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Abstract
Energy resolution calibration is crucial for gamma-ray spectral analysis, as measured using a scintillation detector. A locally 
constrained regularization method was proposed to determine the resolution calibration parameters. First, a Monte Carlo 
simulation model consistent with an actual measurement system was constructed to obtain the energy deposition distribution 
in the scintillation crystal. Subsequently, the regularization objective function is established based on weighted least squares 
and additional constraints. Additional constraints were designed using a special weighting scheme based on the incident 
gamma-ray energies. Subsequently, an intelligent algorithm was introduced to search for the optimal resolution calibration 
parameters by minimizing the objective function. The most appropriate regularization parameter was determined through 
mathematical experiments. When the regularization parameter was 30, the calibrated results exhibited the minimum RMSE. 
Simulations and test pit experiments were conducted to verify the performance of the proposed method. The simulation 
results demonstrate that the proposed algorithm can determine resolution calibration parameters more accurately than the 
traditional weighted least squares, and the test pit experimental results show that the R-squares between the calibrated and 
measured spectra are larger than 0.99. The accurate resolution calibration parameters determined by the proposed method 
lay the foundation for gamma-ray spectral processing and simulation benchmarking.
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1  Introduction

Gamma-rays are widely used in material detection, geo-
logical exploration, environmental monitoring, and other 
fields  [1–8]. Recently, scintillation detectors have become 
one of the most popular devices for gamma-ray measure-
ments owing to their many advantages in detection effi-
ciency, power consumption, cost, and applicability [9, 10]. 
Scintillation crystals, such as sodium iodide (NaI), gado-
linium orthosilicate (GSO), bismuth germanate (BGO), 
gadolinium yttrium orthosilicate (GYSO), and lanthanum 
bromide (LaBr3), have good stopping powers because of 
their high density and atomic number, making them suit-
able for radiation detection [11–14]. However, although 
incident gamma-rays generally have definite energies, the 
gamma spectrum of the scintillation detector response is not 
an impulse signal. Factors such as the non-uniform lumi-
nous efficiency of the scintillation crystals and the statisti-
cal fluctuation of charge generated by ionization inside the 
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detector can result in a peak shape at the intrinsic gamma-
ray energy, which can be well approximated by a Gauss-
ian function [15]. This type of Gaussian broadening can 
describe the scintillation detector response, particularly the 
energy resolution, which is characterized by the full width 
at half maximum (FWHM) quantity [16]. In qualitative and 
quantitative spectral analyses, energy resolution is a crucial 
parameter for evaluating the performance of a scintillation 
detector, which represents the ability of the detector to dis-
tinguish two close energies [17]. Moreover, to decompose 
the gamma spectrum and extract complicated component 
information from the spectrum, energy resolution calibration 
is essential for radiation measurement systems  [18, 19]. In 
addition, in many gamma-ray spectroscopy applications, the 
spectral characteristic peaks may be well separated, weakly 
overlapping, or strongly overlapping, which is limited by 
the energy resolution. Accurate energy resolution calibration 
is important for resolution enhancement, rapid component 
identification, spectral deconvolution, and other conven-
tional spectral processes  [20–23].

A standard method for calibrating the spectral energy 
resolution of a scintillation detector is to fit the peak shapes 
of different characteristic peaks using a Gaussian function. 
In general, with an increase in gamma-ray energy, the width 
of the characteristic peak also increases, which is related to 
the scintillation crystal properties and conforms to a definite 
model. Therefore, the nonlinear parameters of the FWHM 
calibration curve can be calculated by using several char-
acteristic peak widths [24]. The most common method for 
fitting a peak shape is the nonlinear iterative method [25, 
26]. However, the main difficulty of this method is that it 
easily converges to a locally optimum solution in multidi-
mensional cases, especially if a bad initial starting guess is 
given  [27, 28]. In addition, sometimes poor energy resolu-
tion and Compton scattering result in a high background in 
the low-energy region of the measured spectrum, and some 
weak peaks are submerged in the background whose shapes 
are difficult to fit accurately. In this case, additional back-
ground correction processing is necessary to obtain a pure 
peak, such as the SNIP method or the asymmetrical least 
squares method [29–31].

With the development of numerical simulation technol-
ogy, the Monte Carlo method has played an increasingly 
important role in gamma-ray calibration [32, 33]. By estab-
lishing a simulation model consistent with the measure-
ment system, the optimal nonlinear resolution calibration 
parameters can be obtained using an optimization method 
to minimize the error between the simulated and measured 
spectra  [34]. However, in the absence of effective con-
straints, traditional optimization methods can easily induce 
unreasonable solutions, even if the adaptability of the objec-
tive function is satisfactory. Although the optimization per-
formance can be improved by multiple restarts or increasing 

the number of iterations, this simultaneously reduces the 
efficiency of the optimization.

This study proposes a novel gamma spectral energy 
resolution calibration method based on the regularization 
theory. A Monte Carlo simulation was adopted to acquire the 
gamma-ray energy distribution in the scintillation detector. 
The intrinsic energies were then used as prior knowledge 
to set the constraints of the regularization equation. Subse-
quently, an intelligent optimization algorithm was introduced 
to solve the regularization equation, which was regarded as 
the objective function, realizing energy resolution matching 
between the calibrated and actual spectra. Thus, the optimal 
resolution calibration parameters were determined.

This paper is organized as follows: The theory of scintil-
lation detector response and the concept of the proposed 
locally constrained regularization method are elaborated in 
Sect. 2. In Sect. 3, the simulation gamma-ray spectra and 
test pit experimental spectra are used to verify the proposed 
method. The results of the spectral resolution calibration 
were compared with those of the actual spectra, and the pro-
cessing performance was discussed. Finally, the conclusions 
and suggestions are provided in Sect. 4.

2 � Theory and methodology

2.1 � Scintillation detector response

The energy resolution of the scintillation detector is related 
to Gaussian broadening and can be described by an unbroad-
ening spectrum convoluted with a Gaussian response func-
tion. For discrete data, the convolution is given by

where x(k) denotes the original input signal, h(i) is the 
response function, s(i) is the response signal. The same 
signal length as that of the input signal was obtained by 
discarding the boundary values.

In real measurements, noise is an inevitable influencing 
factor in gamma-ray detection systems. Therefore, the scin-
tillation detector response spectrum can be expressed as a 
matrix equation, as shown in Eq. (2).

where s is the scintillation detector response spectrum vec-
tor, x is the gamma-ray energy vector in the detector, n is the 
noise vector, and H is the Gaussian response matrix.

The Gaussian response matrix determines the extent of 
energy broadening, which can be written as

(1)

s(i) =

i∑
k=0

x(k)h(i − k) = x(i) ∗ h(i) i = 0, 1,⋯ ,N +M − 1,

(2)s = Hx + n,
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where m denotes the length of the response spectrum vector. 
The element Gij in the matrix H is expressed as a Gaussian 
function:

It means that Eq.(4) represents the contribution of a gamma-
ray with energy Ej to the channel with energy Ei , and � in 
Eq.(4) is represented by Eq.(5),

where FWHM is full width at half maximum, it is a function 
of a, b, and c; E is the energy of the corresponding channel.

Therefore, the column vector in the matrix H can be 
regarded as a normalized Gaussian distribution centered 
on the corresponding diagonal element. Figure 1 shows an 
example of a Gaussian response matrix in three-dimensional 
coordinates with a = 0.032 , b = 0.045 , c = 0.83.

2.2 � Locally constrained regularization

The key to calibrating the spectral energy resolution is 
to solve the Gaussian response matrix that matches the 
response of the gamma-ray measurement system. The solu-
tion to the Gaussian response matrix is a typical discrete 
ill-posed problem, which implies that employing uncon-
strained least squares cannot yield satisfactory results. 
Hence, the classical method for solving this type of problem 

(3)H =

⎡
⎢⎢⎣

G11 ⋯ G1m

⋮ ⋱ ⋮

Gm1 ⋯ Gmm

⎤
⎥⎥⎦m×m

,

(4)Gij =
1√
2��

e
−

(Ei−Ej )
2

2�2

(5)� =
1

2
√
2 ln 2

FWHM =
1

2
√
2 ln 2

(a + b
√
cE2 + E),

is regularization, which can find a reasonable approximate 
solution under given constraints. Equation (6) presents an 
example of a regularization objective function with a lin-
ear approximation constraint using weighted least squares 
(WLS).

where si and ui are the ith elements of the calculated and 
measured vectors, respectively, � is a regularization param-
eter that balances both parts of Eq. (6), �i is the weight of 
the ith channel, Δ2 is the second-order difference operator, 
which can be expressed as a matrix D shown in Eq. (7). 
Similarly, quadratic or cubic approximations can be obtained 
by constructing the corresponding difference matrix [35].

Therefore, the objective function can be expressed as a 
matrix equation, as shown in Eq. (8),

where u is the measured vector, s is the calculated vector, W1 
is the diagonal weight matrix.

By solving the matrix equation, the optimal solution vec-
tor can be obtained when the error between the calculated 
and measured vectors is minimized.

For spectral resolution calibration, it is difficult to deter-
mine an accurate Gaussian response matrix using only the 
WLS method, particularly in the case of a poor SNR of the 
gamma spectrum. Fortunately, incident gamma-ray ener-
gies are useful prior knowledge in gamma spectral analy-
sis. The energies of neutron-induced or natural gamma-rays 
are related to the inherent properties of nuclei. Based on 
this premise, the characteristic peaks of gamma-rays in the 
energy spectrum can be used to set additional constraints 
to determine more accurate energy resolution parameters.

In the proposed locally constrained regularization 
method, the objective function can provide additional 
weights to the peak regions so that the determined energy 
resolution is more suitable for broadening the characteristic 
peaks. The new objective function is expressed by Eq. (9):

(6)F = argmin

m∑
i=1

�i(ui − si)
2 + �

m−1∑
i=2

(Δ2si)
2,

(7)D =

⎡
⎢⎢⎢⎢⎢⎣

1 −2 1 0 ⋯ 0 0 0

0 1 −2 1 ⋯ 0 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 0 ⋯ 1 −2 1 0

0 0 0 ⋯ 0 1 −2 1

⎤
⎥⎥⎥⎥⎥⎦m−2×m

(8)F(s) = (u − s)TW1(u − s) + �sTDT
Ds,

(9)

F = argmin

m∑
i=1

�1i(ui − si)
2 + �

n∑
j=1

pjk∑
i=pj1

[�2ji(uji − sji)]
2,

Fig. 1   (Color online) Example of the Gaussian response matrix
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where � is the regularization parameter, n is the number of 
selected peak regions, pjk is the number of channels in the 
jth peak region, w1i is the weight of the ith channel, w2ji is the 
additional weight of the ith channel in the jth peak region.

The weight of each channel can be designed as a diagonal 
matrix W1 , as expressed in Eq. (10), which is determined by 
the relative count of the corresponding channel [36].

The additional weights can also be expressed as matrix W2 
shown in Eq. (11). The number of columns is equal to the 
spectral length m, and the number of rows is determined by 
the number of selected peak regions n.

Only the channels within the FWHM of the selected peak 
region were assigned additional weights. A nonlinear 
weighting scheme based on a sigmoid function was designed 
as shown in Eq. (12):

where wip is the weight of the pth channel in the ith peak 
region and dip is the distance between the pth channel and 
the peak position of the ith peak region.

(10)W1 =

⎡
⎢⎢⎢⎢⎢⎣

u−1
1

u−1
2

⋱

u−1
m−1

u−1
m

⎤
⎥⎥⎥⎥⎥⎦m×m

(11)

W
2
=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 ⋯

FWHM

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
w
1p

1
⋯Peak⋯w

1pk
⋯ ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 ⋯ ⋯ wnp
1
⋯Peak⋯wnpk

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
FWHM

⋯ 0

⎤
⎥⎥⎥⎥⎥⎥⎦n×m

(12)wip = Sigmoid(dip) =
1

1 + e2(dip−FWHM∕2)∕(FWHM∕6)
,

In the proposed weighting scheme, the weight of the 
channel is determined by the distance from the peak posi-
tion and gradually decreases with an increase in the dis-
tance. The channel of the peak position had the maximum 
weight, and the boundaries of the FWHM had the mini-
mum weight. The weight distributions in the peak regions 
are shown in Fig. 2a. Channels within the FWHM of the 
spectral peak were assigned additional weights using this 
weighting scheme, as shown in Fig. 2b. Similarly, the new 
objective function of the locally constrained regularization 
can be expressed as a matrix equation:

Finally, the objective function is converted into a function 
of a Gaussian response matrix.

2.3 � Energy resolution calibration

A strong correlation exists between the elements in the 
Gaussian response matrix, which is determined by a broad-
ening mechanism. Thus, the objective function can be 
regarded as a function of resolution calibration parameters 
a, b, and c. Calibrating the energy resolution can be consid-
ered a high-dimensional constrained optimization problem, 
which can be expressed as Eq.(15), where N is the number 
of measured spectra:

The swarm intelligence optimization algorithm is an itera-
tive method that updates feasible solutions based on their 
fitness. It has the advantage that it does not depend on the 

(13)F(s) = (u − s)TW1(u − s) + �(u − s)TWT
2
W2(u − s).

(14)
F(H) = (u −Hx)TW1(u −Hx) + �(u −Hx)TWT

2
W2(u −Hx)

(15)min

N∑
i=1

fi(a, b, c) s.t.a, b, c ≥ 0

Fig. 2   (Color online) a Weight 
distribution of the peak region; 
b additional weight region of 
the peak region
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initial guess and does not require a derivative of the objec-
tive function. Therefore, we adopt the particle swarm opti-
mization (PSO) to achieve the global optimal solution of the 
objective function.

PSO is a classical optimization algorithm inspired by bird 
predation behaviors. PSO initializes a group of particles as 
potential solutions, and the fitness of the solution is deter-
mined by the objective function. In the kth iteration, the ith 
particle updates its velocity Vk

i
 and position Xk

i
 by track-

ing the individual optimum position Pk
i
 and global optimum 

position Pk
g
 to search for the optimal solution, as shown in 

Eq. (16) and Eq. (17) [37].

where � is the inertia weight, c1 and c2 are the acceleration 
factors, r1 and r2 are random numbers distributed between 
[0, 1].

Another key parameter in the objective function is the 
incident gamma-ray energy vector x . As mentioned above, 
Monte Carlo simulation is a useful method for obtaining the 
response of a gamma-ray measurement system, which can 
solve neutron, photon, electron, or coupled neutron/photon/
electron transport problems in a three-dimensional complex 
geometry. The gamma-ray energy distribution in the scintil-
lation detector can be effectively obtained by establishing a 
simulation model consistent with the actual measurement 
system. Then, utilizing the simulated gamma-ray energy 
distribution, the error between the measured and calibrated 
spectra was computed based on the established objective 
function under the preset constraints. Normalization is 
required in the calculation to ensure that the measured and 
calibrated spectra are of the same order of magnitude. This 
error can be used as a fitness evaluation criterion to update 
the particle swarm using the PSO algorithm. A flowchart 
of the energy resolution calibration using the locally con-
strained regularization method is shown in Fig. 3.

3 � Experiments and discussions

3.1 � Experiments on simulated spectra

To verify the performance of the proposed locally con-
strained regularization method, a Monte Carlo simulation 
model was constructed based on an actual NaI detector 
structure, as shown in Fig. 4. The diameter and length of 
the NaI scintillation crystals were 3.18 cm, and 10.16 cm. 
The NaI crystal was coated with a MgO reflecting layer with 
a thickness of 0.05 cm. The outermost layer of the detector 

(16)V
k+1
i

=�Vk
i
+ c1r1(P

k
i
− X

k
i
) + c2r2(P

k
g
− X

k
i
),

(17)X
k+1
i

=Xk
i
+ V

k+1
i

,

was an aluminum shell with a thickness of 0.1cm. One end 
of the detector was a light guide made of SiO2, which is 
0.2 cm thick. A gamma source that can emit gamma-rays 
with a specified energy distribution was set in front of the 
detector. As neutrons are transported in a medium, they 
gradually thermalize because they collide numerous times 
with the nuclei of the medium. Thermal neutrons are then 
captured by the target nucleus to release gamma photons. 
The energies of the neutron-induced gamma-rays determined 
by the type of the elements can be regarded as the elemen-
tal “fingerprint.” In the simulation experiments, the thermal 
neutron-captured gamma-rays of four common elements, H, 
Si, Al, and Ca, were used as the incident gamma-ray energy 
distributions [38], as shown in Fig. 5. The gamma source of 
the simulation model emitted gamma-rays that followed the 
above four distributions, and the simulated gamma-rays with 
energies ranging from 0.088 MeV to 10 MeV were recorded 

Fig. 3   (Color online) Flowchart of energy resolution calibration by 
locally constrained regularization method

Fig. 4   (Color online) Model for the simulated spectra
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in 1024 channels as the experimental test set. Random noise 
was added to each simulated spectrum to illustrate the appli-
cability of the proposed method.

For the regularization method, the regularization param-
eter is the key factor affecting performance. The main 
function of the regularization parameter is to balance the 
importance of the sum of the weighted squares of the errors 
and constraints. Therefore, mathematical experiments were 
conducted to determine the most appropriate regularization 
parameters. In the experiments, the weight of each chan-
nel in the matrix W1 was determined by the corresponding 
intensity expressed in Eq. (10), and part of the characteristic 
gamma-ray energies of the four elemental energy distribu-
tions whose intensities are larger than 10% are selected to 
construct the regularization weight matrix W2 . Regulari-
zation parameters 10, 20, 30, 50, 70, and 100 were used 
to establish the objective function, and the PSO algorithm 
was adopted to search for the optimal resolution calibra-
tion parameters with different regularization parameters. 
The average RMSEs of the spectra of the H, Si, Al, and 
Ca elements between the calibrated and simulated spectra 
with different regularization parameters are shown in Fig. 6. 

Fig. 5   (Color online) Captured 
gamma-ray energy distributions 
of H, Si, Al, and Ca elements

Fig. 6   (Color online) Average RMSEs between the original spectra 
and the calibrated spectra with different regularization parameters
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It can be found that the calibrated spectra have the mini-
mum RMSE when the regularization parameter is about 30. 
These conclusions can guide the application of the proposed 
method.

A comparison between the simulated and calibrated spec-
tra is shown in Fig. 7. Even for spectra with noise, the reso-
lution calibration parameters determined by the proposed 
locally constrained regularization method still have a high 
consistency with the simulated spectra. The correlation 
coefficients between all the simulated spectra and the cor-
responding calibrated spectra were greater than 0.99, which 
indicates the applicability of the proposed method.

The performances of the locally constrained regulariza-
tion and traditional weighted least squares were also com-
pared to illustrate their applicability. Resolution calibration 
results for the Al spectra obtained using the two methods are 
shown in Fig. 8. This is shown in Fig. 8a; the resolution cali-
bration parameters determined using the locally constrained 
regularization method cause each characteristic peak of the 
calibration spectrum to match the corresponding character-
istic peak of the simulation spectrum. In contrast, although 
the spectrum calibrated by the weighted least squares is well 
consistent with the simulated spectrum in the energy range 

of 3.5 MeV–6 MeV, the resolution error of the character-
istic peaks in the energy range of 0.5 MeV–3.5 MeV and 
6 MeV–8 MeV is relatively large because of the lack of 
sufficient constraints, as shown in Fig. 8b.

The optimal resolution calibration parameters of the two 
methods were determined by the PSO algorithm using 1000 
iterations. The iterative curves of the locally constrained reg-
ularization method and the weighted least squares method 
are shown in Fig. 9. We found that the RMSEs of the two 
methods gradually decreased with the iterations, indicat-
ing that the fitness of the objective function was enhanced. 
Although the iterative curve of the weighted least squares 
method has a faster convergence rate during the iteration, 
the final RMSE is higher than that of the proposed method, 
which means that the optimization is trapped in a locally 
optimal solution.

3.2 � Experiments on measured spectra

Pulsed neutron logging is a powerful method for detect-
ing and analyze reservoir elemental compositions and has 
been widely used in oilfield exploration and development. 
The logging instrument was a typical neutron-induced 

Fig. 7   (Color online) Resolution 
extraction results of the locally 
constrained regularization 
method for different elemental 
spectra
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gamma-ray measurement system. It usually uses a D-T neu-
tron source to excite the nuclei of formation elements to 
release gamma-rays and uses scintillation detectors to obtain 
the corresponding gamma energy spectra. Therefore, test pit 
experiments for pulsed neutron logging were performed to 
verify the performance of the proposed locally constrained 
regularization method for spectral resolution calibration. 
The experimental pulsed neutron logging instrument was 
set in different artificial pits with known compositions and 
geometric structures. As shown in Fig. 10 a, several test 
pits are located at the experimental site. The configurations 
of the pure rock and simple substance test pits are shown 
in Fig. 10 b. The depth of these test pits was 6050 mm, 
and they were divided into multiple intervals. The inter-
vals are filled with different materials, including aluminum 

Fig. 8   (Color online) Resolu-
tion calibration results of the Al 
spectrum using the locally con-
strained regularization method 
and weight least squares

Fig. 9   (Color online) Comparison of the iterative curves of the 
locally constrained regularization method and weight least squares

Fig. 10   (Color online) Test pit experimental site (a) and the configu-
rations of pure rock or substance test pits (b)
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(Al), magnesium (Mg), iron (Fe), titanium (Ti), graphite 
(C), limestone (LS), and granite (GS). The instrument was 
inserted into a borehole with a diameter of 200 mm, which 
was filled with fresh water, to measure neutron-induced 
gamma-rays. In the experiments, four test pits were selected 
as the measurement objects, three of which were pure rock 
or simple substance test pits (LS, Al, and C), and the fourth 
was a water tank. As described in Methodology section, a 
Monte Carlo simulation model was constructed based on the 
actual experimental instrument structure and test pit con-
figurations to simulate the energy deposition distribution in 
the scintillation crystal, as shown in Fig. 11. The diameter 
and length of the instrument were SI41mm and 2358 mm. 
The D-T neutron source consisted of an accelerating system 
and a neutron-producing target. The instrument has three 
scintillation detectors with different source–detector spac-
ings (29 cm, 59 cm, and 91 cm), and there is a tungsten 
shield between the source and the nearby detector. The far 
and near detectors use LaBr3 crystals with crystal sizes of 
27.5 mm×152 mm and 27.5 mm×38 mm (diameter×length), 
respectively. The extra detector adopts a NaI crystal of size 
27 mm×152 mm. The extra detector has the maximum spac-
ing; therefore, it is mainly used to collect natural gamma-
rays rather than neutron-induced gamma-rays. In the experi-
ments, considering the influence of radioactive statistical 
fluctuations on gamma-ray spectral measurements, the 

energy spectrum collected by the near detector was selected 
to test the proposed method.

Based on the mechanism of nuclear reactions between 
fast neutrons and nuclei, two types of interactions can pro-
duce secondary gamma-rays: inelastic collisions and capture 
reactions. The experimental instrument utilized a special 
measurement sequence to measure and capture inelastic 
secondary gamma-rays. As shown in Fig. 12, the D-T neu-
tron source of the instrument periodically emits neutrons 
with energies of 14 MeV. The complete measurement period 
of 20ms consists of 200 subperiods of 100 μs, where the 
neutron source emitted neutrons during the first 40 μs of 
each subperiod, whereas the neutron source did not work for 
the next 60 μs. In the measurement, the scintillation detec-
tor recorded the gamma-ray energy spectra during the G2 
and G3 time gates and then accumulated the spectra of all 
subperiods to obtain the final energy spectra. In general, 
inelastic collision and capture reactions occur during the 
neutron burst time (G2), whereas only the capture reaction 
can occur during the G3 time gate, when the neutron source 
stops working. Therefore, the spectrum obtained in time gate 
G2 is called the total spectrum, which contains inelastic sec-
ondary gamma-rays and captures secondary gamma-rays, 
whereas the spectrum obtained in time gate G3 is called the 
capture spectrum, which only contains captured secondary 
gamma-rays. The proposed locally constrained regulariza-
tion method was used to calibrate the energy resolution using 
two types of spectra. All the total and capture spectra meas-
ured in the four test pits were used to establish the objective 
function. After optimization, the optimal resolution calibra-
tion parameters were a= 0.0479, b= 0.0146, and c= 8.3718. 
Obviously, the determined resolution calibration parameters 
apply to all the spectra measured by the instrument.

The calibration results for the entire spectrum are shown 
in Fig. 13. It can be seen that each total spectrum has an 

Fig. 11   (Color online) Test pit experimental Monte Carlo model
Fig. 12   (Color online) Measurement sequence of the experimental 
instrument
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apparent characteristic peak with an energy of 2.23 MeV, 
which is produced by the capture reaction of hydrogen in 
the borehole fluid. In addition, some characteristic peaks 
of other elements were observed in the total spectra, such 
as the inelastic characteristic peaks of oxygen (6.13 MeV) 
and carbon (4.43 MeV) in the water tank and graphite test 
pit. All the characteristic peaks, including the correspond-
ing escape peaks, can be used to set additional constraints 
as useful prior knowledge.

The selected characteristic peaks of each total spectrum, 
RMSE, and correlation coefficient (R-Square) between the 
normalized experimental spectrum and normalized cali-
brated spectrum are shown in Table 1. In the experiment, 
distinct peaks were selected for each spectrum to set the 
constraint conditions. We found that there were good cor-
relations between the experimental and calibrated spectra 
from the comparison results. All correlation coefficients 
were greater than 0.99, and the average RMSE was only 
4.22 × 10−4 after resolution calibration using the locally con-
strained regularization method.

Comparisons of the normalized experimental capture 
spectra with the normalized calibrated capture spectra 

are shown in Fig. 14, and the capture spectral calibration 
results for the four test pits are listed in Table 2. The char-
acteristic peak of hydrogen was also observed in all four 
measured spectra. In addition, the characteristic peaks 
of calcium (6.42 MeV) and aluminum (3.03 MeV and 
4.69 MeV) were selected to set constraints for the spec-
tra of the corresponding test pits. From the comparison 
results, it can be observed that the correlations between 
the calibrated and measured spectra are sufficient. All cor-
relation coefficients were greater than 0.99, and the aver-
age RMSE was 4.03 × 10−4 . The calibration results of the 
capture spectra also proved the performance of the locally 

Fig. 13   (Color online) Compar-
ison of the experimental spectra 
and the calibrated spectra of dif-
ferent test pits (total spectrum)

Table 1   Comparison of the normalized experimental spectrum with 
the normalized calibrated spectrum of the total spectra

Test pit Characteristic peaks (MeV) RMSE R-Square

Water 2.23, 5.11, 6.13 4.16 × 10
−4 0.9954

Limestone 2.23, 5.40, 6.42 4.18 × 10
−4 0.9947

Aluminum 2.23, 3.03, 4.69 4.57e × 10
−4 0.9947

Graphite 2.23, 3.41, 4.43 3.98e × 10
−4 0.9950
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constrained regularization method in spectral resolution 
calibration.

4 � Conclusion

This study proposes a locally constrained regularization 
method to calibrate gamma-ray spectral energy resolution. 
The objective function of the proposed method was designed 
based on the convolution of the incident gamma-ray energy 
distribution and the detector response function. The incident 
gamma-ray energies, which are determined by the nuclear 

properties, are used as a type of prior knowledge to set addi-
tional constraints on the objective function. A special non-
linear weighted scheme is introduced to provide additional 
weights to the channels within the FWHM of the spectral 
peak to ensure that the characteristic peak broadening can 
match the actual resolution. Because of the spectral broaden-
ing mechanism, the elements in the response matrix exhibit 
a strong correlation. Hence, the optimal resolution calibra-
tion parameters were determined by combining an intelligent 
algorithm and Monte Carlo simulation. The most appropri-
ate regularization parameters were determined through 
mathematical experiments. The results show that when the 
value is 30, the regularization parameter can balance the 
importance between the sum of the weighted squares of the 
errors and the constraints. The processing results of the pro-
posed method were compared with those of the weighted 
least squares method using simulated spectra, which proved 
the calibrated resolution accuracy. The measured spectral 
processing results in the test pits also showed that the cali-
brated spectra were consistent with the measured spectra 
obtained using the resolution calibration parameters deter-
mined using the proposed method.

Fig. 14   (Color online) Com-
parison of the experimental 
spectra and the calibrated spec-
tra of different test pits (capture 
spectrum)

Table 2   Comparison of the normalized experimental spectrum with 
the normalized calibrated spectrum of the capture spectra

Test pit Characteristic peaks (MeV) RMSE R-Square

Water 2.23 5.18 × 10
−4 0.9950

Limestone 2.23, 5.40, 6.42 3.53 × 10
−4 0.9966

Aluminum 2.23, 3.03, 4.69 3.66 × 10
−4 0.9965

Graphite 2.23 3.76 × 10
−4 0.9963
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