewritten as

where pmin
D

 returns the minimum value of the map of the 
nonzero detection field. Although admissibility can be 
guaranteed with the above heuristic function, we still do 
not know which path the adversaries will take to attack. It is 
also unknown how many detection opportunities and delay 
elements are reserved for a segment of nondetermined path 
from the current position n to starting point Ns . To obtain 
a heuristic as close to the estimated cost as possible, the 
probability that the adversary will be detected by the intru-
sion detection system is considered as a random variable � . 
The unknown number of opportunities (m) remaining for 
adversarial detection along the path from the current node n 
to the source node Ns is estimated as the expected value of 
the random variable � , which is denoted as E(�).

where p denotes the possibility of a sensing element being 
located in a node cell. Consequently, ( 1 − p ) represents the 
probability that a cell area is not covered by the detection 
field. The probability of a node falling into the detection area 
can be approximated as the ratio of the detection area to the 
total site area. m remains in the integer realm after removing 
the fractional part of the floating-point numbers to count the 
detection opportunities. Ngrids denotes the number of cells in 
which adversaries must cross the protected areas to reach the 
target. Ngrids can be approximately calculated using Eq. (10).

where dcell represents the diagonal length of a two-dimen-
sional square unit cell or three-dimensional cube unit cell to 
avoid overestimating the number of unit cells through which 
the shortest path must pass. �A denotes the mean velocity of 
the adversarial attacks. D is the distance between the current 
node n and destination node Ns.

(8)

H(n) =P
min

D
⋅ P

C
⋅ P(R ∣ A

n
) + (1 − P

min

D
)

⋅

{
⋯

[
P
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D
⋅ P

C
⋅ P(R ∣ A

n
) + (1 − P

min

D
) ⋅ P

n

I

]}

− P
n

I

(9)m = E(Φ) = p ⋅ Ngrids

(10)Ngrids =
D

dcell ⋅ �A

To compute the length of the shortest path in a 3D scene 
at a lower computational cost, we introduced waypoint navi-
gation on the coarse grid map to compress the path repre-
sentation. A waypoint is a point along a path that can be 
added manually or automatically to accelerate path finding 
[42]. Waypoints are generally designated at the must-pass 
entrances of adversarial pathways to construct an exact heu-
ristic for guiding the shortest path between any pair of coarse 
grid locations. As illustrated in Fig. 3, the 3D space can be 
divided into several layers according to the number of coarse 
grids. For example, a pair of waypoints can be added at the 
corners of stairs or elevators that connect two parallel grid 
planes of building stories. Thus, the calculation of three-
dimensional space distance can be transformed into the sum 
of the lengths of the pairs of waypoints across the three two-
dimensional connecting planes. The final heuristic function 
is calculated as follows:

The exact heuristic can be precomputed for the shortest path 
between any pair of waypoints cost(w1,w2) . The heuristic 
costs with pairs of waypoints ( w1,w2 ) that are close to the 
current and goal nodes can also be evaluated using H(n,w1) 
and H(w2, goal) , respectively. The distance heuristic can be 
similarly estimated.

The heuristic function of each path segment can be estimated 
using the diagonal distance defined in Eq. (13):

(11)H(n) = H(n,w1) + cost(w1,w2) + H(w2, goal)

(12)D = D(n,w1) + D(w1,w2) + D(w2, goal)

(13)
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− xgoal
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���yw2
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���
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For 3D path planning, spatial navigation was created for 
object positioning and guidance. As shown in Fig. 4, the spe-
cial navigation enables 26-direction navigation by considering 
the three pairs of orthogonal axes. The 3D calibration board 
for the characterization of agents’ movements consisted of 
three parallel planes. Each plane can be considered as a verti-
cal space with a fixed step-size input � to describe the enemy’s 
ability to move up and down. The navigation arrow points 
to adjacent cells in 3D space with a visual representation of 
the three colored arrows. The agent can move in eight direc-
tions (blue arrows): forward (F), backward (B), right (R), left 
(L), right forward (R-F), left forward (L-F), right backward 
(R-B), and left backward (L-B), when the diagonal distance is 
used for the heuristic estimation. The upward and downward 
arrows are distinguished by red and green, respectively, to 
show the upward (U) and downward (D) motions. Reachable 
adjacent vertices can be recognized well and efficiently with a 
reduced-space search using the Raycast function in Unity. The 
air cell spaces were identified as unreachable considering that 
the enemy could only walk up the stairs to the second floor. 
Therefore, the selection of the search path can be significantly 
reduced using the designated stairs.

Following backward pathfinding, the heuristic time delay 
remaining after detection TH

TR
 can be estimated by the follow-

ing Eq. (14):

where Tn
TR

 denotes the adversary task time defined for the 
current node n, which can be obtained by iterative calcula-
tion from its parent node n − 1 to the first detection opportu-
nity. Tn⃗s

TD
 is the cumulative time delay along the path segment 

from the current node n to the initial point of an adversarial 
attack ( Ns ) in reverse traversal. D represents the diagonal 
distance between the current node n and initial point of the 
adversarial attack ( Ns ), which is determined by Eq. (13).

3  3D design of a hypothetical laboratory 
facility

3.1  3D modeling

In this section, a hypothetical laboratory facility is consid-
ered as an example of a PPS for demonstration. The entire 
facility site was 236 m long and 183 m wide. 3D Building 
Information Modeling (BIM) of the hypothetical laboratory 
facility was implemented based on 3ds Max/Unity3D plat-
form. As shown in Fig. 5, the laboratory site has three main 
buildings within the protected area, which is surrounded 

(14)TH
TR

= Tn
TR

+
D

vA
+ Tn⃗s

TD

Fig. 4  Moving directions in 3D 
environment

Fig. 5  (Color online) The layout 
of laboratory facility
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by a perimeter barrier. The two gates were located at the 
front and right sides of the laboratory facility. The asset is 
located in Room #207 of Building #3 and is used as the 
target enclosure to protect it from theft, sabotage, and other 
malevolent attacks. Building #3 is a two-story quadrangular 
courtyard building with only one entrance facing the right. 
The dimensions of Building #3 are 71 m × 54 m × 21 m. Fig-
ure 6 presents the 3D BIM model with both bird’s eye view 
and head-up displays. To obtain a better display of the path-
ways under planning, we perceived Building #3 from mul-
tiple perspectives using 3ds Max/Unity. The interior view 
of the building was also presented with motion perception. 
The architectural style of Building #2 was similar to that of 
Building #3, but with two gateways. Building #1 is a mod-
ern building constructed using concrete. The outer walls of 
the three buildings were mounted with infrared detectors to 
prevent enemies from climbing walls or breaking windows.

The 2D plane layout of Building #3 is shown in Fig. 7. 
There is a corridor and walkway that connect rows 0. f rooms 
on each floor. Three stairs (stairwells #1, #2, and #3) are 
configured in the building to connect the ground floor to the 
second floor. For each staircase, an omnidirectional camera 
( 360◦ ) was installed to monitor illegal break-ins. In addi-
tion to the video surveillance of the staircases, the internal 
and external aspects of Building #3 were monitored. Eight 
CCTV cameras were distributed in the interior corners of 
the building and each floor was equipped with four cameras. 
The interior and exterior surveillance cameras are referred 

to as {CCTV #2-1, CCTV #2-2, CCTV #2-3, CCTV #2-4} 
and {CCTV #3-1, CCTV #3-2, CCTV #3-3, CCTV #3-4}, 
respectively. As demonstrated in the 3D displays in Fig. 6, the 
agents can choose any of the three staircases on the second 
floor after passing through Gate #3 of building #3. Appar-
ently, the 3D models of buildings allow professionals to gain 
insights into a structure when starting to play animation. The 
room-numbering sequence on the second floor is shown in 
Fig. 7 to quickly locate and track the agent’s position. A built-
in green garden was located in the central part of Building #3. 
The walkways, corridors, and aisle stairs between the green 
garden and the rooms are marked in pink. The red lines on 
the periphery of the black exterior walls represent the pair-
wise infrared detectors. The violet-orange circles represent 
the omnidirectional cameras blocked by stairwells or walls.

3.2  Generation of 3D detection field

In this study, 3D models of the PPS elements were developed 
to project the detection field. Two types of detection elements 
were considered for the detection field projection. One is a 
gate access control system, such as a keycard, fab, facial rec-
ognition, or fingerprint scanner, etc., with credentials to enter. 
The detection probability of such sensors was approximated 
as a point estimate, as summarized in Table 1. Another type 
of detection element is the CCTV cameras mounted in the 
internal or external corners of buildings. The detection zone 
of the CCTV camera is shown in Fig. 8b. The detection space 

Fig. 6  (Color online) 3D bird’s eye and motion perception of the Building #3
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of the CCTV camera has a conical search light shape. The 
probability distribution of the camera’s projected region on the 
ground was approximated by a linear decay function defined 
in the following Eq. (15):

where Pi
D
 denotes the probability of detection at the i-th cell 

node covered by the spotlight of the CCTV camera. PD-center 
refers to the probability of detection in the center of the 
spotlight area. Di is the distance between the i-th cell node 
and the center point of the spotlight area. R is the radius of 
the spotlighted circle.

(15)Pi
D
= PD-center ⋅

(
1 −

Di

R

)
,

The entire detection field generated for a hypothetical 
laboratory facility is illustrated in Fig. 9. The detection 
field is presented in the form of thermography, in which 
the sensitive detection area is marked with a highlighted 
foreground color display. The pixel colors of the detec-
tion circles gradually decayed to pale yellow and even to 
a gray background, which represented the non-detection 
areas. In addition, the critical detection area ( TR < RFT  ) 
is highlighted with a light pink background on the map 
to provide insight into the potential vulnerabilities. The 
internal structures of buildings #1 and #2 are not shown 
here because of the lower security risk levels identified for 
evaluating the effectiveness of the PPS.

Fig. 7  2D Plane map for the 
second floor of Building #3

Fig. 8  (Color online) Modeling of CCTV camera
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4  Vulnerability analysis of the hypothetical 
laboratory facility

In this section, the 3D A∗ heuristic pathfinding algorithm is 
implemented for vulnerability analysis of the hypothetical 
laboratory facility. To verify and highlight the high effi-
ciency of the proposed 3D A∗ heuristic search algorithm, 
a comparison between the A∗ and Dijkstra algorithms was 
performed to identify the most vulnerable path. The scene 
settings are described in Sect. 4.1. Comparisons between 
the 3D A∗-heuristic pathfinding algorithm and the non-
heuristic Dijkstra algorithm in the assessment of security 
vulnerabilities are presented in Sect. 4.2.

4.1  Scene setting for the case demonstration

As pinpointed in Fig. 7, the protected target is located in 
Room #207 of Building #3. The adversaries are assumed 
to start their attacks on the right side of the laboratory 
site. The surveillance monitoring system and response 
forces are located in the left corner of Building #2. The 
response forces must reach the target room prior to the 
arrival of the enemies to interrupt them once an alarm is 
triggered. Therefore, the shortest path was chosen based 
on the response forces to reach the target at the highest 
speed. A relatively small PPS response time ( TRFT = 61 s ) 
was obtained by traveling along the shortest path to the 
target enclosure and considering a good training exercise 
for the response forces. An adversary attack is conducted 
under the following assumptions:

• Obstacles, such as walls and perimeter fences, are 
impenetrable. That is, enemies do not have the ability to 
destroy objects.

• Any open space on the ground is accessible. The enemies 
can move freely in the open areas.

• The step length is set to �=0.3 m by taking into account 
the optimal height of a staircase step.

• The detection probability ( PD ) and time delays ( TTD ) 
defined for the various PPS elements, including the outer 
gate point (Gate #1, Gate #2), building interior gate (Gate 
#3), and room doors, is summarized in Table 1.

• The average speed of enemies and response forces are 
assumed to be VA = 3m/s and VRF = 2.5m/s for TTR and 
TRFT values calculation.

• An adversarial attack will be successfully interrupted by 
the response forces as long as the response forces get into 
the target enclosure before the enemies do.

4.2  Optimal pathfinding using 3D A∗ Heuristic 
algorithm and Dijkstra algorithm

Based on the model assumptions and model parameter 
inputs, the vulnerability of the heuristic pathfinding solution 
can be obtained using 3D A∗-algorithm. The most vulnerable 
adversary path identified using the measure PI in the 3D A∗ 
heuristic search is shown in Fig. 10.

The search results were also compared with those of the 
Dijkstra algorithm, as summarized in Table 2. The com-
plexity of the proposed heuristic scheme was estimated by 
counting the number of nodes traversed by the algorithm and 

Fig. 9  (Color online) Detection 
field projected for the hypotheti-
cal laboratory facility

Table 1  Parameter setting for PPS elements

PPS elements Detection probability 
( P

D
)

Time delay 
( T

TD
)

Gate #1 0.5 2 s
Gate #2 0.5 2 s
Gate #3 0.8 15 s
Door enclosure 0.9 10 s
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the elapsed time required to complete the optimal path. Fig-
ure 11 shows the shortest path with the lowest PI obtained by 
the Dijkstra algorithm. To provide a clearer path display, we 
made the building transparent except for the skeleton frame. 
In Unity3D environment, users can also follow the character 
model for path exploration in the animation mode. Thus, the 
most desirable benefits of 3D modeling and animation can 
be discovered in PPS design and simulations.

This shows that a huge number of 134,298 cell nodes are 
traversed by the Dijkstra algorithm for the most vulnerable 
path identification, with an elapsed time of 2,299,362 ms. In 
contrast, the search efficiency was significantly improved by 
proposed algorithm A∗ . Saving more than two-thirds of the 

computation time when applying algorithm A∗ for optimal 
pathfinding in a hypothetical scene with the magnitude of dis-
crete cell nodes Ntotal = 145,521. The most vulnerable adversar-
ial paths identified by the Dijkstra and A∗ algorithms have the 
same measures of PI=0.466414838754809, TR=111.91 s, and 
cumulative detection probability Pacc

D
=0.145123303533361.

From the birds-eye view shown in Figs. 10 and 11, we 
can see that the adversaries take the same path to the target. 
Starting from the initial point on the right side of the labora-
tory site, the adversaries enter the facility through Gate #1 
and then choose the shortest path to bypass the detection 
fields around buildings #1 and #2. As adversaries approach 
Building #3, their movements are monitored by a series of 

Fig. 10  (Color online) The 
most vulnerable adversary path 
searched by A∗ algorithm

Table 2  Comparisons of 3D A∗ algorithm and Dijkstra algorithm for security vulnerability assessment

Method P
I

TR P
acc

D
Path nodes
in CloseList

Nodes traversed
in OpenList

Nodes to 
be searched

Elapsed time (ms)

Dijkstra algorithm 0.466414838754809 111.91 0.145123303533361 466 134298 947 2299362
A
∗ algorithm 0.466414838754809 111.91 0.145123303533361 466 82186 1148 752663

Fig. 11  (Color online) The 
most vulnerable adversary path 
searched by Dijkstra algorithm
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CCTV cameras, in which the searchlight covers most of the 
floor area. Therefore, adversaries tend to be more cautious in 
selecting their path directions to quickly approach the target 
without being detected by surveillance monitoring systems. 
Screenshots of the hidden routes inside Building # 3 are 
shown in Fig. 12. Figure 12 also presents the visual compari-
sons with different segments of the path between the Dijkstra 
algorithm and the A∗ algorithm for the full validation of 
the path. The path varies slightly only in the non-detection 
areas ( PD = 0 ), but the cost function PI is not affected by the 
identification of the optimal global path.

During the heuristic search analysis, the cost values, includ-
ing [G(n), H(n), F(n)], were also reviewed for cross-validation 
of the optimal paths. As compared in Fig. 13, the heuristic cost 
H(n) shows a monotone decreasing change as we advance the 
path toward the origin of adversarial attack. However, it also 
exhibits local volatility in path guidance when the simulta-
neous contrast effects of the combined detection and delay 
functions are considered for the heuristic estimation of H(n). 
In other words, the simultaneous contrast effects resulting 
from the decreased cumulative probability of detection and 
increased probability of adversarial interruption (P(R|A)) can 
lead to unnecessary searches for local path optimization. Theo-
retically, the estimated cost H(n) will continue to decrease until 
zero because fewer detection grids need to be computed for 
the short-distance heuristic when the point moves close to the 
target. However, the monotonic increase in TR and P(R|A) has 
a countereffect on the heuristic estimates in backward pathfind-
ing. There may even be a slight increase in the estimated value 
of H(n) during the path planning. This surprising phenomenon 
is highlighted in Fig. 13a and b. Surprisingly, a sudden jump 
in the overall cost estimation F(n) resulting from a significant 
increase in the time delay at a detection point can be observed 
for a critical path element such as Gate #1. Gate #1 served as 
the main entrance to a limited area of the hypothetical labora-
tory facility. Because the delay elements in the open areas are 

not considered in the heuristic estimation, a sudden increase in 
the time delay caused by Gate #1 immediately creates an obvi-
ous shoot-up in the overall cost estimation F(n) when com-
pared to its neighboring nodes inside the boundary fence of 
the hypothetical laboratory facility. Gate nodes with relatively 
large values for the overall cost estimate F(n) are pushed down 
on OpenList. In such cases, the algorithm must prioritize the 
search in the free-walking area (Fig. 10) where the neighbor-
ing nodes are in fact fantastic with lower value of F(n), but 
not the optimal path extended to the off-site source node. This 
also leads to many unnecessary searches and the wastage of 
computational resources.

5  Discussions

Physical security modeling and vulnerability assessment are 
critical components of the integrated design and evaluation 
of a PPS. The heuristic pathfinding algorithm can provide 
a systematic and thorough method for traversing all possi-
ble adversarial paths in a 2D or 3D modeling environment. 
However, the search space becomes enormous as the refined 
mesh is applied for discretizing of security areas of large 
complex facilities. A big challenge is posed for computa-
tionally efficient searches with extremely large path spaces, 
especially when the timeliness of the immediate feedback 
of adversarial attacks is necessary to determine effective 
response measures at the site. It highlights several issues 
that require elegant elaboration with heuristic innovations 
to fit rapidly changing real-world scenes.

• Heuristic innovations for real-time dynamic pathfinding. 
Ideally, a heuristic function H(n) should provide an accu-
rate estimate of the cost, guiding the search in the right 
direction at high efficiency. However, it is usually dif-
ficult and sometimes even impractical to find an optimal 

Fig. 12  (Color online) Visual 
comparisons with different path 
segments
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solution due to the unknown true cost that accompany 
the development of uncertain adversarial paths. In the 
study, we provide a novel heuristic estimation scheme 
to refine the detection and distance fields, providing a 
better estimate of the cost to reach the goal. A geomet-
ric probability model is also introduced to estimate the 
likelihood of intrusion detection by alarm system. The 
number of detection opportunities in approximated by 
the ratio of cell nodes distributed in the detection fields 
to the total number of cell nodes discretized for the entire 
scene. Here, the minimum probability of detection ( Pmin

D
 ) 

is assigned for each detection point, and the diagonal 
distance (see the definitions in Eqs. (12), (13)) is used 
to guarantee an admissible heuristic with optimality. 
Although the proposed heuristic function can greatly 
improve search efficiency when compared to the Dijk-
stra algorithm for the most vulnerable path identification, 
heuristic innovations are still necessary in local optimiza-
tion for real-time dynamic pathfinding.

• Configuration of waypoints for search performance 
improvement. The optimal pathfinding in 3D environment 

poses a big challenge problem especially when facing the 
large-scale infrastructure facility security applications 
[43]. Compared to two-dimensional A∗ heuristic path-
finding, the moving directions are increased from 8 to 26 
considering the three pairs of orthogonal axes. The rapid 
explosion of search space contributed to low search effi-
ciency in a difficult search even with heuristic information. 
A waypoint is an intermediate point along the path to the 
goal, which can be used to make the route finding faster. 
A waypoint is created and placed along the route through 
Gate #3, where adversarial travel is required in the study. 
The waypoint serves as the role to change the course, but 
also to guide the shortest path to the goal for distance heu-
ristic estimation. It should also be noted that the incorpora-
tion of waypoints can lead to suboptimal paths, although a 
highway shortcut link can be constructed.

• Flexible meshing scheme for path smoothing and qual-
ity enhancement. Though A∗ heuristic search is mostly 
being used on the grid map representation, it can make a 
huge difference in the search performance and path qual-
ity. Additionally, the most common square grids adopted 

Fig. 13  (Color online) Optimality of cross-validation in scattered data approximation
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for the discretization of security areas do not fit all types 
of landform in a facility [44]. The study illustrates the A∗ 
heuristic search on a regular quadrilateral grid map as a 
good starting point for the guided tour of adversarial path 
planning. In our future studies, we will investigate a flex-
ible meshing scheme to enable more sophisticated terrain 
modeling, enhancing path performance and quality.

6  Conclusion

In this study, a heuristic waypoint navigation algorithm was 
proposed, supplemented by a geometric probability model, 
to enhance the efficiency and effectiveness of path planning 
for adversary vulnerability assessment in a 3D environment. 
The 3D A∗-heuristic search was demonstrated using a 
hypothetical laboratory facility, where 3D building models 
were developed on the 3ds Max/Unity platform. A 3D 
detection field with a critical detection point line was also 
highlighted to facilitate the security vulnerability assessment. 
A comparative study was conducted between the A∗ heuristic 
and Dijkstra search on the grid map representation of the 
facility for path traversal and performance analysis. The 
shortest path through the outside Gate #1 and the designated 
waypoints to the target on the second floor were identified 
with the lowest PI=0.466414838754809. The search 
efficiency of A∗ is improved by almost two-thirds of the 
computation time compared with the full search of Dijkstra 
for the optimal solution. The proposed A∗ pathfinding 
algorithm is computationally efficient in assessing 3D 
security vulnerabilities.
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